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Mat. čas. 24, 1974, No 1, 15—20 

ZEROS OF THE POLYNOMIAL SOLUTIONS OF THE 
DIFFERENTIAL EQUATION 

xy" + (/»o + hx + fex*W + (r ~ np2x)y = 0. 

JOZEF ROVDER 

At the eonference on differential equations at Dundee in March 1972 (the 
proceedings of which are shortly to be published by Springer) Arscott showed 
that polynomial solutions of the above equation have valuable bi-orthogonal 
properties. The purpose of this note is to investigate the zeros of these poly
nomials. The main result of this paper is Theorem 3, which is an analogy with 
Stieltjes' theorem on the zeros of Lame polynomials [2]. 

Consider the differential equation 

(1) xy" + (#> + plX + p2x*)y' + (y- np2x)y = 0, 

where n is a positive integer and j80 > 0, /?i, fi2 < 0, y are real. 

Theorem 1. For the numbers poT Pi, p2, n restricted as above, there exist n + 1 
real numbers yo < yi < . . . < }'n so that the differential equation 

(2) xy" + (p0 + hx + fex*)y' + (n - np2x)y = 0, 

has a polynomial solution of the degree n, for i = 0, 1, . . ., n. 

n 

Proof . Let y(x) = 2 atxi be a polynomial solution of (1). Then y'(x) = 
i 0 

n n 

2 icitx1 1 . y"(x) = 2 *(* — 1)&^ - 2 - On substituting y(x), y'(x), y"(x) into 
i 1 ?' 2 

equation (1), we obtain the following system of equations for the coefficients 
at, i 0, 1, . . ., n. 

yao + Pocii = 0, 

Ihnao + (y + Pi)ai + 2(/S0 + l)a 2 - 0, 

-P2(n - ] ) « i + (y + 2/3i)a2 + 3(l?0 + 2)a3 - 0, 



(3) 
—ßì(n - k + 2)ak-2 + [ү + (k — l)j5i]o»-i + Ңßo + k - l)ak = 0, 

—p22an-2 + [y + (n— l)Pi]an-i + n(fi0 + n — \)an = 0, 

—p2an-i + (y + npx)an = 0. 

In order that the system (3) may have a nontrivial solution it is necessary^ 
that 

(4) D»+1(y) = 

y 100 
-ß2n y + 01 

-ßг(n - 1) 
2(Øo + 1) 
y + 20i 3(Øo + 2) 

-ß2(n-k + 2) ү + (k-l)ßi k(ßц + k-l) = 0 . 

- 0 2 2 y+(n- l)Øi n(00 + n - 1) 

— 02 y + Пßi 

Denote by D^.n+i the k-th order determinant obtained from the first rows and 
the first columns of Dn+\(y). We can easily show that 

(5) -D*+i,»+i = (y + kpi)Dk,n+i + p2(n — k + \)k(fi0 + k— \)Dk i.OT+i 

for k = 2, 3, . . ., n. 
The following properties of Dkfn+i were proved by Arscott [1J. (i) the zeros 

of Dn+i a,ndDn>n+i interlace, (ii) at consecutive zeros of Dn+\ the values of Dnt 

n+i are alternately positive and negative, (iii) all the zeros of Dn+i are real 
and distinct. 

If an or a0 is equal to zero, it follows from (3) (/?0 4= 0, ft2 =f= 0) that at = 0 
for all i, i. e. y(x) = 0. From this remark and (iii) it follows that for every 
positive integer n there exist n + 1 numbers y. ,(n) 0, 1, . . ., n so that for 
each y{n) the system (3) has a nontrivial solution (a(

0°, a^, a(
2°, . . . , a^), 

where a%* 4= 0, a0
l) 4= 0. This means that the differential equation (2) has 

n + 1 polynomial solutions of the degree n associated with the different numbers 
y0

n) < y^ < . . . < yn
n\ The polynomial solution of equation (2) associated 

with y(n) will be denoted by y\l)(x) . ( ^ ( x ) doees not mean the i-th order 
derivative of yn(x).) 

R e m a r k . Every solution yn
l)(x) depends on the coefficient a0. Put a0 — 1. 

Then the solutions y(
n(x) satisfy the condition yn

l\0) = 1. From now on, we 
shall assume that every polynomial solution y(

n(x) has that property. 
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Lemma 1. Let y^(x) be a polynomial solution of equation (2) with the property 
that yf(0) = I, i. e. yf(x) = 1 + afx + aPx* + . . . + a £ V . Then the sign of 
afis(-\y. 

Proof . The solution y^(x) is associated with the root y{h) of the equation 
Dn+1(y) = 0. From (ii) it follows that the sign of Dn,n+i(y{f) is (— l)n+*. Let us 
carry over the first columm of (3) to the right-hand side and leave out the last 
row, we thus obtain a nohomogeneous system of equatios (for a0 4= 0) with the 
unknows a(l\ a{y\ . . ., a^ (associated with y\n)). By Cramer's rule we obtain 

a»} = — r r (-lYDn{yf), 
n ! i i (Po + i) 

thus the sign af is equal to (— \)n . sign Dn(y
{-')) = (— \)n . (—1)M+* = (— l)i. 

The lemma is thus proved. 

Theorem 2. Let ^l(x) = y(n(x), ? (x) = y\l^(x) be two polynomial solutions of 
(1). Let m ^ n and yjm) ^ yf^. Then if the member a is the first zero of u(x) in 
(0, oo), v(x) vanishes at some point of (0, a}. 

Proof . The differential equation (1) can be transformed in (—GO, 0) U 
VJ (0, oo) by the substitution 

(6) w(x) = y(x) y|a|^-*+502*2 , 

to the form 

(7) w"(x) + 

where 

-nß2 +
 V-+f(x) 
X 

f(z) = - — z * - — x - - ( # + 2/?2 + 2fofc) - — Pof}L + 
4 2 4 2x 

+ - 1 - ( 2 f 5 0 - . 9 5 ) . 
4x2 

From the relation (6) it follows that the zeros of a solution of equation (1) 
are the same as the zeros of the corresponding solution of equation (7) except 
possibly for the point x = 0. 

Let ^l(x), v(x) be a polynomial solution of (1). Then the function 

z(x) = u(x) ]lxft*ePy*+lte* 

satisfies the equation 
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(8) z"(x) + 

and the function 

-nß2 + — +f(x) 
X 

z(x) = 0 

w(x) = v(x) ]/a;0oe0i3+»/3ffr-

satisfies the equation 

(9) w"(x) + -mßo 
УJ 

+ /(*) w(x) = 0. 

Now suppose that Theorem 2 is false, i. e. that v(x) > 0 in (0, a ) (u(Q) = 
= v(0) = 1). Then z(x) > 0 and w(x) > 0 in (0, a). Multiplication of (8) by 
w(x) and (9) by z(x), subtraction of the resulting equations and integration over 
(0, a) yields 

j [z'(x)w(x) - w'(x)z(x)]'dx = \ -ß2(m-n) + —(Уj — Уl) 
x 

w(x)z(x)dx. 

At the moment, we do not know that these integrals exist (since the integrands 
are not continuous functions at x = 0). But after making substitution (G) 
we obtain 

)" [xV«eVix+l^ u'(x)v(x) — v'(x)u(x)]'dx 
ó 

/ -ßг(m — n) + (Уj — Уi 
U^X^V^X^X^oЄ13^^^2г'2 d.r. 

Since /?o > 0, both integrals exist and the integrand on the right-hand side is 
nonnegative by hypothesis. Therefore the integral on the left-hand side is 
nonnegative as well, i. e. 

(10) {x0oePi*+l^2 [u'(x)v(x) — u(x)v'(x)]}x

x-
a

0 ^ 0. 

But since u'(a) < 0, v(a) > 0 for a > 0, the left-hand side of (10) is negative; 
we thus have a contradiction and so the theorem is proved. 

Similary, we can prove the following theorem. 

Theorem 2'. Let u(x) = y^\x), v(x) = yT(x) oe ^wo polynomial solutions of 
(\). Let m ^ n and y^ <; y

{?l). Then if the number a < 0 is the last zero of u(x) 
in (— oc, 0) (that is to say, the value of a is the greatest of all zeros in (— oo, 0)), 
v(x) vanishes at some point of <&, 0). 

Theorem 3. Let y^\x), n = I, 2, . . ., n be a polynomial solution of equation 
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(2) corresponding to y("\ Then every such solution has n zeros in (—00,00.); 
i zeros lying in (0, oo)and n — 1 in (— 00, 0). 

Proof . From Theorem 1 it follows that every solution y^\x) is of the degree 
n, and so has at most n zeros in (— 00,00). Consequently it is sufficient to prove 
that every such solution has at least n zeros situated as stated in the Theorem. 
We recall that every solution y%\x) has the following properties 

i- y^(0) = 1. 

-• y(,?(.v) = 1 + afx + ... + ( -1)* I a«> I x». 

The proof is by induction on the nubmer n. 
Let n = 1. The equation D2(y) = 0 has two roots y^ < 0 and y^ > 0. 

From (3) it follows that the solution y1\x) has a zero in (— 00, 0) and y(
1\x) 

has a zero in (0, 00). Consequently Theorem 3 is valid for n = 1. 
Assume that Theorem 3 is valid for the number n = k, i = 0, 1, . . ., k, 

i. e. the solution yk\x) has i zeros in (0, 00) and k — i zeros in (—00, 0). We 
shall deduce that the theorem is valid for n = k -1- 1. 

At the begining we propose the solution yk+1(x), where i -j= 0, i =f= k + 1. 
We divide the proof into two parts a) and b). In part a) we shall show that 
yk

l)
+1(x) has k + 1 — i zeros in ( - c o , 0), and in part b) we shall show that 

function #£+-,(#) has i zeros in (0, 00). 
a). Consider the solution yk\x) of (1) associated with the number yf\ 

From Theorem 2' it follows that the last zero of yk+1(x) in (— 00, 0) is greater 
than the last zero of yk\x). By the inductive hypothesis, the solution yk

l\x) 
has k — i zeros in (— 00, 0). Using the Sturm comparison theorem we obtain 
that y^li(x) has at least k — i zeros in (— 00, 0). 

Since 

]imy%\x) = lim ( — 1 ) ^ =(= lim (— l ) ' ^ 1 = lim yf+1(x), 
j"->-°o cr->-co #-»-oo a;-»-Gc 

y(
k+1(x) must have another zero in (— 00, 0). Consequently y^+1(x) has a t least 

k + 1 — i zeros in (— 00, 0). 
b). In this part we consider the solution yk

l~1\x). This solution has i — 1 zeros 
in (0, 00), by hypothesis. 

If i — 1 = 0, i. e. yk
l~1\x) has no zeros in (0, 00), then yk

l)
+1(x) has at least one 

zero in (0, 00), because ^^ (O) = 1 and 

lim yk+1(x) = lim (— l ) 1 ^ * 1 = — 00. 
a;-»oo #-»oo 

Let i > 1. Then from Theorem 2 it follows that the solution y%+1(x) has its 
first zero in (0, 00) before the first zero of yk~

1\x). From Sturm's comparison 
theorem it follows that yk+1(x) has i — 2 other zeros in (0, 00), and so y^+1(x) 
has at least i — 1 zeros in (0, 00). 
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Be cause 

lim y{l 1](x) = lim ( — 1 )*-!#* 4= lim (— l)*a*+- = lim yi-ViC*1)* 
:r->oc .T-*X> .z->oo #-»•'* 

the solution y^l^x) has another zero in (0, oo). Consequently y[tli(x) has at 
least i zeros in (0, oo). 

From a) and b) it follows that y^li(^) has precisely k -f- 1 — i zeros in (-co, 0) 
and i zeros in (0, oo), where i 4= 0, i =# k -f- 1. 

We can see that part a) is valid for i = 0 as well, i. e. the solution yfl^x) 
has at least k -f- 1 zeros in (— oo, 0), i. e. precisely k -f- 1 zeros in (— oo, 0) 
and no zeros in (0, oo). Similary, part b) is valid for i = k -+- 1, i. e . the solution 
yk+i\x) ^ a s precisely i T l zeros in (0, oo) and no zeros in (— oo, 0). Theorem 
3 is thus proved completely. 

A c k n o w l e d g m e n t . I have written this paper during my bursary under 
the guidance of Professor F, M. Arscott of the Department of Mathematics at 
the University of Reading. I am grateful to him for suggesting this problem 
to me. 
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