Matematický časopis

Martin Gavalec

Linear Congruences in Distributive Lattices

Matematický časopis, Vol. 21 (1971), No. 4, 248--263
Persistent URL: http://dml.cz/dmlcz/127073

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

LINEAR CONGRUENCES IN DISTRIBUTIVE LATTICES

MARTIN GAVALEC, Košice

The structure of linear congruences in distributive lattices is studied in this paper. The problem of equality of the local and lattice dimensions of a distributive lattice is solved affirmatively by Theorem 5.7 in the case when the dimensions (at least one of them) are finite. (The negative answer in the infinite case has been shown already in [1]).

0. Preliminary

We shall use the denotation and the terminology introduced in [1] with the following additions.

By a relation we mean a set of ordered pairs; if R is a relation, then $\mathrm{D}(R)$ is the set of all first elements of pairs from R. If for any $x \in \mathrm{D}(R)$ there is at most one element y such that $\langle x y\rangle \in R$, then R is a function. A congruence Q on a lattice L is called linear, if $\langle x y\rangle \in Q$ implies that x, y are comparable. Two congruences on L are orthogonal, if their intersection is the identity on L. The (only) maximal congruence orthogonal to a congruence Q on L will be denoted Q^{\perp}. By,$+ \sum$ we shall denote the join of congruences in the distributive lattice of all congruences on L, while \cup, \cup will denote the set-theoretical join. We say that an ordered set A satisfies the condition of maximality, if every chain in A has an upper bound in A.

In the lattice L, the complement $L-X$ of a subset X of L will be denoted by $-X$, the set of all lower (upper) bounds of X is denoted by $\mathscr{L}(X)(\mathscr{U}(X))$. Convex subsets r, p of L are called projective, if any interval $[x y] \subseteq r$ is projective with some $[u v] \subseteq p$ and conversely. If a, b are subsets of L and for any $y \in a, z \in b$ we have $y \wedge z=x$, then we say that a, b are orthogonal over x. A subset b of L is called an independent system over x, if $x \notin b$ and if for any $y \in b$ the sets $\{y\}, b-\{y\}$ are orthogonal over x. Then, denoting card $b=\mathfrak{f}(\mathfrak{f}$ need not be finite), we say also that b is a \mathfrak{f}-system over x, or a lower \mathfrak{f}-system (in L) and x is a lower \mathfrak{f}-element (in L). If r is a convex chain in L and if every $x \in r$, which is not the greatest element in r, is a lower \mathfrak{f}-element in L, then r is called a lower \mathfrak{f}-chain (in L). The notions of the upper \mathfrak{f}-element and the upper \mathfrak{f}-chain are defined dually. Thus, according
to $[1], \operatorname{lodim} L=\sup \{\mathfrak{f} ;$ there is a lower or upper \mathfrak{f}-element in $L\}$ and if $\operatorname{lodim} L$ is finite, $\operatorname{lodim} L=\sup \{\mathfrak{q} ;$ there is a lower \mathfrak{f}-element in $L\}$. We remember also that the lattice dimension of L, $\operatorname{ldim} L$, is a cardinal \mathfrak{f} if L is. a subdirect product of \mathfrak{f} chains but not a subdirect product of less than \mathfrak{f} chains, that lodim $L \leqslant \operatorname{ldim} L$ and that if lodim L is finite, then lodim $L \leqslant$ $\leqslant \operatorname{dim} L \leqslant \operatorname{ldim} L$ holds.

1. Convex chains

1.0. In this section let r be a convex chain in a distributive lattice L. We define two congruences, one of them ,,parallel" to r, the other congruence orthogonal to the first one.
1.1. Let us define a relation \bar{r} between elements of the lattice L and of the chain r as follows: $\langle t y\rangle \in \bar{r}$ if
(i) $x \vee(y \wedge t)=y$ for every $x \in r, x \leqslant y$,
(ii) $z \wedge(y \vee t)=y$ for every $z \in r, y \leqslant z$.
1.2. The condition $1.1(\mathrm{i})$ is satisfied if and only if
(i) there is no $x \in r, x<y$, or
(ii) there is $x \in r, x<y, x \vee(y \wedge t)=y$.

Proof. Evidently (i) implies 1.1(i). Let $1.2(i i)$ hold and let be $x_{1} \in r, x_{1} \leqslant y$. We cannot have $x \geqslant x_{1} \vee(y \wedge t)$, because it would give $x \geqslant y \wedge t, x \vee$ $\vee(y \wedge t)=x \neq y$. As $x_{1} \leqslant x_{1} \vee(y \wedge t) \leqslant y$ and therefore $x_{1} \vee(y \wedge t) \in r$ holds, we have $x \leqslant x_{1} \vee(y \wedge t)$ and $x_{1} \vee(y \wedge t)=x \vee\left(x_{1} \vee(y \wedge t)\right)=$ $=x_{1} \vee(x \vee(y \wedge t))=x_{1} \vee y=y$. Thus the condition 1.1(i) is fulfilled. Conversely, 1.1(i) evidently implies (i) or (ii).
1.3. The relation \bar{r} is a homomorphism of the convex sublattice $\mathrm{D}(\bar{r})$ of L onto. the chain r.

Proof. Let $\langle t y\rangle,\left\langle t y_{1}\right\rangle \in \bar{r}$. The elements y, y_{1} are comparable, let, e. g., $y \leqslant y_{1}$. Then $y=y_{1} \wedge(y \vee t)=y \vee\left(y_{1} \wedge t\right)=y_{1}$ holds, therefore \bar{r} is. a function.

Now let $\langle t y\rangle,\left\langle t_{1} y_{1}\right\rangle \in \bar{r}$. Again let, e. g., $y \leqslant y_{1}$. For every $x \in r, x \leqslant y$ we have $x \vee\left(y \wedge\left(t \wedge t_{1}\right)\right)=x \vee\left(\left(y \wedge y_{1}\right) \wedge\left(t \wedge t_{1}\right)\right)=x \vee((y \wedge t) \wedge$ $\left.\wedge\left(y_{1} \wedge t_{1}\right)\right)=(x \vee(y \wedge t)) \wedge\left(x \vee\left(y_{1} \wedge t_{1}\right)\right) \doteq y \wedge y_{1}=y$, for every $z \in r$, $y \leqslant z$ we have $z \wedge\left(y \vee\left(t \wedge t_{1}\right)\right)=z \wedge\left((y \vee t) \wedge\left(y \vee t_{1}\right)\right)=(z \wedge(y \vee t)) \wedge$ $\wedge\left(y \vee t_{1}\right)=y \wedge\left(y \vee t_{1}\right)=y$. Dually $\left\langle t \vee t_{1}, y_{1}\right\rangle \in \bar{r}$ is shown. Thus \bar{r} is a homomorphism and $\mathrm{D}(\bar{r})$ is a sublattice of L.

Let $\left\langle t_{0} y_{0}\right\rangle,\left\langle t_{1} y_{1}\right\rangle \in \bar{r}, t_{0} \leqslant t \leqslant t_{1}$. Then $y_{0} \leqslant y_{1}$ holds, because \bar{r} is a homomorphism. We denote $y=\left(y_{0} \vee t\right) \wedge y_{1}=y_{0} \vee\left(t \wedge y_{1}\right)$ and have $y_{0} \leqslant y \leqslant y_{1}$.

We have also $y_{0} \vee(y \wedge t)=y \wedge\left(y_{0} \vee t\right)=\left(y_{0} \vee\left(t \wedge y_{1}\right)\right) \wedge\left(y_{0} \vee t\right)=$ $=y_{0} \vee\left(t \wedge y_{1}\right)=y$. If $y_{0}=y$, then for every $x \leqslant y_{0}=y$ we have $y=y_{0}=$ $=x \vee\left(y_{0} \wedge t_{0}\right) \leqslant x \vee(y \wedge t) \leqslant y$. Thus by 1.2 the condition $1.1(\mathrm{i})$ is satisfied. The condition 1.1 (ii) is verified dually. Therefore $\langle t y\rangle \in \bar{r}, t \in \mathrm{D}(\bar{r})$ and $\mathrm{D}(\bar{r})$ is convex in L.
1.4. If $x \neq y$ and the irterval $[x y] \subseteq r$ is projective with $[s t]$, then $\langle s x\rangle,\langle t y\rangle \in \bar{r}$.

Proof. By 2.2 [1] the projectivity of [$x y$], [$\left.s^{t}\right]$ implies $x \vee(y \wedge t)=y$. Hence $1.2(\mathrm{ii})$ and therefore also $1.1(\mathrm{i})$ are fulfilled. Now let $z \in r, y \leqslant z$. We denote $a=(x \vee s) \wedge z=x \vee(s \wedge z)$ and have $x \leqslant a \leqslant z$, hence $a \in r$. Further we have $a \wedge y=(x \vee s) \wedge z \wedge y=(x \vee s) \wedge y=x$ (again using 2.2 [1]), therefore the comparability of a, y and the condition $x \neq y$ imply $y=a \vee y=(z \wedge s) \vee x \vee y=(z \wedge s) \vee y=z \wedge(s \vee y)=z \wedge(t \vee y)$. 'Thus 1.1(ii) and $\langle t y\rangle \in \bar{r}$ hold. The second part $\langle s x\rangle \in \bar{r}$ is proved dually.
1.5. Let us define $R_{r}^{0}=\{t ;(\forall x, y \in r)[t \wedge x=t \wedge y]\}, R_{r}^{1}=\{t ;(\forall x, y \in$ $\in r)[t \vee x=t \vee y]\}$. Then we have
(i) $R_{r}^{0} \cup R_{r}^{1} \cup \mathrm{D}(\bar{r})=L$,
(ii) $R_{r}^{0} \cap R_{r}^{1}=0$, if card $r>1$,
(iii) $R_{r}^{0} \cap \mathrm{D}(\bar{r})=0$ if and only if there is no least element in r,
(iv) if y is the least element in r, then $R_{r}^{0}=\{t ;\langle t y\rangle \in \bar{r}\}$,
(v) if r is an interval, then $\mathrm{D}(\bar{r})=L$.

Proof. To prove (i) let us suppose $t \notin R_{r}^{0} \cup R_{r}^{1} \cup \mathrm{D}(\bar{r})$. Then first there are $x, y \in r$ such that $x<y$ and $t \wedge x<t \wedge y$. If we denote $y_{0}=x \vee(t \wedge y)=$ $=(x \vee t) \wedge y$, then according to $x \wedge(t \wedge y)=t \wedge(x \wedge y)=t \wedge x$ we have $[t \wedge x, t \wedge y] \sim\left[x y_{0}\right]$ and $x<y_{0}$. By 1.2 the assumption $y_{0}<y$ gives $\left\langle t y_{0}\right\rangle \in \bar{r}, t \in \mathrm{D}(\bar{r}), \quad$ because $\quad y \wedge\left(y_{0} \vee t\right)=y \wedge(x \vee(t \wedge y) \vee t)=$ $=y \wedge(x \vee t)=y_{0}$ and dually $x \vee\left(y_{0} \wedge t\right)=y_{0}$ hold. Thus we have $y_{0}=y$ and $y \vee t=x \vee(t \wedge y) \vee t=x \vee t$, therefore $t \vee x=t \vee z=t \vee y$ for $x \leqslant z \leqslant y$.

By dual reasoning we get $z=x \wedge(t \vee z)=(x \wedge t) \vee z, t \wedge x=z \wedge x$ for $z<x, t \vee z<t \vee x$. Then the element $a=(y \wedge t) \vee z=y \wedge(t \vee z)$ belongs to r and fulfils $a \wedge x=y \wedge(t \vee z) \wedge x=x \wedge(t \vee z)=z \neq x$, $a \vee x==(y \wedge t) \vee z \vee x=(y \wedge t) \vee x=y \neq x$, which is impossible as a, x are comparable.

We see that $t \vee z=: t \vee y$ holds for $z \leqslant y$. Hence there exists $z \in r, y<z$, $t \vee y<t \vee z$. Again we show analogously that $y=z \wedge(t \vee y)$ and by 1.2 we get $\langle t y\rangle \in \bar{r}, t \in \mathrm{D}(\bar{r})$, which is a contradiction and (i) has been proved.

The modularity of L gives immediately (ii).
Now let y be the least element in r. If $t \wedge y=t \wedge z$ holds for any $z \in r$, then $z \wedge(t \vee y)=(z \wedge t) \vee y=(y \wedge t) \vee y=y$, i. e. l.l(ii) is fulfilled. As 1.1(i) follows from 1.2, we have $\langle t y\rangle \in \bar{r}$. Conversely, if we have $\langle t y\rangle \in \bar{r}$,
then $y=z \wedge(t \vee y)$ and $y \wedge t=z \wedge(t \vee y) \wedge t=z \wedge t$ for any $z \in r$. We have proved (iv) and one implication from (iii).

Finally, suppose that there is no least element in r, let $t \in \mathrm{D}(\bar{r})$, then by 1.2 there is $x \in r, x<y, x \vee(y \wedge t)=y$. We further have $x \wedge(y \wedge t)=$ $=(x \wedge y) \wedge t=x \wedge t$, so that $[x \wedge t, y \wedge t] \sim[x y]$. That means $x \wedge t<$ $<y \wedge t$, i. e. $t \notin R_{r}^{0}$. The proof of (iii) is complete. The statement (v) follows from (i) and (iv).
1.6. (i) R_{r}^{0} is an ideal in L,
(ii) if $s \in R_{r}^{0},\langle t y\rangle \in \bar{r}$, then $\langle s \vee t, y\rangle \in \bar{r}$.

Proof. Let $s, t \in R_{r}^{0}, x, y \in r$. Then $(s \vee t) \wedge x=(s \wedge x) \vee(t \wedge x)=$ $=(s \wedge y) \vee(t \wedge y)=(s \vee t) \wedge y$, so that $s \vee t \in R_{r}^{0}$.

Let $s \leqslant t \in R_{r}^{0}, x, y \in r$. Then $s \wedge x=(s \wedge t) \wedge x=s \wedge(t \wedge x)=$ $=s \wedge(t \wedge y)=(s \wedge t) \wedge y=s \wedge y$, so that $s \in R_{r}^{0}$. We have proved (i).

To prove (ii) let $s \in R_{r}^{0},\langle t y\rangle \in \bar{r}$. Then for any $x \in r, x \leqslant y$ we have $x \vee$ $\vee(y \wedge(s \vee t))=x \vee(y \wedge s) \vee(y \wedge t)=(y \wedge s) \vee(x \vee(y \wedge t))=$ $=(y \wedge s) \vee y=y$ and for any $z \in r, y \leqslant z$ we have $z \wedge(y \vee(s \vee t))=$ $=z \wedge(s \vee(y \vee t))=(z \wedge s) \vee(z \wedge(y \vee t))=(z \wedge s) \vee y=(y \wedge s) \vee y=y$.
1.7. Let us define a relation R_{r} on L as follows
(i) if $s, t \in R_{r}^{0}$, then $\langle s t\rangle \in R_{r}$,
(ii) if $s, t \in R_{r}^{1}$, then $\langle s t\rangle \in R_{r}$,
(iii) if $\langle s y\rangle,\langle t y\rangle \in \bar{r}$, then $\langle s t\rangle \in R_{r}$.

Then the relation R_{r} is a congruence on L and L / R_{r} is a chain, which is isomorphic to r if $\mathrm{D}(\bar{r})=L$.

Proof. The symmetry of R_{r} follows immediately from the definition, the reflexivity follows from $1.5(\mathrm{i})$. As for card $r=0,1, R_{r}^{0}=R_{r}^{1}=L$ holds, the transitivity of R_{r} is a consequence of 1.5 (ii), (iii), (iv). Finally the compatibility of R_{r} with the lattice operations in L and the linearity of L / R_{r} follow from 1.3, 1.6 and statements dual to 1.6. If $\mathrm{D}(\bar{r})=L, R_{r}$ is completely defined by (iii), thus L / R_{r} is evidently isomorphic to r.
1.8. Let us define a relation Q_{r} on L as follows: $\langle u v\rangle \in Q_{r}$ if there is an interval $[x y] \subseteq r$ projective with $[u v]$ or with $[v u]$. If $r \neq 0$, then Q_{r} is a congruence in L.

Proof. The assumption $r \neq 0$ gives immediately the reflexivity of Q_{r}. The symmetry follows from the definition.

Let $\langle p s\rangle,\langle s t\rangle \in Q_{r}$ and let $[x y] \subseteq r$ projective with $[p s],[v z] \subseteq r$ projective with [st]. According to 1.4 , we have $\langle s y\rangle,\langle s v\rangle \in \bar{r}$, thus by 1.3 we have $y=v$. From 2.2[1] it follows that $x \wedge t=x \wedge y \wedge t=x \wedge y \wedge s=x \wedge s=x \wedge p$. Analogously we get $z \wedge p=x \wedge p$ and dually $x \vee t=z \vee p=z \vee t$. Therefore $[x z],[p t]$ are projective (using 2.1, 2.2[1]) and $\langle p t\rangle \in Q_{r}$.

Now let $[x y] \subseteq r$ projective with $[p s],[v z] \subseteq r$ projective with [$t s]$. Again we get $y=z$, using l.3, 1.4. The elements x, v are comparable, let e. g., $x \leqslant v$. From the properties of transposed intervals it follows that [$v y]$, $[(v \vee p) \wedge s, s]$ are projective. As [vy], [$t s$] are also projective, by 2.3(i) [l] we get ($v \vee p$) \wedge $\wedge s=t$. The interval [$x v$] is projective with $[p,(v \vee p) \wedge s]=[p t]$, hence $\langle p t\rangle \in Q_{r}$. We have proved the transitivity of Q_{r} (the other cases are dual).

If $p \in L$ and $\langle s t\rangle \in Q_{r}$, e. g. if [$\left.x y\right] \subseteq r$ is projective with [st], we denote $v=(s \vee p) \wedge t=s \vee(p \wedge t)$. Again the intervals [$(v \vee x) \wedge y, y]$, [vt] are projective. On the other hand, $[v t] \sim[v \vee p, t \vee p]=[s \vee p, t \vee p]$ holds. Hence we have $\langle s \vee p, t \vee p\rangle \in Q_{r}$. Dually $\langle s \wedge p, t \wedge p\rangle \in Q_{r}$ is proved.
1.9. If $[u v] \subseteq \mathrm{D}(\bar{r})$, then there $i \ddot{s}[s t] \subseteq[u v]$ such that $\langle u s\rangle,\langle v t\rangle \in R_{r}$, $\langle s t\rangle \in Q_{r}$.

Proof. Let us denote $x=\bar{r}(u), y=\bar{r}(v), s=(x \vee u) \wedge v, t=(y \wedge v) \vee u$. Then we have $s \vee x=((x \vee u) \wedge v) \vee x=(u \vee x) \wedge(v \vee x)=(u \wedge v) \vee$ $\vee x=u \bigvee x, t \vee y=(y \wedge v) \vee u \vee y=u \vee((y \wedge v) \vee y)=u \vee y$ and therefore $y \wedge(s \vee x)=y \wedge(u \vee x)=x, y \vee(s \vee x)=y \vee u \vee x=y \vee$ $\vee u=t \vee y$, i. e. $[x y] \sim[s \vee x, t \vee y]$. Dually we see that [$s \wedge x, t \wedge y] \sim$ $\sim[x y]$, thus by 2.1, 2.2 [1] the intervals [$x y]$, [st] are projective and the proof is complete according to $1.4,1.8$.
1.10. R_{r} is the maximal congruence orthogonal to $Q_{r}, R_{r}=Q_{r}^{\perp}$.

Proof. Let us suppose that R is a congruence orthogonal to Q_{r} and $\langle u v\rangle \in R$, $\langle u v\rangle \notin R_{r}$. Hence also $\langle u \wedge v, u \vee v\rangle \in R,\langle u \wedge v, u \vee v\rangle \notin R_{r}$, so that we may assume $u \leqslant v$. We cannot have $[u v] \subseteq \mathrm{D}(\bar{r})$, because then 1.9 would give $[s t] \subseteq[u v],\langle s t\rangle \in Q_{r}, s \neq t$ and $\langle s t\rangle \in R$. Thus let, e. g., $u \notin \mathrm{D}(\bar{r})$, therefore $u \in R_{r}^{0}$ and r has no least element. Then for any $x \in r, x \leqslant \bar{r}(v)$ (or for any $x \in r$, if $\left.\mathrm{v} \notin \mathrm{D}(\bar{r}), v \in R_{r}^{1}\right)\langle(u \vee x) \wedge v, x\rangle \in R_{r}$ and $(u \vee x) \wedge v \in[u v]$ hold. Hence wंe have $[y z] \subseteq[u v] \cap \mathrm{D}(\bar{r}),\langle y z\rangle \notin R_{r},\langle y z\rangle \in R$ and again 1.9 gives a contradiction with the orthogonality of R, Q_{r}.
1.11. If r is projective with a convex chain p, then $Q_{r}=Q_{p}, R_{r}=R_{p}$ and $\bar{r}(t)=\bar{r}(\bar{p}(t))$ for any $t \in L$.

Proof. The first equality follows from the definition of Q_{r}, the second one from 1.10. Let $t \in L$, then by 1.7 (iii) $\langle\bar{p}(t) t\rangle \in R_{p}$ and therefore $\langle\bar{p}(t) t\rangle \in R_{r}$ hold. By 1.7 (iii) we have also $\langle\bar{r}(\bar{p}(t)) \bar{p}(t)\rangle,\langle\bar{r}(t) t\rangle \in R_{r}$, hence $\langle\bar{r}(\bar{p}(t)) \bar{r}(t)\rangle \in R_{r}$ and $\bar{r}(\bar{p}(t))=\bar{r}(t)$.

2. Linear congruences

2.0. Let L be a distributive lattice in this section. We shall study the extending of a linear congruence from a convex sublattice onto the whole L. We describe also the maximal congruence which is orthogonal to a given linear one.
2.1. Let Q be a congruence on L, let B be a finite independent system over X in L / Q. Then there is an independent system b over x with the same cardinality as B such that $x \in X, y \in Y \in B$ (and therefore $\langle x y\rangle \notin Q$; for any $y \in b$.

Proof. For every $Y \in B$ let us choose $v(Y) \in Y$, then for $Y \neq Z, v(Y) \wedge$ $\wedge v(Z) \in X$ holds. We denote $x=\vee\{v(Y) \wedge v(Z) ; Y, Z \in B \& Y \neq Z\}$, $b=\{x \vee v(Y) ; Y \in B\}$. Evidently $x \in X, x \vee v(Y) \in Y$ for any $Y \in B$ and $(x \vee v(Y)) \wedge(x \vee v(Z))=x \vee(v(Y) \wedge v(Z))=x$. So $x \vee v(Y) \neq x \vee v(Z)$ for $Y \neq Z$ and b is an independent system over x with the same cardinality as B.
2.2. Let M be a set of congruences on L, let a linear congruence Q_{M} be the least congruence on L containing all elements of M, i.e. $Q_{M}=\sum M$. Then $R_{M}=$ $=\cap\left\{Q^{\perp} ; Q \in M\right\}=\cap\left\{R_{r} ; r \in L / Q \& Q \in M\right\}=\cap\left\{R_{r} ; r=[x y] \&\langle x y\rangle \in Q \in\right.$ $\in M\}=Q_{M}^{\perp}$.

Proof. Evidently $Q_{M}=\sum\left\{Q_{r} ; r \in L / Q \& Q \in M\right\}=\sum\left\{Q_{r} ; r=[x y] \&\langle x y\rangle \in\right.$ $\in Q \in M\}$. According to 1.10, the assertion follows from the properties of the ordering of congruences by the set inclusion.
2.3. Let Q be a linear congruence on L, let us denote $Q^{\perp}=R$. Then L / R is a chain.

Proof. By 2.2, $R=\cap\left\{R_{r} ; r=[x y] \&\langle x y\rangle \in Q\right\}$. Let $x, y \in L$ such that $[x]_{R} \|[y]_{R}$. Then $\langle x \wedge y, x\rangle,\langle x \wedge y, y\rangle \notin R$, i. e. $\langle x \wedge y, x\rangle \notin R_{r},\langle x \wedge y, y\rangle \notin$ $\notin R_{p}$ for some $r=[u v], p=[s t],\langle u v\rangle \in Q,\langle s t\rangle \in Q$. We have $\mathrm{D}(\bar{r})=\mathrm{D}(\bar{p})=L$ by $1.5(\mathrm{v})$, therefore using 1.9 and the properties of transposed intervals we can find x^{\prime}, y^{\prime} such that $x^{\prime} \| y^{\prime},\left\langle x^{\prime} \wedge y^{\prime}, x^{\prime}\right\rangle \in Q_{r},\left\langle x^{\prime} \wedge y^{\prime}, y^{\prime}\right\rangle \in Q_{p}$, i. e. $\left\langle x^{\prime} y^{\prime}\right\rangle \in Q$, which is a contradiction with the linearity of Q.
2.4. Let Q_{1} be a linear congruence on a convex sublattice L_{1} of L, then $Q=$ $=\cup\left\{Q_{r} ; r \in L_{1} / Q_{1}\right\}=\cup\left\{Q_{r} ; r=[x y] \&\langle x y\rangle \in Q_{1}\right\}$ is a linear congruence on L. Q is the minimal congruence on L containing Q_{1} and the restriction $Q \cap\left(L_{1} \times L_{1}\right)$ of Q to L_{1} is equal to Q_{1}. If we denote $Q^{\perp}=R, Q_{1}^{\perp}=R_{1}$, then $R \cap\left(L_{1} \times L_{1}\right)=$ $=R_{1}$.

Proof. At first let $u<v<w$, let the interval [uv] be projective with $p=\left[x_{1} y_{1}\right]$, let $r=[v w]$ be projective with $q=\left[x_{2} y_{2}\right]$ and let $\left\langle x_{1} y_{1}\right\rangle,\left\langle x_{2} y_{2}\right\rangle \in Q_{1}$. By 1.11 we have $R_{r}=R_{q}$ and $\bar{r}\left(y_{1} \wedge v\right)=v, \bar{r}\left(y_{1}\right)=\bar{r}\left(x_{1} \vee\left(y_{1} \wedge v\right)\right)=$ $=\bar{r}\left(x_{1}\right) \vee v=\bar{r}\left(x_{1}\right)$. Let us denote $t=\bar{q}\left(\bar{r}\left(x_{1}\right)\right)$, by 1.11 we get $t=\bar{q}\left(x_{1}\right)=$ $=\bar{q}\left(y_{1}\right)$ and set $z=\bar{p}(t)$.

If $z>x_{1}, t>x_{2}$ holds, then $\left[x_{1} \wedge t, z \wedge t\right] \sim\left[x_{1} z\right],\left[x_{2} \wedge z, z \wedge t\right] \sim\left[x_{2} t\right]$ give us $x_{1} \wedge t, x_{2} \wedge z<z \wedge t,\left\langle x_{1} \wedge t, z \wedge t\right\rangle,\left\langle x_{2} \wedge z, z \wedge t\right\rangle \in Q_{1}$ and $\left(x_{1} \wedge t\right) \vee$ $\vee\left(x_{2} \wedge z\right)=\left(\left(x_{1} \wedge t\right) \vee x_{2}\right) \wedge\left(\left(x_{1} \wedge t\right) \vee z\right)=t \wedge z$, which is a contradiction with the linearity of Q_{1}.

Analogously, if $z<y_{1}, t<y_{2}$, then $\left[z y_{1}\right] \sim\left[z \vee t, y_{1} \vee t\right],\left[t y_{2}\right] \sim$ $\sim\left[z \vee t, z \vee y_{2}\right]$, which gives $z \vee t<y_{1} \vee t, z \vee y_{2},\left\langle z \vee t, y_{1} \vee t\right\rangle$, $\left\langle z \vee t, z \vee y_{2}\right) \in Q_{1}$ and $\left(y_{1} \vee t\right) \wedge\left(z \vee y_{2}\right)=\left(\left(y_{1} \vee t\right) \wedge z\right) \vee\left(\left(y_{1} \vee t\right) \wedge\right.$
$\left.\wedge y_{2}\right)=z \vee t$, which is a contradiction with the linearity of Q_{1}.
Hence we have $z=x_{1}, t=y_{2}$ or $z=y_{1}, t=x_{2}$.
In the first case according to 1.11 we may assume $y_{2} \leqslant x_{1}$. Then the elements $a=\left(x_{1} \wedge v\right) \vee y_{2}=x_{1} \wedge\left(v \vee y_{2}\right), \quad b=\left(y_{1} \wedge v\right) \vee x_{2}=y_{1} \wedge\left(v \vee x_{2}\right)$ fulfil $a \wedge b=x_{1} \wedge\left(v \vee y_{2}\right) \wedge y_{1} \wedge\left(v \vee x_{2}\right)=\left(x_{1} \wedge y_{1}\right) \wedge\left(\left(v \vee y_{2}\right) \wedge\right.$ $\left.\wedge\left(v \vee x_{2}\right)\right)=x_{1} \wedge\left(v \vee x_{2}\right)=\left(x_{1} \wedge v\right) \vee x_{2}$ and $a, b \in\left[x_{2} y_{1}\right]$, i. e. $a, b \in L_{1}$. Hence we have $b \wedge x_{1}=y_{1} \wedge\left(v \vee x_{2}\right) \wedge x_{1}=a \wedge b, b \vee x_{1}=\left(\left(y_{1} \wedge v\right) \vee\right.$ $\left.\vee x_{2}\right) \vee x_{1}=\left(y_{1} \wedge v\right) \vee x_{1}=y_{1}$, thus $[a \wedge b, b] \sim\left[x_{1} y_{1}\right]$. Analogously $y_{2} \wedge$ $\wedge(a \wedge b)=y_{2} \wedge x_{1} \wedge\left(v \vee x_{2}\right)=y_{2} \wedge\left(v \vee x_{2}\right)=x_{2}, y_{2} \vee(a \wedge b)=y_{2} \vee$ $\vee\left(x_{1} \wedge v\right) \vee x_{2}=y_{2} \vee\left(x_{1} \wedge v\right)=a, \quad$ thus $\left[x_{2} y_{2}\right] \sim[a \wedge b, a]$ holds. We have obtained a contradiction with the linearity of Q_{1}.

So $z=y_{1}, t=x_{2}$ is true. According to 1.11 we can assume that $y_{1} \leqslant x_{2}$. Denoting $a=\left(x_{1} \vee u\right) \wedge y_{2}=x_{1} \vee\left(u \wedge y_{2}\right), \quad b=\left(x_{1} \vee v\right) \wedge y_{2}=x_{1} \vee$ $\vee\left(v \wedge y_{2}\right), c=\left(x_{1} \vee w\right) \wedge y_{2}=x_{1} \vee\left(w \wedge y_{2}\right)$ we have $x_{1} \leqslant a \leqslant b \leqslant c \leqslant$ $\leqslant y_{2}$, i. e. $a, b, c \in L_{1}$. Then we have $y_{1} \wedge a=y_{1} \wedge\left(x_{1} \vee u\right) \wedge y_{2}=y_{1} \wedge$ $\wedge\left(x_{1} \vee u\right)=x_{1}, y_{1} \vee a=y_{1} \vee\left(\left(x_{1} \vee u\right) \wedge y_{2}\right)=\left(y_{1} \vee x_{1} \vee u\right) \wedge\left(y_{1} \vee y_{2}\right)=$ $=\left(y_{1} \vee u\right) \wedge y_{2}=\left(x_{1} \vee v\right) \wedge y_{2}=b$, thus $\left[x_{1} y_{1}\right] \sim[a b]$ and dually [bc] \sim $\sim\left[x_{2} y_{2}\right]$. That means $\langle a b\rangle,\langle b c\rangle \in Q_{1}$, therefore also $\langle a c\rangle \in Q_{1}$. Then $s=[a c]$ is a chain and we have $\langle u v\rangle,\langle v w\rangle \in Q_{s}$, thus $\langle u w\rangle \in Q_{s}$. From $\bar{s}(u)=a$, $\bar{s}(v)=b, \bar{s}(w)=c$ it follows that $[a c],[u w]$ are projective intervals.

We have proved now that if the elements $u, v \in L$ can be connected by a finite Q_{1}-sequence, i. e. if there are finitely many elements $t_{0}=u$, $t_{1}, t_{2}, \ldots, t_{n}=v$ such that every interval $\left[t_{i-1} t_{i}\right](i=1, \ldots, n)$ is projective with some $\left[x_{i} y_{i}\right] \subseteq L_{1},\left\langle x_{i} y_{i}\right\rangle \in Q_{1}$, then there is $r=[x y] \subseteq L_{1},\langle x y\rangle \in Q_{1}$ such that $\langle u v\rangle \in Q_{r},\langle u v\rangle \in Q$.

It is a known fact that the congruence Q_{1} can be extended to a congruence Q_{0} on I. (without the assumption of the convexity of L_{1} and the linearity of Q_{1}) defined as follows : $\langle u v\rangle \in Q_{0}$, if the elements $u \wedge v, u$ and the elements $u, u \vee v$ can be connected by a finite Q_{1}-sequence. In our case $\langle u v\rangle \in Q_{0}$ gives $\langle u \wedge v$, $u \vee v\rangle \in Q$, therefore also $\langle u v\rangle \in Q$. That shows that $Q_{0} \subseteq Q$. The converse inclusion is trivial. So Q is a congruence on L. The remaining assertions follow easily from the definition of Q.
2.5. Let Q be a linear congruence on $L, R=Q^{\perp}$. If L / R consists just of two elements R^{0}, R^{1}, then $\langle x y\rangle \in Q$ if and only if $x \in R^{0}, y \in R^{1}, x<y$.

Proof. Q is not the identity on L, otherwise L / R would have only one element L. Hence there are $x<y,\langle x y\rangle \in Q$. The orthogonality of Q, R gives $x \in R^{0}, y \in R^{1}, x \prec y$. Now let $u \in R^{0}, v \in R^{1}, u \prec v$, then $y \wedge u, x \vee(y \wedge u) \in$ $\in R^{0}$, thus $x \leqslant x \vee(y \wedge u)<y$ gives $y \wedge u \leqslant x$ and $x \wedge u=y \wedge u$. Analogously we get $x \wedge u=x \wedge v$ and dually $x \vee v=y \vee v=y \vee u$. By 2.1, 2.2 [1], the intervals [xy], [uv] are projective and $\langle u v\rangle \in Q$.

3. k-chains

3.0. From now on we suppose that L is a distributive lattice of finite local dimension $k>0$. We show that if r is a k-chain, then Q_{r}, R_{r} have some special. properties.
3.1. If b is a k-system over x, then for any $y \in b$, the interval $[x y]$ is a chain.

Proof. Let us suppose that there are incomparable elements $u, v \in[x y]$. We denote $x^{\prime}=u \wedge v, b^{\prime}=\left\{z \vee x^{\prime} ; z \in b \& z \neq y\right\}, z_{0}=\vee(b-\{y\})$ and get $\left[x z_{0}\right] \sim\left[x^{\prime}, z_{0} \vee x^{\prime}\right]$. So b^{\prime} is a $(k-1)$-system over x^{\prime} and for $z \in b, z \neq y$ we have $\left(z \vee x^{\prime}\right) \wedge u=(z \wedge u) \vee\left(x^{\prime} \wedge u\right)=x \vee x^{\prime}=x^{\prime}=\left(z \vee x^{\prime}\right) \wedge v$. We see that $b^{\prime} \cup\{u v\}$ is a $(k+1)$-system over x^{\prime}, which is a contradiction.
3.2. If b is a k-system over x and $x<t$, then there is $y \in b$ such that $x<t \wedge y$. If, moreover $[x t]$ is a chain, then $x=t \wedge z$ for any $z \in b, z \neq y$ and the elements y, t are comparable.

Proof. For any $y \in b$ we have $x \leqslant t \wedge y$. The assumption $x=t \wedge y$ for any $y \in b$ leads to a contradiction, hence $x<t \wedge y$ for some $y \in b$. If $x<$ $<t \wedge z, z \in b, z \neq y$, then $(t \wedge z) \wedge(t \wedge y)=x$, therefore $t \wedge z, t \wedge y$ are incomparable and $[x t]$ is not a chain. If $x=t \wedge z$ for any $z \in b, z \neq y$, then $\{t \vee y\} \cup(b-\{y\})$ is a k-system over x, therefore by $3.1[x, t \vee y]$ is a chain and y, t are comparable.
3.3. Let r be a convex chain, x a lower k-element in L. If $x, u, v \in r, x<u<v$, then lodim $[u]_{R_{r}}<k$.

Proof. Let us suppose that $\operatorname{lodim}[u]_{R_{r}}=k$, i. e. let there exist a k-system b over $y,\langle y u\rangle,\langle z u\rangle \in \bar{r}$ for every $z \in b$. Hence $u \vee y=(x \vee(u \wedge y)) \vee y=$ $=x \vee((u \wedge y) \bigvee y)=x \vee y$ holds. Let a be a k-system over x, by 3.2 we can assume $u \in a$. In the same way as in the proof of 2.4 [1] we denote $a_{2}^{\prime}=$ $=\{z \vee y ; z \in a \& z \wedge(x \vee y)=x\}, b_{2}^{\prime}=\{z \vee x ; z \in b \& z \wedge(x \vee y)=y\}$. From the mentioned proof it follows that $d=\left\{z \wedge t ; z, t \in a_{2}^{\prime} \cup b_{2}^{\prime} \& z \wedge t>\right.$ $>x \vee y\}$ is a k-system over $x \vee y$. If $z \in a, z \wedge(x \vee y)=x$, i. e. $z \neq u$, then by $3.2 z \wedge v=x$ holds, hence $(z \vee y) \wedge(v \vee y)=(z \wedge v) \vee y=x \vee y$. For $z \in b$ we have $v \wedge(u \vee z)=u=x \vee(u \wedge z)$ and $u \wedge z=(v \wedge$ $\wedge(u \vee z)) \wedge z=v \wedge((u \vee z) \wedge z)=v \wedge z$, therefore $(z \vee x) \wedge(v \vee y)=$ $=(z \wedge v) \vee(x \wedge v) \vee(z \wedge y) \vee(x \wedge y)=(z \wedge u) \vee x \vee y \vee(x \wedge y)=$ $=((z \wedge u) \vee x) \vee y=u \wedge y=x \vee y$. We have shown $z \wedge(v \vee y)=x \vee y$ for $z \in a_{2}^{\prime} \cup b_{2}^{\prime}$, hence for $z \wedge t \in d$ we have $(z \wedge t) \wedge(v \vee y)=x \vee y$. Now $[u v] \sim[x \vee y, v \vee y]$ gives $v \vee y>x \vee y$. Thus $d \cup\{v \vee y\}$ is a $(k+1)$ system over $x \vee y$, which is a contradiction.
3.4. Let r be a lower k-chain, let us denote $L_{r}=L-\left(R_{r}^{0} \cup R_{r}^{1}\right)$, then $\operatorname{lodim} L_{r} / Q_{r}<k$.

Proof. Let us suppose $\operatorname{lodim} L_{r} / Q_{r} \geqslant k$, then by 2.1 there is a k-system b over x in L_{r} such that $\langle x y\rangle \notin Q_{r}$ for any $y \in b$. As L / R_{r} is a chain, according
to 3.3 there is $y \in b$ such that $\langle x y\rangle \notin R_{r},\langle x z\rangle \in R_{r}$ for any $z \in b, z: y$. Evidently $L_{r} \subseteq \mathrm{D}(\bar{r})$ holds, hence by 1.9 there is an $[s t] \subseteq[x y]$ such 'uat $\langle x s\rangle,\langle y t\rangle \in R_{r},\langle s t\rangle \in Q_{r}$. The assumption $s>x$ gives a contradiction acr । 'ding to 3.3, thus $s=x$. Then $t<y$ must hold and $\{y\} \cup\{t \vee z ; z \in b \& z \cdot y\}$ is a k-system over t, which is a contradiction with 3.3.
3.5. If r is a lower k-chain, then there is a set M of upper k-chains such $x t$ $Q_{r}=U\left\{Q_{s} ; s \in M\right\}$.

Proof. By 3.2, for any $p=[x y] \subseteq r, x<y$ we can choose a k-S:. n b over $x, y \in b$. Then we denote $x^{\prime}=\vee b, z^{\prime}=\vee(b-\{z\})$ for any $: 1$. $b^{\prime}=\left\{z^{\prime} ; z \in b\right\}$ and from the properties of transposed intervals we get b^{\prime} is a k-system under x, i. e. $p^{\prime}=\left[y^{\prime} x^{\prime}\right]$ is an upper k-chain, projective wi By 1.11 we have $Q_{p}=Q_{p^{\prime}}$, hence the fact that $Q_{r}=\cup\left\{Q_{p} ; p=[x y]\right.$ completes the proof.
3.6. Let Q_{0}, Q be congruences on L. We shall say that Q is a k-extens of Q_{0}, if there is a set M of lower k-chains such that $Q=Q_{0}+\sum\left\{Q_{r} ; r \in M\right\}$. If Q_{0} is the identity on L, we say that Q is a k-generated congruence on J

Note. By 3.5 the definition will not be changed if we replace , lower by ,,upper" in it.

4. k-generated congruences

4.0. If we want to show that L is a subdirect product of k chains, we can do it by induction and it is necessary and sufficient to find a linear congruence Q in L such that $\operatorname{lodim} L / Q<k$. Namely, if we denote $R=Q^{\perp}$, then L / R is a chain and L is a subdirect product of $L / R \times L / Q$. In the previous section we have seen that, for any k-chain r in L, Q_{r} fulfils a weaker condition $\operatorname{lodim} L_{r} / Q_{r}<k$. This fact will be generalized now.
4.1. Let Q be a linear congruence on $L, R=Q^{\perp}$. We denote by R^{0} the least element in L / R, or set $R^{0}=0$ if such an element does not exist. R^{1} is defined dually. Finally we set $L(R)=L-\left(R^{0} \cup R^{1}\right)$.

Note. If r is a convex chain in L, then $L_{r}=L\left(R_{r}\right)$.
4.2. By $\mathscr{A}(L)$ we shall denote the set of all non-identical linear congruences Q on L satisfying the condition $\operatorname{lodim} L\left(Q^{\perp}\right) / Q<k . \mathscr{A}_{k}(L)$ will be the set of all k-generated $Q \in \mathscr{A}(L)$.

If $Q_{0} \in \mathscr{A}(L)$, then $\mathscr{A}\left(Q_{0}, L\right)$ is the set of all k-extensions Q of $Q_{0}, Q \in \mathscr{A}(L)$.
4.3. $\mathscr{A}(L), \mathscr{A}_{k}(L), \mathscr{A}\left(Q_{0}, L\right)$ satisfy the condition of maximality, if ordered by inclusion.

Proof. The proof suffices to be done for $\mathscr{A}(L), \mathscr{A}\left(Q_{0}, L\right)$. Hence let M be a chain in $\mathscr{A}(L)$. Let us denote $Q_{M}=\cup M$, evidently Q_{M} is a linear congruence on L. If M is a chain in $\mathscr{A}\left(Q_{0}, L\right)$, then Q_{M} is a k-extension of Q_{0}. If we denote $M^{\perp}=\left\{Q^{\perp} ; Q \in M\right\}$, then by 2.2 we have $Q_{M}^{\perp}=R_{M}=\cap M^{\perp}$ and clearly also $\quad R_{M}^{0}=\cap\left\{R^{0} ; R \in M^{\perp}\right\}, \quad R_{M}^{1}=\cap\left\{R^{1} ; R \in M^{\perp}\right\}$. So $\quad L\left(R_{M}\right)=L-$
$-\left(R_{M}^{0} \cup R_{M}^{1}\right)=L-\left(\cap\left\{R^{0} ; R \in M^{\perp}\right\} \cup \cap\left\{R^{1} ; R \in M^{\perp}\right\}\right)=L \cap-\cap$ $\cap\left\{R^{0} \cup R^{1} ; R \in M^{\perp}\right\}=L \cap \cup\left\{-\left(R^{0} \cup R^{1}\right) ; R \in M^{\perp}\right\}=\cup\left\{L \cap-\left(R^{0} \cup R^{1}\right) ;\right.$ $\left.R \in M^{\perp}\right\}=\cup\left\{L(R) ; R \in M^{\perp}\right\}$ holds, if we use the fact that R^{0}, R^{1} for $R \in M^{\perp}$ are linearly ordered by inclusion.

Now let b be a k-system over x in $L\left(R_{M}\right)$, then there is $Q \in M, Q^{\perp}=R$ such that $b \subseteq L(R), x \in L(R)$, therefore $\langle x y\rangle \in Q$ and $\langle x y\rangle \in Q_{M}$ for some $y \in b$. So $\operatorname{lodim} L\left(R_{M}\right) / Q_{M}<k$ and $Q_{M} \in \mathscr{A}(L), \mathscr{A}\left(Q_{0}, L\right)$ respectively.
4.4. Let Q be a maximal element in $\mathscr{A}\left(L_{)}\right)$or in $\mathscr{A}\left(Q_{0}, L\right)$. If $[x y]$ is a k-chain and $\langle x y\rangle \notin R=Q^{\perp}$, then $\langle x y\rangle \in Q$.

Proof. Let us suppose $\langle x y\rangle \notin Q$. The assumption $x \in^{\prime} R^{1}$ gives $y \in R^{1}$ and $\langle x y\rangle \in R$, hence $x \notin R^{1}$ must hold.

First we shall assume that for any $t \in[x y], t \notin R^{1}$, there is $\langle x t\rangle \in Q$. Then evidently $y \in R^{1}$ must be true. We denote $r=[x y]$ and show that $\langle u v\rangle \in Q_{r}$, $u \leqslant v, v \notin R$ imply $\langle u v\rangle \in Q$. Namely, $[u v]$ is projective with $[p q] \subseteq[x y]$. If $u \neq v$, by 1.4 we have $\bar{r}(v)=q, q=x \vee(q \wedge v)$ and $x \notin R^{1}, v \notin R^{1}$ give $q \wedge v \notin R^{1}, q \notin R^{1}$. Thus $\langle x q\rangle,\langle p q\rangle \in Q$ and $\langle u v\rangle \in Q$.

We define a relation N in L as follows: $\langle u w\rangle,\langle w u\rangle \in N$, if there is $v \in L$, $u \leqslant v \leqslant w$ such that $\langle u v\rangle \in Q$ and $\langle v w\rangle \in Q_{r}$. The reflexivity, the symmetry and the compatibility of N with the lattice operations are evident. To verify the transitivity of N let be $\langle u w\rangle,\langle w q\rangle \in N$.

Let $u \leqslant v \leqslant w \leqslant p \leqslant q,\langle u v\rangle,\langle w p\rangle \in Q,\langle v w\rangle,\langle p q\rangle \in Q_{r}$. If $w=p$, then $\langle v q\rangle \in Q_{r},\langle u q\rangle \in N$. If $w \neq p$, then $w \notin R^{1},\langle v w\rangle \in Q,\langle u p\rangle \in Q,\langle u q\rangle \in N$.

Further let $u \leqslant v \leqslant w, q \leqslant p \leqslant w,\langle u v\rangle,\langle q p\rangle \in Q,\langle v w\rangle,\langle p w\rangle \in Q_{r}$. Then $\langle v p\rangle \in Q_{r}$ holds and v, p are comparable, let e. g., $v \leqslant p$. There is $v \leqslant v \vee q \leqslant p$, i. e. $\langle v, v \vee q\rangle,\langle v \wedge q, q\rangle \in Q_{r}$, and $q \leqslant v \vee q \leqslant p$, i. e. $\langle q, v \bigvee q\rangle \in Q$. If $q<v \vee q$, then $q \notin R^{1},\langle v \wedge q, q\rangle,\langle v, v \vee q\rangle \in Q$ and $\langle v q\rangle \in Q$, i. e. $\langle u q\rangle \in Q, N$.

If $q=v \vee q$, then $\langle u q\rangle \in N$.
Finally, let $w \leqslant v \leqslant u, w \leqslant p \leqslant q,\langle w v\rangle,\langle w p\rangle \in Q,\langle v u\rangle,\langle p q\rangle \in Q_{r}$. Hence $\langle v p\rangle \in Q$ and v, p are comparable, let e. g., $p \leqslant v$. Then $v \leqslant v \wedge q \leqslant v$, i. e. $\langle v \wedge q, v\rangle,\langle q, q \vee v\rangle \in Q$, and $p \leqslant v \wedge q \leqslant q$, i. e. $\langle v \wedge q, q\rangle \in Q_{r}$. If $v \wedge q<q<v \vee q$, then $q \notin R^{1},\langle v \wedge q, q\rangle \in Q,\langle v q\rangle \in Q$, $v \| q$, which is a contradiction. Hence $q=v \wedge q$ and $\langle u q\rangle \in N$, or $q=v \vartheta^{\prime} q, v=v \wedge q$, $\langle v q\rangle \in Q_{r},\langle u q\rangle \in Q_{r}, N$. The proof of the transitivity of N is complete. We see that N is a linear congruence on L and that $N=Q+Q_{r}$, hence N is a l_{i}-extension of Q.

Let $u \in R^{0}$, then $\langle x, x \vee u\rangle \in R,\langle x,(x \vee u) \wedge y\rangle \in R$. Therefore $(x \vee u) \wedge$ $\wedge y \notin R^{1}$ and $\langle x,(x \vee u) \wedge y\rangle \in Q$, i. e. $x=(x \vee u) \wedge y$. By 1.1, 1.2, $\bar{r}(u)=x$ and therefore $u \in R_{r}^{0}$ holds. Thus $R^{0} \subseteq R_{r}^{0}$.

Now let $u \in R_{r}^{1}$, i. e. $\bar{r}(u)=y$. Then $y \in R^{1}, y=x \vee(y \wedge u)$ give $y \wedge u \in R^{1}$ and $u \in R^{1}$. Hence $R_{r}^{1} \subseteq R$.

We denote $N^{\perp}=P$ and by 2.2 we get $P^{0}=R^{0} \cap R_{r}^{0}=R^{0}, P^{1}=R^{1} \cap R_{r}^{1}=$ $=R_{r}^{1}$. Therefore $L(P)=L-\left(R^{0} \cup R_{r}^{1}\right)$.

Let c be a k-system in $L(P)$ over u, such that $\langle u v\rangle \notin N$ for any $v \in c$. Then $u \in L_{r}$ would give $c \subseteq L_{r}$ and $\langle u v\rangle \notin Q_{r}$ for any $v \in c$, which is a contradiction according to 3.4. Thus we have $u \in R_{r}^{0}, \bar{r}(u)=x$ and $u \notin R^{1}$. By the linearity of L / R and by $\operatorname{lodim} L(R) / Q<k$, there is $v \in c$ such that $\langle u v\rangle \notin R$ and $\langle u w\rangle \in R$ for $w \in c, v \neq w$. As $\langle u v\rangle \notin Q$ holds, there is $v \in R^{1}$. Then $\bar{r}(v)=$ $=y \wedge(\bar{r}(v) \vee v) \in R^{1}$, hence $x<\bar{r}(v)$ and $\langle u v\rangle \notin R_{r}$. By the linearity of L / R_{r} we have $\langle u w\rangle \in R_{r}, \bar{r}(w)=x$ for any $w \in c, v \neq w$. By 1.9, there is $[s t] \subseteq[u v]$ such that $\langle s t\rangle \in Q_{r},\langle s u\rangle,\langle t v\rangle \in R_{r}$. As $v \in L_{r}, \bar{r}(v)<y$, then the assumption $t<v$ leads to a contradiction by 3.3. Further, $\langle s u\rangle \in R_{r}$ gives $\bar{r}(s)=x$ and $s \notin R^{1}$. Therefore $\langle u s\rangle \in Q$ holds, and from $\langle s t\rangle \in Q_{r}, t=v$ we get $\langle u v\rangle \in N$. Thus we have proved $\operatorname{lodim} L(P) / N<k$ and therefore N belongs to $\mathscr{A}(L)$ or $\mathscr{A}\left(Q_{0}, L\right)$, respectively. Here $\langle x y\rangle \notin Q,\langle x y\rangle \in N$ give a contradiction with the maximality of $Q ;$ therefore our assumption at the beginning of the proof cannot be fulfilled.

So there is $t \in[x y], t \in R^{1},\langle x t\rangle \notin Q$. In an analogous way as in the proof of 3.5 we find an upper k-chain $\left[t^{\prime} x^{\prime}\right]$ transposed to $[x t]$. We get $x^{\prime} \notin R^{1}$, $\left\langle t^{\prime} x^{\prime}\right\rangle \notin Q$ and $\left\langle x^{\prime} s\right\rangle \in Q$ for any $s \in\left[i^{\prime} x^{\prime}\right], s \notin R^{0}$. If $L(R) \neq 0$, we can choose $t \in L(R)$. Then also $x^{\prime} \notin R^{0}$ holds and the situation is dual to the previous one. If $L(R)=0$, then by 2.5 there is a prime interval $p=[u v]$ such that $Q=Q_{p}$. Then $x \in R^{0}, y \in R^{1}$ gives $u_{0}=(x \vee u) \wedge y \in R^{0}, v_{0}=(x \vee v) \wedge y \in R^{1}$ and $\left\langle u_{0} v_{0}\right\rangle \in Q$ implies that $p_{0}=\left[u_{0} v_{0}\right]$ is a prime interval projective with p. Hence $Q=Q_{p_{0}}$ and $Q_{r} \supseteq Q$ is again a contradiction with the maximality of Q. That proves $\langle x y\rangle \in Q$.

5. Dimensions

5.0. We have mentioned already in the previous section that the proof of the equality of the local and lattice dimensions of L will be done by induction through k. Now we formulate the induction hypothesis.
5.1. Induction hypothesis. If L_{1} is a distributive lattice and $\operatorname{lodim} L_{1}<$ $<k$, then for any $Q_{1} \in \mathscr{A}\left(L_{1}\right)$ there is $N_{1} \in \mathscr{A}\left(Q_{1}, L_{1}\right)$ such that $\operatorname{lodim} L_{1} / N_{1}<$ $<\operatorname{lodim} L_{1}$.
5.2. Let Q be a maximal element in $\mathscr{A}(L)$ or in $\mathscr{A}\left(Q_{0}, L\right), R=Q^{\perp}$. If $x \in R^{1}$ is a lower k-element, then x is an upper bound of $-R^{1}$, i. e. $x \in \mathscr{U}\left(-R^{1}\right)$.

Proof. Let x be a lower k-element, $x \in R^{1}, z \notin R^{1}$. For any k-system b over x let us denote $b_{1}=\{y ; y \in b \& y \wedge(z \vee x)=x\}, \quad b_{2}=\{y ; y \in b \& y \wedge$ $\wedge(z \vee x)>x\}, t=\vee b_{1}, s=x \wedge z=t \wedge z ; L_{1}=[s t]$. Then $b_{2}^{\prime}=\{y \wedge z$; $\left.y \in b_{2}\right\}$ is an independent system over s of the same cardinality as b_{2}, orthogonal to L_{1} over s. That implies $\operatorname{lodim} L_{1} \leqslant k-\operatorname{card} b_{2}=\operatorname{card} b_{1}$. On the
other hand we have $\operatorname{lodim} L_{1} \geqslant \operatorname{card} b_{1}$, so $\operatorname{lodim} L_{1}=\operatorname{card} b_{1}$. Analogically $\operatorname{lodim}[x, x \vee z]=\operatorname{card} b_{2}$ is shown, therefore card b_{2} depends only on the elements x, z. Let us denote $\mathrm{m}(x, z)=$ card b_{2} and set $m=\max \{\mathrm{m}(x, z)$; x being a lower k-element in $\left.R^{1} \& z \notin R^{1}\right\}$. In the following we shall suppose that card $b_{2}=m>0$, i. e. x is not comparable with z. As $x>s$ holds, we have $\operatorname{lodim} L_{1}=$ card $b_{1}>0$, so $m<k$ and $b_{1} \neq 0$.

Further, if $L(R) \neq 0$, the element z can be chosen so that $z \in L(R)$. If $L(R)=0$, then L / R has only two elements R^{0}, R^{1} and according to 2.5 , we can choose z in such a way that there is $z^{\prime} \in R^{1}, z<z^{\prime} \leqslant z \vee x$ and $\left\langle z z^{\prime}\right\rangle \in Q$. Then $s^{\prime}=x \wedge z^{\prime} \in R^{1},\left\langle s s^{\prime}\right\rangle \in Q$ and by 2.5 we have $s<s^{\prime} \leqslant x$. Hence for any $y \in L_{1} \cap R^{0}, y \prec y^{\prime}=y \vee s^{\prime} \in L_{1} \cap R^{1}$ holds. Therefore there is $\operatorname{lodim}\left(L_{1} \cap R^{0}\right)<\operatorname{lodim} L_{1}$ as well as in the case $z \in L(R)$.

Let us denote $Q_{1}=Q \cap\left(L_{1} \times L_{1}\right), R_{1}=R \cap\left(L_{1} \times L_{1}\right)$ the restrictions of Q, R to L_{1}. Analogously as in 1.10 we can show, using 1.9 , that $R_{1}=Q_{1}^{\perp}$. Evidently $L\left(R_{1}\right) \subseteq L_{1} \cap L(R)$ and, as $\langle s y\rangle \in R$ holds for any $y \in b_{2}^{\prime}$, the orthogonality of L_{1} and b_{2}^{\prime} over s implies $\operatorname{lodim} L\left(R_{1}\right) / Q_{1}<k-m=\operatorname{lodim} L_{1}$. Hence the linear congruence Q_{1} belongs to $\mathscr{A}\left(L_{1}\right)$.

By induction hypothesis there is a congruence N_{1} on L_{1}, which is a $(k-m)$ extension of Q_{1} and fulfils $\operatorname{lodim} L_{1} / N_{1}<k-m$. By 2.4, $N=\cup\left\{Q_{r}\right.$; $\left.r \in L_{1} / N_{1}\right\}=\cup\left\{Q_{r} ; r=[u v] \&\langle u v\rangle \in N_{1}\right\}$ is a linear congruence on L and $N_{1}=N \cap\left(L_{1} \times L_{1}\right)$.

If $\langle u v\rangle \in N, u \leqslant v, v \notin R^{1}$, then $\langle u v\rangle \in Q$. To prove it let us assume that $\langle u v\rangle \notin Q$. Then $[u v]$ is projective with some $\left[u_{1} v_{1}\right] \subseteq L_{1},\left\langle u_{1} v_{1}\right\rangle \in N_{1},\left\langle u_{1} v_{1}\right\rangle \notin Q$. By the definition of N_{1} then [$u_{1} v_{1}$] (or some its non-trivial subinterval) is projective with a lower $(k-m)$-chain $\left[x_{1} y_{1}\right]$ in $L_{1},\left\langle x_{1} y_{1}\right\rangle \in N,\left\langle x_{1} y_{1}\right\rangle \notin Q_{1}$. By 3.2, there is a lower $(k-m)$-system $c_{1} \subseteq L_{1}$ over x_{1} such that $y_{1} \in c_{1}$. We denote $c_{2}=\left\{y \vee x_{1} ; y \in b_{2}^{\prime}\right\}$, then $c=c_{1} \cup c_{2}$ is a k-system in L over x_{1}. For any $y \in c_{2}$ we have $\left\langle x_{1} y\right\rangle \in R$ and for $y \in c_{1}$ we have $\left\langle x_{1} y\right\rangle \notin Q$. Thus, by $4.4,\left\langle x_{1} y\right\rangle \in R$ holds for any $y \in c_{1}$. As the element z was chosen so that $\operatorname{lodim}\left(L_{1} \cap R^{0}\right)<k-m, c_{1} \subseteq R^{1}, x_{1} \in R_{1}$. If we denote $z_{\jmath}=z \vee\left(v \wedge y_{1}\right) \notin$ $\notin R^{1}$, then for $y \in b_{2}^{\prime}$ there is $y \leqslant z_{1}$ and $\left(y \vee x_{1}\right) \wedge\left(z_{1} \vee x_{1}\right)=y \vee x_{1}>x_{1}$. There is also $y_{1} \wedge\left(z_{1} \vee x_{1}\right)=y_{1} \wedge\left(z \vee\left(v \wedge y_{1}\right) \vee x_{1}=\left(y_{1} \wedge z\right) \vee\left(y_{1} \wedge v\right) \vee\right.$ $\vee\left(y_{1} \wedge x_{1}\right)=s \vee\left(y_{1} \wedge\left(v \vee x_{1}\right)\right)=s \vee y_{1}=y_{1}>x_{1}$, using the projectivity of [uv], [$x_{1} y_{1}$]. Hence $m\left(x_{1}, z_{1}\right)>m$ and we have obtained a contradiction with the maximality of m.

Now we define a relation J in L as follows: $\langle u w\rangle,\langle w u\rangle \in J$, if there is $v \in L, u \leqslant v \leqslant w$ such that $\langle u v\rangle \in Q$ and $\langle v w\rangle \in N$. Evidently, J is reflexiv, symmetric and compatible with the lattice operations in L. The transitivity of J is proved quite analogously to the transitivity of N in the proof of 4.4. Thus, J is a linear congruence on L and, as the orthogonality of L_{1} and b_{2}^{\prime}
over s implies that every lower $(k-m)$-chain in L_{1} is a lower k-chain in L, J is a k-extension of Q. We denote $N_{1}^{\perp}=P_{1}, N^{\perp}=P, J^{\perp}=K$.

Let $y \notin K^{0}$, then there is $r=[u v],\langle u v\rangle \in J, u \neq v$ such that $\bar{r}(y)=v$. Then $[u \wedge y, v \wedge y] \sim[u v]$ holds, therefore r can be chosen so that $v \leqslant y$. The assumption $y \in R^{0}$ gives us $u, v \in R^{0},\langle u v\rangle \in Q, u=v$. Thus $y \notin R^{0}$ and we have proved $R^{0} \subseteq K^{0}$, i. e. $R^{0}=K^{0}$ according to 2.2.

The definition of N_{1} implies that there is $y_{1} \in b_{1}$ such that $\left\langle x y_{1}\right\rangle \in N_{1}$ and $\langle x y\rangle \in P_{1}$ for $y \in b_{1}, y_{1} \neq y$. Let us denote $p=\left[x y_{1}\right]$.

First let $u \in R_{p}^{1}, u \notin R^{1}$, then $y_{1} \wedge u \notin R^{1}$. As $\left[x \wedge u, y_{1} \wedge u\right] \sim\left[x y_{1}\right]$ holds, there is $\left\langle x \wedge u, y_{1} \wedge u\right\rangle \in N$ and therefore $\left\langle x \wedge u, y_{1} \wedge u\right\rangle \in Q$, $\left\langle x y_{1}\right\rangle \in Q, x=y_{1}$. This is a contradiction with $y_{1} \in b_{1}$ and we have proved $R_{p}^{1} \subseteq R^{1}$.

Now let $u \in R_{p}^{1}, u \notin K^{1}$. Then also for $u_{1}=\left(u \wedge y_{1}\right) \vee s \in L_{1}, u_{1} \in R_{p}^{1}$, $u_{1} \notin K^{1}$ holds. Thus there are $v, w \in L$ such that $\langle v w\rangle \in J, v<w$ and $u_{1} \wedge v=$ $=u_{1} \wedge w$. Then $[v w] \sim\left[u_{1} \vee v, u_{1} \vee w\right]$ shows that we may assume $u_{1} \leqslant v$. But $u_{1} \in R_{p}^{1}$ and $u_{1} \in R^{1}$ implies $\langle v w\rangle \in N$. Thus there are $v_{1}, w_{1} \in L$ such that [vw], $\left[v_{1} w_{1}\right]$ are projective and again we may assume $u_{1} \leqslant v_{1}$. Hence we have $\left\langle v_{1} w_{1}\right\rangle \subseteq N_{1}, u_{1} \leqslant v_{1}<w_{1} \leqslant t$. On the other hand, if we denote $s_{1}=\vee\left(b_{1}-\left\{y_{1}\right\}\right)$, we get $\left[x y_{1}\right] \sim\left[s_{1} t\right]=q$, therefore $u_{1} \in R_{q}^{1}$, i. e. $u_{1} \vee s=$ $=u_{1} \vee t=t$ and $\left\langle s_{1} t\right\rangle \in N_{1}$. From the properties of transposed intervals it follows that we have obtained a contradiction with the linearity of N_{i}. So $R_{p}^{1} \subseteq K^{1}$ has been proved. At the same time we have $K^{1} \subseteq P^{1} \subseteq R_{p}^{1}$, thus $K^{1}=P^{1}=R_{p}^{1}$. Therefore $L(K)=L-\left(R^{0} \cup R_{p}^{1}\right)$.

Let d be a k-system in $L(K)$ over w, such that $\langle w v\rangle \notin J$, i. e. $\langle w v\rangle \notin Q$ and by $4.4\langle w v\rangle \in R$ for any $v \in d$. Then $d \subseteq R^{1}, w \in R^{1}$ must hold.

We denote $x_{1}=\vee\{\bar{p}(v) ; v \in d\}, r=\left[x_{1} y_{1}\right]$ and have $x_{1} \in p, x_{1}<y_{1}, d \subseteq R_{r}^{0}$. Then r is a $(k-m)$-chain in L_{1} and there are a $(k-m)$-system a_{1} in L_{1} and a k-system a in L over x_{1} such that $y_{1} \in a_{1}, \vee a_{1}=t, a_{1} \subseteq a$ and for $y \in a$, $\left(z \vee x_{1}\right) \wedge y=x_{1}$ if and only if $y \in a_{1}$.

If we denote $u=x_{1} \wedge w$, then $u \in R^{1}$ and denoting $a_{0}=\{w \wedge y ; y \in a \&$ $\left.\&\left(x_{1} \vee w\right) \wedge y>x_{1}\right\}, d_{0}=\left\{x_{1} \wedge v ; v \in d \&\left(x_{1} \vee w\right) \wedge v>w\right\}, c_{0}=\{y \wedge v ;$ $y \in a \&\left(x_{1} \vee w\right) \wedge y=x_{1} \& v \in d \&\left(x_{1} \vee w\right) \wedge v=w \&(y \vee w) \wedge\left(v \vee x_{1}\right)>$ $\left.>x_{1} \vee w\right\}$ we obtain from the proof of 2.4 [1] that $c=a_{0} \cup c_{0} \cup d_{0}$ is a k-system over u.

We have $w \in R_{r}^{0}$ and therefore $\left(x_{1} \vee w\right) \wedge y_{1}=x_{1}$. As $y \in R_{r}^{0}$ holds for $y \in a, y \neq y_{1}$, there is $a_{0} \subseteq R_{r}^{0}$. For any $v \in d, v \in R_{r}^{0}$ holds, hence $\left(y_{1} \vee w\right) \wedge$ $\wedge\left(v \vee x_{1}\right)=x_{1} \vee w$ and $d_{0}, c_{0} \subseteq R_{r}^{0}$. We have shown $c \subseteq R_{r}^{0}$.

Let us denote $c_{1}=\{v ; v \in c \& v \wedge(z \vee u)=u\}, c_{2}=\{v ; v \in c \& v \wedge$ $\wedge(z \vee u)>u\}$. The maximality of m implies that card $c_{2} \leqslant m$. On the other hand, we denote $u_{1}=s \vee u, v_{1}=s \vee v, v^{\prime}=t \wedge v, v_{1}^{\prime}=s \vee v^{\prime}=t \wedge v_{1}$ for
any $v \in c_{1}, c_{1}^{\prime}=\left\{v_{1}^{\prime} ; v \in c\right\}$ and get $\left(z \vee x_{1}\right) \wedge\left(x_{1} \vee v\right)=\left(z \vee u \vee x_{1}\right) \wedge$ $\wedge\left(x_{1} \vee v\right)=((z \vee u) \wedge v) \vee x_{1}=u \vee x_{1}=x_{1}$ for any $v \in c_{1}$. As [uv] is a chain, then $\left[x_{1}, x_{1} \vee v\right]$ is also a chain. If $x_{1}<x_{1} \vee v$, then, by 3.2, $x_{1} \vee v$ is comparable exactly with one element $y \in a_{1}\left(y \neq y_{1}\right.$ as $\left.v \in R_{r}^{0}\right)$ and $x_{1}<$ $<y \wedge\left(x_{1} \vee v\right)=t \wedge\left(x_{1} \vee v\right)$. As $\left[x_{1} \wedge v, v\right] \sim\left[x_{1} \wedge v_{1}, v_{1}\right] \sim\left[x_{1}, x_{1} \vee v\right]=$ $=\left[x_{1}, x_{1} \vee v_{1}\right]$, also $x_{1} \wedge v<v^{\prime}, x_{1} \wedge v_{1}<v_{1}^{\prime}$, i. e. $u_{1}<v_{1}^{\prime}$ must hold. If $x_{1}=x_{1} \vee v$, then $v \leqslant x_{1} \leqslant t, v_{1} \leqslant t, v_{1}^{\prime}=v_{1}$ and again $u_{1}<v_{1}^{\prime}$. Hence c_{1}^{\prime} is an independent system in L_{1} over u_{1} with the same cardinality as c_{1}, therefore card $c_{1} \leqslant k-m$ and card $c_{2}=m$, card $c_{1}=\operatorname{card} c_{1}^{\prime}=k-m$.

By the definition of N_{1}, there is $v \in c_{1}$ such that $\left\langle u_{1} v_{1}^{\prime}\right\rangle \in N_{1}$. The linearity of N_{1} implies that $x_{1}<x_{1} \vee v$ is impossible, so that $v \leqslant x_{1}, v, v_{1} \leqslant t, v_{1}^{\prime}=v_{1}$, $\left\langle u_{1} v_{1}\right\rangle \in N_{1}$. Now $u \leqslant v \wedge u_{1}=v \wedge(s \vee u) \leqslant v \wedge(z \vee u)=u, v \vee u_{1}=$ $=v \vee s \vee u=v \vee s=v_{1}$, $[u v] \sim\left[u_{1} v_{1}\right]$ give $\langle u v\rangle \in N$.

From $v \leqslant x_{1}$ we get $v \in d_{0}$ (see also the proof of 2.4 [1]), hence there is $q \in d$ such that $q^{\prime}=\left(x_{1} \vee w\right) \wedge q>w$ and $v=x_{1} \wedge q$. We have $v \wedge w=$ $=x_{1} \wedge q \wedge w=x_{1} \wedge w=u$ and $v \vee w=\left(x_{1} \wedge q\right) \vee w=\left(x_{1} \vee w\right) \wedge$ $\wedge(q \vee w)=q^{\prime}$, i. e. $[u v] \sim\left[w q^{\prime}\right]$ and $\left\langle w q^{\prime}\right\rangle \in N$. By the linearity of N, for any $y \in d, y \neq q, w<y^{\prime} \leqslant y$ there is $\left\langle w y^{\prime}\right\rangle \notin N$.

If $q^{\prime}<q$, then $d^{\prime}=\{q\} \cup\left\{q^{\prime} \vee y ; y \in d \& y \neq q\right\}$ is again a k-system in $L(K)$, this time over q^{\prime}, and again there is $y^{\prime} \in d^{\prime}$ such that $\left\langle q^{\prime} y^{\prime \prime}\right\rangle \in N$ for some $y^{\prime \prime}, q^{\prime}<y^{\prime \prime} \leqslant y^{\prime}$. If $y^{\prime} \neq q$, i. e. $y^{\prime}=q^{\prime} \vee y, y \in d, y \neq q$, then $[w y] \sim$ $\sim\left[q^{\prime} y^{\prime}\right]$ and $\left[w, y \wedge y^{\prime \prime}\right] \sim\left[q^{\prime} y^{\prime \prime}\right]$, i. e. $\left[w, y \wedge y^{\prime \prime}\right] \in \dot{N}, w<y \wedge y^{\prime \prime} \leqslant y$, which is impossible. Therefore $y^{\prime}=q$ and $\left\langle q^{\prime} q^{\prime \prime}\right\rangle \in N, q^{\prime}<q^{\prime \prime} \leqslant q$. Then $\left[q^{\prime} q^{\prime \prime}\right] \sim$ $\sim\left[x_{1} \vee w, x_{1} \vee q^{\prime \prime}\right]$, i. e. $x_{1} \vee w<x_{1} \vee q^{\prime \prime},\left\langle x_{1} \vee w, x_{1} \vee q^{\prime \prime}\right\rangle \in N$. On the other hand $x_{1} \vee w, x_{1} \vee q^{\prime \prime} \in R_{r}^{0}$ give $\left[x_{1} y_{1}\right] \sim\left[x_{1} \vee w, y_{1} \vee w\right]$ and $\left(y_{1} \vee w\right) \wedge$ $\wedge\left(x_{1} \vee q^{\prime \prime}\right)=x_{1} \vee w$. That is a contradiction with the linearity of N.

Thus $q^{\prime}=q$ holds and $\langle w q\rangle \in N,\langle w q\rangle \in J$. We have proved that $\operatorname{lodim} L(K) / J<k$. Therefore $J \in \mathscr{A}(L), \mathscr{A}\left(Q_{0}, L\right)$, respectively, and $\left\langle x y_{1}\right\rangle \notin Q$, $\left\langle x y_{1}\right\rangle \in J$ give a contradiction with the maximality of Q. Hence the assumption $m>0$ is false, $m=0$ holds and the proof is complete by 3.2.
5.3. Let us define a relation \mathscr{P} in $\mathscr{A}(L)$ as follows: $\langle N Q\rangle \in \mathscr{P}$ if $N=Q$ or if $\dot{P}=N^{\perp}, R=Q^{\perp}, P^{1} \cup R^{0}=L$ holds.

Then \mathscr{P} is a partial order in $\mathscr{A}(L)$.
Proof. The reflexivity of \mathscr{P} follows immediately. Let $\langle N Q\rangle,\langle Q N\rangle \in \mathscr{P}$, then have $P^{0} \subseteq R^{0}, P^{0} \supseteq R^{0}$, i. e. $P^{0}=R^{0}$ and analogously $P^{1}=R^{1}$. Hence $R^{1} \cup R^{0}=L, L / R$ is the two-element lattice and $P=R$. From 2.5 also $N=Q$ follows. Therefore \mathscr{P} is antisymmetric. To prove the transitivity of \mathscr{P}, let us set $\langle J N\rangle,\langle N Q\rangle \in \mathscr{P}, J \neq N, N \neq Q, K=J^{\perp}$. Then $K^{1} \cup P^{0}=L$ gives $K^{1} \supseteq P^{1}$ and $P^{1} \cup R^{0}=L$ implies $K^{1} \cup R^{0}=L$, i. e. $\langle J Q\rangle \in \mathscr{P}$.
5.4. Let M be a chain in $\langle\mathscr{A}(L), \mathscr{P}\rangle$. Then the congruence $Q_{M}=\sum M$ is linear.

Proof. First let us define the relation Q_{M} as follows: $\langle u v\rangle,\langle v u\rangle \in Q_{M}$ if there are $u_{0}=u \leqslant u_{1} \leqslant \ldots \leqslant u_{n}=v, n \geqslant 0$, such that $\left\langle u_{i-1} u_{i}\right\rangle \in \cup M$, $i=1, \ldots, n$. If we show that Q_{M} defined in this way is transitive, then evidently Q_{M} is a congruence fulfilling $Q_{M} \supseteq Q \in M, Q_{M} \subseteq \sum M$, i. e. $Q_{M}=\sum M$.

Thus let $x<y, x<z,\langle x y\rangle \in N \in M,\langle x z\rangle \in Q \in M, P=N^{\perp}, R=Q^{\perp}$, $N \neq Q$. The congruences N, Q are \mathscr{P}-comparable, let e. g., $\langle N Q\rangle \in \mathscr{P}$. There is $x \notin P^{1}$, otherwise $y \in P^{1}, x=y$. Therefore $x \in R^{0}$ and $z \notin R^{0}, z \in P^{1}$. If $y \in R^{0}$, then $y \wedge z \in R^{0}$ and $x \leqslant y \wedge z \leqslant z$ gives $\langle x, y \wedge z\rangle \in Q, x=y \wedge z$. Hence $[x y] \sim[z, y \vee z]$ and $z<y \vee z,\langle z, y \vee z\rangle \in N$, which is a contradiction with $z \in P^{1}$. Therefore $y \in P^{1}$ and $y \wedge z \in P^{1}, x \leqslant y \wedge z \leqslant y \operatorname{imply}\langle y \wedge z, y\rangle \in N$, $y \wedge z=y, y \leqslant z,\langle y z\rangle \in Q$. The transitivity of \mathscr{P} is proved by iteration of the previous and dual reasoning. The linearity of Q_{M} follows immediately from the definition.
5.5. Let M be a maximal chain in $\left\langle\mathscr{A}\left(Q_{0}, L\right) \cup \mathscr{A}_{k}(L)\right.$, $\left.\mathscr{P}\right\rangle$, fulfilling
(i) if b is a k-system over x and $\langle x y\rangle \notin Q_{M}$ for any $y \in b$, then for any $Q \in M$, $R=Q^{\perp}$ there is $x \in \mathscr{U}\left(-R^{1}\right)$ or $\vee b \in \mathscr{L}\left(-R^{0}\right)$.
Then $\operatorname{lodim} L / Q_{M}<k$.
Proof. Let us suppose $\operatorname{lodim} L / Q_{M} \geqslant k$. By 2.1, there is a k-system b in L over x such that for any $y \in b,\langle x y\rangle \notin Q_{M}$ holds. We denote $a_{0}=\{Q ; R=$ $\left.=Q^{\perp} \& x \in \mathscr{U}\left(-R^{1}\right)\right\}, a_{1}=\left\{Q ; R=Q^{\perp} \& \vee b \in \mathscr{L}\left(-R^{0}\right)\right\}$, then $a=\left\langle a_{0} a_{1}\right\rangle$ is a cut in M. Further we denote $L^{0}=\cap\left\{\mathscr{L}\left(-R^{0}\right) ; ~ R=Q^{\perp} \& Q \in a_{1}\right\}$, $L^{1}=\cap\left\{\mathscr{U}\left(-R^{1}\right) ; R=Q^{\perp} \& Q \in a_{0}\right\}, L_{a}=L^{0} \cap L^{1}$ and see that L_{a} is a convex sublattice of L and $[x, \vee b] \subseteq L_{a}$, hence $\mathscr{A}_{k}\left(L_{a}\right) \neq 0$. Let N_{a} be a maximal element in $\mathscr{A}_{k}\left(L_{a}\right)$, let N be the congruence induced in L by N_{a}, let $P_{a}=N_{a}^{\perp}$, $P=N^{\perp} . N$ is linear by 2.4.

As N_{a} is k-generated in L_{a}, there is a set M_{N} of lower k-chains in L_{a} such that $N_{a}=\sum\left\{Q_{r} \cap\left(L_{a} \times L_{a}\right) ; r \in M_{N}\right\}$. By 2.2, 2.4, then $N=\sum\left\{Q_{r} ; r \in M_{N}\right\}$, i. e. $N \in \mathscr{A}_{k}(L)$ and $P^{0}==\cap\left\{R_{r}^{0} ; r \in M_{N}\right\}$. If $Q \in a_{0}, R=Q^{\perp}$, then for any $r \in M_{N}$ we have $r \subseteq L_{a}$, therefore $r \subseteq \mathscr{U}\left(-R^{1}\right), R_{r}^{0} \supseteq-R^{1}$, i. e. $P^{0} \supseteq-R^{1}$, $P^{0} \cup R^{1}=L,\langle Q N\rangle \in \mathscr{P}$. Dually we can prove $\langle N Q\rangle \in \mathscr{P}$ for $Q \in a_{1}$, hence $K=M \cup\{N\}$ is a proper extension of M to a chain in $\left\langle\mathscr{A}\left(Q_{0}, L\right) \cup \mathscr{A}_{k}(L), \mathscr{P}\right\rangle$. We shall show that K also fulfils (i), which will be a contradiction with the maximality of M.

Let d be a k-system over u, for any $v \in d$ let $\langle u v\rangle \notin Q_{K}$, hence $\langle u v\rangle \notin Q_{M}$. Let a cut $c=\left\langle c_{0} c_{1}\right\rangle$ in M be determined by d in the same way as the cut a by b.

At first let $a \neq c$, let there exist $Q \in a_{1} \cap c_{0}$ (the case $Q \in a_{0} \cap c_{1}$ is dual). Then $\langle N Q\rangle \in \mathscr{P}$, i. e. $P^{1} \cup R^{0}=L$ holds. Then $P^{1} \supseteq R^{1},-P^{1} \subseteq-R^{1}$ and $\mathscr{U}\left(-P^{1}\right) \supseteq \mathscr{U}\left(-R^{1}\right)$. Therefore $u \in \mathscr{U}\left(-R^{1}\right)$ gives us $u \in \mathscr{U}\left(-P^{1}\right)$.

Now let $a=: c$, i. e. $[u, \vee d] \subseteq L_{a} . \mathrm{As}\langle u v\rangle \notin N,\langle u v\rangle \notin N_{a}$ holds for any
$v \in d$, the maximality of N_{a} implies $u \in P_{a}^{1}$ or $\bigvee d \in P_{a}^{0}$. Let $u \in P_{a}^{1}$, then by $2.4 u \in P^{1}$. Let us suppose $u \notin \mathscr{U}\left(-P^{1}\right)$, i. e. let there be $z \notin P^{1}, z \leqslant u$. As $u \in L^{1}=\cap\left\{\mathscr{U}\left(-R^{1}\right) ; R=Q^{\perp} \& Q \in a_{0}\right\}, z \in R^{1}$ must hold for any $R=Q^{\perp}$, $Q \in a_{0}$. But $v \in R^{1}$ for any $v \in d$ holds too and therefore $u \in R^{1}$ and $s=u \wedge z \in$ $\in \cap\left\{R^{1} ; R=Q^{\perp} \& Q \in a_{0}\right\}$. Hence by 5.2, any lower k-chain r in $[s, \bigvee d]$ fulfils $r \subseteq L^{1}$. As $\vee d \in L^{0}$, evidently also $r \subseteq L^{0}$ holds, i. e. $r \subseteq L_{a}$. The proof of 5.2 gives us an extension N^{\prime} of N, generated by a set of Q_{r}, where r are lower k-chains in $[s, \vee d]$, hence $N_{a}^{\prime}=N^{\prime} \cap\left(L_{a} \times L_{a}\right)$ is a k-extension of N_{a} in L_{a}. Moreover, we have, denoting $P^{\prime}=N^{\prime \perp}, P_{a}^{\prime}=N_{a}^{\prime \perp}, u \notin P^{\prime 1}$ and $u \notin P_{a}^{\prime 1}$, therefore N_{a}^{\prime} is a proper k-extension of N_{a}, which is a contradiction with the maximality of N_{a}. We have proved $u \in \mathscr{U}\left(-P^{1}\right)$. In the case $\vee d \in P_{a}^{0}$, $\vee d \in \mathscr{L}\left(-P_{0}\right)$ is shown dually. The proof is complete.
5.6. For any $Q_{0} \in \mathscr{A}(L)$ there is $N \in \mathscr{A}\left(Q_{0}, L\right)$ such that $\operatorname{lodim} L / N<k$.

Proof. By 4.3, there is a maximal element $Q \in \mathscr{A}\left(Q_{0}, L\right)$. By 4.4, 5.2 the one-element chain $\{Q\}$ in $\left\langle\mathscr{A}\left(Q_{0}, L\right) \cup \mathscr{A}_{k}(L), \mathscr{P}\right\rangle$ fulfils $5.5(\mathrm{i})$. As the set of all chains in $\left\langle\mathscr{A}\left(Q_{0}, L\right) \cup \mathscr{A}_{k}(L), \mathscr{P}\right\rangle$ fulfilling $5.5(\mathrm{i})$ satisfies the condition of maximality, there is a maximal chain M in $\left\langle\mathscr{A}\left(Q_{0}, L\right) \cup \mathscr{A}_{k}(L), \mathscr{P}\right\rangle$ fulfiling 5.5(i) such that $Q \in M$, i. e. $Q_{M} \supseteq Q$. Then evidently $Q_{M} \in \mathscr{A}\left(Q_{0}, L\right)$ and $\operatorname{lodim} L / Q_{M}<k$ by 5.5 .
5.7. Theorem. If L is a distributive lattice and $\operatorname{lodim} L$ is finite, then $\operatorname{lodim} L=$ $=\operatorname{dim} L=\operatorname{ldim} L$.

Proof. By induction is given by 4.0, 5.0, 5.1 and 5.6.

REFERENCES

[1] Gavalec M., Dimensions of distributive lattices, Mat. časop. 21 (1971), 177-190. Received August 12, 1969

Katedra matematiky
Prirodovedeckej fakulty
Univerzity P. J. ふ̌afárika, Košice

