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Matematický časopis 19 (1969), No. 2 

COUPLED SYSTEMS OF TYPE T 

VACLAV HAVEL, Brno 

In § 1.3 of [1] there is explained the standart theory of free planar extensions 
of incidence structures. The incidence structures can be also interpreted as 
some specia. ,,coupled systems" ([1], Proposition 6 on p. 6). We have applied 
this viewpoint already in [2] for the study of partition properties of incidence 
structures. I t is further possible to extend the mentioned free p±anar extension 
theory of incidence structures to the free complete extension theory of general 
coup.ed systems. This is indicated in [3], Note that in general coupled systems 
the points (lines) are, essentially, the sets of some pairs of lines (points). On 
the other hand, the free complete extension theory of m-tuple systems with 
at most n-tuple intersections (m — 1 > n ^ 1) can be built up. 

In the present Note we wish to deduce first the properties belonging 
to the free complete extension theory of ,,coupled systems of type T " (here 
the points (lines) are, essentially, the sets of certain lines (points) with some 
prescribed cardinalities). 

Let T be a fixed class of cardinal numbers. By a coupled system (of type T) 
we mean a collection C = (Si,ft;i = 1,2) where Si,S2 are nonempty sets 
and f is a map of a set domj* c {X c Si\ card X ET} into Sj; (i,j) = (1,2), 
(2,1). If especially dom j i = {X c St\ card X eT} for i = 1,2 then C is said 
to be complete. 

Let C = (Si,f; i = 1,2), C = (S'^ff, i = 1,2) be coupled systems^) such 
that St ^ S'i amdfi =f,

i\Si, for i = 1,2. Then C is called a coupled subsystem 
of C . 

Let C, C be given coupied systems. By a surjection a : C -> C we shail 
mean a pair (a±, 0*2) where 01 : St-> S[ is a surjection for i = 1,2. A surjection 
a : C -> C is called an epimorphism if (i) {XW\X e dom/$, card K-<*1 G T } = 
= domf'i for K>- defined as {aix\x e X} where X e d o m j J ; i = 1,2 and 
(ii)/i.ZW = aj(fX) for all l e d o m / i with card I M e T ; (i,j) = (1,2), (2,1). 
A bijective epimorhism is called an isomorphism^2) 

(!) This denotation will be preserved throughout the whole paper. 
(2) Note that if a is a bijective epimorphism then a'1 = (aj1, o^1) is also an epimorphism. 
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C o n s t r u c t i o n 1. Let C be a coupled subsystem of a complete coupled 
system C. We put C° = C and suppose that Cn is already given for some w.(3) 
Construct &+1 in such a way that domfn+1 = {X c fif?| card X e T}, Sn+1 = 
= SfuTn, Tn = {fiX\Xedomfn+1\domfn} for (i,j) = (1,2), (2,1). By 
induction we get a sequence (C)^= 0 . Now there is precisely one minimal 
coupled system Cc, containing all Co, C1, C2, . . . as coupled subsystems. 

C o n s t r u c t i o n 2. Let C be a coupled system. First put C<°> = C Secondly 
suppose that C<̂> is already determined for some n. Then construct C<w+1> 
in such a way that dom /f+1 = {X <= $ n ) | card XeT}, Sf+1) = fljn> U Tf 
where £ f > n Tf = 0 with card Tf = card (dom/^ + 1 ) \ dom/f>) and 

/ ^ I d o m / r ^ / ^ / r ^ l d o m / r v o m / - : ( d o m / f + 1 ) \ d o m / f > ) -> Tf is a 
bijection for (i,j) = (1,2), (2,1). Inductively we obtain a sequence (C<w>)^0. 
Now there is precisely one minimal coupled system C containing all C<°>, C<->, 
C is necessarily complete and is determined up to isomorphisms. 

Proposition 1. Let C be a coupled system and C a coupled system such thai 
Cc. = C. Then there is an epimorphism <p : C -> C with <p\c = id c . 

Proof . Let ^W = id c . Suppose further that there is an epimorphism 
(p(n) : c<w> -> Cn with <p(n)\c = id c for a certain n. Then construct <p(n+1) : C<w+-> -> 
->C^+i in such a way that <pf+1)X = f(n+DX^n)] for X e d o m / f + 1 ) with 
card I ^ ) ] G T , X^(n)] = {<p\n)x\x e X} whereas <$+1X will be defined as an 
arbitrary element of Sn+1 if X e dom/<w+1>, card X^n]<£T; (i,j) = (1,2), (2,1). 
I t is easy to see that <p(n+D is an epimorphism with <p(n+1)\c = id c . By induc
tion we get a sequence (<p^n))n=o' N°w there exists precisely one epimorphism 
<p : C-> C prolonging simultaneously all <p<°>, 99<1>, <p<2>, . . . . Q.E.D. 

Proposition 2. Let C be a coupled system and C some coupled system with 
C = Cc such that there is an epimorphism \p : C -> C with \p\c = id c . Then 
y) is an isomorphism. 

Proof . Let <p : C -> C be the epimorphism from Proposition 1. Putt ing 
cp(n) — cp\C{n), y)n = \p\Cn (n = 0,1,2, ...) wa shall show by induction that 
Qn = ^(n) o yn [$ equal to idCn for each n = 0,1,2, . . . . First 0o =-z id c because 
of <p(o) = tp0 = id c . Suppose furthsr that 0n = idc« for some n. Then, t o 
every zeTJ there is X e d o m / f + 1 such that fn+1 X = z; because of card 
X e T , card X^ lG 7(4) it followi that yijz = fn+1 XM, <pj(y)jz) = fn+1 

(XM)M =fn+1 X = z, as 0^ = idCn by assumption ((i,j) = (1,2), (2,1)). 
Thus (&n)n=0 is a sequence of identity mappings and consequently \p ° <p = idc-
so that ip must be an isomorphism. Q.E.D. 

(3) More de ta i led : Cn = (Sn,fn;i = 1, 2). Similarly for analogous cases. 
(4) X-.F1 = {y,iX \x E X} a n d similarly fur ther for F-*i. 
(5) j[o«] = {a

nx\xeX}. 
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Let C be a coupled system with d o m / i = d o m / 2 = 0. Then C is called 
a free coupled system. 

Proposition 3. To each complete coupled system C there is an epimorphism 
a : C -> C where C is such that Si = S[, Sz = S'2, dom j i = dom j i = 0. 

Proof . Inductively we shall construct a sequence (an)™=0 where each an 

is a surjection of Cn) onto some coupled subsystem of C. If z e T{n), z eft+1)X, 
card KKl e T (respectively, <£ T), define an+1z = f\ X[an] (respectively, an+1 z = 
an arbitrary element of fi^+1)) for (i, j) = (1,2), (2,1). The common prolon
gation a : C -> C of all ao, a2, a2, . . . presents the required epimorphism. Q.E.D. 

Proposition 4. Every complete coupled subsystem of a free coupled system 
is free. 

Proof. Let C be a coupled system such tha t d o m / i = dom/2 = 0 and 
let C be a complete coupled subsystem of C. Construct the set S? consisting 
of all elements of Sj n Sj and of all elements in S'j having (as elements of 

[ J Sjn)) the form ft+1) X, X e d o m / f + 1 ) \ d o m / f > where X contains an 

element of Sf\S[; (i,j) = (1,2), (2,1). Then O = C for C<> = (/Sf/,/^ ; 
t = 1,2), domf? = dom/2^ = 0. Q.E.D. 
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