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EXTERIOR DIFFERENTIAL SYSTEMS, LIE ALGEBRA
COHOMOLOGY, AND THE RIGIDITY OF HOMOGENOUS

VARIETIES

Joseph M. Landsberg

Abstract. These are expository notes from the 2008 Srní Winter School. They
have two purposes: (1) to give a quick introduction to exterior differential sys-
tems (EDS), which is a collection of techniques for determining local existence
to systems of partial differential equations, and (2) to give an exposition of
recent work (joint with C. Robles) on the study of the Fubini-Griffiths-Harris
rigidity of rational homogeneous varieties, which also involves an advance in
the EDS technology.
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1. Introduction

Let G be a complex semi-simple Lie (or algebraic) group, and let V = Vλ be an
irreducible G-module. The homogeneous variety G/P = G · [vλ] ⊂ PV is the orbit
of a highest weight line.

For example, let W be a complex vector space, V = ΛkW and let G = SL(W ),
then G/P = G(k,W ) ⊂ P(ΛkW ) is the Grassmannian of k-planes through the
origin in W in its Plücker embedding.

A long term program with my collaborators Laurent Manivel, Colleen Robles and
Jerzy Weyman is to study relations between the projective geometry of G/P ⊂ PV ,
especially its local differential geometry, and the representation theory of G. More
than just the geometry of G/P , we are interested in the geometry of its auxiliary
varieties, for example the tangential variety τ(G/P ) ⊂ PV , which is the union of
all points on all embedded tangent lines to G/P , and the r-th secant variety of
G/P , σr(G/P ) ⊂ PV , which is the Zariski closure of all points on all secant Pr−1’s
to G/P . The auxilary varieties are all G-varieties, i.e., preserved under the action
of G, and thus one can study their ideals, coordinate rings, etc. as G-modules.

1.1. Overview. These notes are focused on the local projective differential geo-
metry of homogeneously embedded rational homogeneous varieties G/P ⊂ PV .
Specifically, they address the question how much of the local geometry is needed
to recover G/P . We begin by describing many examples of rational homogeneous
varieties in §1.2. The main question we deal with is rigidity, but before discussing
rigidity questions, we give descriptions of related projects in §2 to give context
to this work. The rigidity results and questions are described in §3. In §4 and §5
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we give a crash course on exterior differential systems (EDS). Roughly speaking,
EDS is a collection of techniques for determining the space of local solutions to
systems of partial differential equations. The techniques usually involve extensive
computations that can be simplified by exploiting group actions when such are
present, as with the rigidity questions that will be the focus of this paper. In §6 we
describe moving frames for submanifolds of projective space and a set of “rigidity”
EDS that are natural from the point of view of projective differential geometry. We
also describe flexibility results obtained using standard EDS techniques. A different
method for resolving certain EDS associated to determining the rigidity of compact
Hermitian symmetric spaces (CHSS) was introduced by Hwang and Yamaguchi
in [20] that avoided lengthy calculations by reducing the proof to establishing
the vanishing of certain Lie algebra cohomology groups. At first, it appeared that
their methods would not extend beyond the CHSS cases, but the machinery was
finally extended in [24]. This extension is the central point of these lectures. Several
problems had to be overcome to enable the extension - the problems and their
solutions are discussed in detail in in §9. The first problem is that the EDS natural
for geometry is not natural for representation theory, once one moves beyond
CHSS. This problem is (partially) resolved in §9.1 with the introduction of the
systems (Ip, Jp) which are natural for representation theory. The next problem
is that even these natural systems do not lead one to Lie algebra cohomology,
except in the case of CHSS. However a refined version of the (Ip, Jp) systems,
the filtered systems (Ifp ,Ω) do. This is explained in §9.2, which then leads to our
main theorem, Theorem 9.10. Before discussing these systems, we describe and
compare, for G/P ⊂ PV the filtration of V induced by the osculating sequence
and a filtration induced by the Lie algebra in §7, and briefly review Lie algebra
cohomology in §8.

1.2. Examples of rational homogeneous varieties.

1.2.1. Generalized cominuscule varieties. The simplest rational homogeneous va-
rieties are the generalized cominuscule varieties, which are the homogeneously
embedded compact Hermitian symmetric spaces. In addition to the Grassmannians
mentioned above, the cominuscule varieties, which are the irreducible CHSS in
their minimal homogeneous embeddings, are

– the Lagrangian Grassmannians Gω(n,W ) = Cn/Pn ⊂ P(ΛnW/ω ∧ Λn−2W ),
where W is a 2n dimensional vector space equipped with a symplectic form
ω ∈ Λ2W ∗, Cn is the group preserving the form, and Gω(n,W ) ⊂ G(n,W )
are the n-planes on which ω restricts to be zero. (Note that we may use ω to
identify W with W ∗ so ω ∧ Λn−2W makes sense.)

– the Spinor varieties Sn = Dn/Pn ' Dn/Pn−1 which are also isotropic Grass-
mannians, only for a symmetric quadratic form, where W again has dimension
2n. Their minimal homogeneous embedding is in a space smaller than P(ΛnW ).

– the quadric hypersurfaces Qn−1 = GQ(1,W ) ⊂ PW , (which are Bm/P1 and
Dm/P1 depending if n = 2m+ 1 or n = 2m)
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– the Cayley plane OP2 = E6/P6 ' E6/P1 ⊂ PJ3(O) which are the octonionic
lines in O2 embedded as the rank one elements of the exceptional Jordan
algebra J3(O), see, e.g., [30] for details.

– the Freudenthal variety E7/P7 ⊂ P55 which may be thought of as an octonionic
Lagrangian Grassmanian Gw(O3,O6), see [30].

1.2.2. Products of homogeneous varieties. An elementary, but important generalized
cominuscule variety is the Segre variety. Let V,W be vector spaces, the Segre variety
Seg(PV × PW ) ⊂ P(V ⊗W ) as an abstract variety is simply the product of two
projective spaces. It is embedded as the set of rank one elements of V ⊗W . In
general, if G/P ⊂ PV and G′/P ′ ⊂ PV ′, we may form the product Seg(G/P ×
G′/P ′) ⊂ P(V ⊗V ′), which is of course a subvariety of Seg(PV × PV ′).

1.2.3. Veronese re-embeddings of homogeneous varieties. Considering SdV as the
space of homogeneous polynomials of degree d on V ∗, we can consider the variety of
d-th powers inside P(SdV ), this is isomorphic to PV via the map vd : PV → PSdV ,
[x] 7→ [xd], called the Veronese embedding. If X ⊂ PV is a subvariety we can
consider vd(X). Its linear span 〈vd(X)〉 ⊂ SdV has the geometric interpretation
of the annihilator of Id(X) ⊂ SdV ∗, the ideal of X in degree d. In particular, if
X = G/P ⊂ PVλ is homogeneous, then 〈vd(G/P )〉 = Vdλ, the d-th Cartan power
of Vλ.

1.2.4. Generalized flag varieties. Given two Grassmannians G(k, V ) and G(`, V )
with say k < `, we may form the incidence variety Flagk,`(V ) = {(E,F ) ∈ G(k, V )×
G(`, V ) | E ⊂ F}. Of course Flagk,`(V ) ⊂ P(ΛkV ⊗Λ`V ). Write ΛkV = Vωk . Then
in fact 〈Flagk,`(V )〉 = Vωk+ω` giving a geometric realization of the Cartan product
of the two modules Vωk and Vω` . This generalizes to arbitrary Cartan products as
follows:

The cominuscule varieties are special cases of “generalized Grassmannians”, that
is varieties G/P where P is a maximal parabolic. Such varieties always admit
interpretations as subvarieties of some Grassmannian, usually given in terms of
the set of k planes annihilated by some tensor(s). Given two such for the same
group, G/Pi ⊂ PVωi and G/Pj ⊂ PVωj , we may form an incidence variety G/Pi,j
and again we will have 〈G/Pi,j〉 = Vωi+ωj . Thus Cartan powers and products of
modules can be constructed geometrically.

1.2.5. Adjoint varieties. After the generalized cominuscule varieties, the next sim-
plest rational homogeneous varieties are the adjoint varieties, where V is taken
to be g, the adjoint representation of G. We write G/P = Xad

G ⊂ Pg to denote
adjoint varieties. The adjoint varieties can also be characterized as the homogeneous
compact complex contact manifolds. It is conjectured (see, e.g., [41, 22]) that they
are essentially the only compact complex contact manifolds other then projectivized
cotangent bundles. Many of these have simple geometric interpretations.

– Xad
SL(W ) = Flag1,n−1(W ) is the variety of flags of lines in hyperplanes in the

n-dimensional vector space W .
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– Xad
SO(W,Q) = GQ(2,W ) ⊂ P(Λ2W ) = Pso(W ) is the Grassmannian of isotropic

2-planes in W .
– Xad

G2
= Gnull(2,=O) is the Grassmannian of two planes in the imaginary

octonions on which the multiplication is zero. It may also be seen as the
projectivization of the set of rank two derivations of O, or as the set of six
dimensional subalgebras of O, see [37], Theorem 3.1.

– Xad
Sp(W,ω) = v2(PW ) ⊂ PS2W = Pcn is the variety of quadratic forms of rank

one.
Note that other than the pathological groups An, Cn, all adjoint representations
are fundamental. Also note that the adjoint variety of cn is generalized cominuscule
for a2n−1.

1.3. Notational conventions. We work over the complex numbers throughout,
all functions are holomorphic functions and manifolds are complex manifolds
(although much of the theory carries over to R, with some rigidity results even
carrying over to the C∞ setting). In particular the notion of a general point of an
analytic manifold makes sense, which is a point off of a finite union of analytic
subvarieties. We use the labeling and ordering of roots and weights as in [2]. For
subsets X ⊂ PV , X̂ ⊂ V denotes the corresponding cone. For a manifold X, TxX
denotes its tangent space at x. For a submanifold X ⊂ PV , T̂xX = TpX̂ ⊂ V ,
denotes its affine tangent space, and p ∈ x̂ =: Lx. In particular, TxX = x̂∗⊗ T̂xX/x̂.
If Y ⊂ PW , then 〈Y 〉 ⊂ W denotes its linear span. We use the summation
convention throughout: indices occurring up and down are to be summed over.
If G is semi-simple of rank r, we write P = PI ⊂ G for the parabolic subgroup
obtained by deleting negative root spaces corresponding to roots having a nonzero
coefficient on any of the simple roots αis , is ∈ I ⊂ {1, ..., r}.
Acknowledgement. It is a pleasure to thank the organizers of the 2008 Srní
Winter School, especially A. Čap and J. Slovák. I also thank C. Robles for useful
suggestions.

2. Related projects

2.1. Representation theory and computational complexity. These projects
with Manivel and Weyman address questions about G-varieties motivated by
problems in computer science and algebraic statistics, specifically the complexity
of matrix multiplication and the study of phylogenetic invariants. For a survey on
this work see [29].

2.2. Sphericality and tangential varieties. For work related to Joachim Hil-
gert’s lectures [17], recall that a normal projective G-variety Z is G-spherical if for
all degrees d, C[Z]d, the component of the coordinate ring of Z in degree d, is a
multiplicity free G-module, see [3]. Note that this property for Z = τ(X) a priori
depends both on G and the embedding of X.
Theorem 2.1. [40] Let X = G/P ⊂ PV be a homogeneously embedded rational
homogeneous variety. Then τ(X) is G-spherical iff X admits the structure of a
CHSS, and no factor of X is G2/P1.
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In [40] we also show that if G/P is cominuscule then τ(G/P ) is normal, with
rational singularities, and give explicit and uniform descriptions of the coordinate
rings for all cases in the spirit of the project described in §2.3 below.

An interesting class of τ(G/P )’s occurs for the subexceptional series, the third
row of Freudenthal’s magic chart: Seg(P1×P1×P1), Gω(3, 6), G(3, 6), D6/P6 = S6,
E7/P7 = Gw(O3,O6) where τ(G/P ) is a quartic hypersurface whose equation is
given by a generalized hyperdeterminant. See [30] for details. The equations of
these varieties will play an important role in what follows, as the Fubini quartic
forms for Xad

G when G is an exceptional group (see §6.2).

2.3. Vogelia. This project, joint with Manivel, is inspired conjectural categorical
generalizations of Lie algebras proposed by P. Deligne (for the exceptional series)
[12, 13] and P. Vogel (for all simple super Lie algebras) [46]. It has relations Pierre
Loday’s lectures [42] because both conjectures appear to inspired by operads.

Let g be a complex simple Lie algebra. Vogel derived a universal decomposition
of S2g into (possibly virtual) Casimir eigenspaces, S2g = C⊕Y2⊕Y ′2 ⊕Y ′′2 which
turns out to be a decomposition into irreducible modules. If we let 2t denote the
Casimir eigenvalue of the adjoint representation (with respect to some invariant
quadratic form), these modules respectively have Casimir eigenvalues 4t − 2α,
4t− 2β, 4t− 2γ, which we may take as the definitions of α, β, γ. Vogel showed that
t = α+β+ γ. For example, for so(n) we may take (α, β, γ) = (−2, 4, n− 4) and for
the exceptional series so8, f4, e6, e7, e8 we may take (α, β, γ) = (−2,m+ 4, 2m+ 4)
where m = 0, 1, 2, 4, 8 respectively. Vogel then went on to find Casimir eigenspaces
Y3, Y ′3 , Y ′′3 ⊂ S3g with eigenvalues 6t− 6α, 6t− 6β, 6t− 6γ (which again turn out
to be irreducible), and computed their dimensions:

dim g = (α− 2t)(β − 2t)(γ − 2t)
αβγ

,

dim Y2 = − t(β − 2t)(γ − 2t)(β + t)(γ + t)(3α− 2t)
α2βγ(α− β)(α− γ) ,

dim Y3 = − t(α−2t)(β−2t)(γ−2t)(β + t)(γ + t)(t+ β−α)(t+ γ−α)(5α−2t)
α3βγ(α− β)(α− γ)(2α− β)(2α− γ) .

In [32, 36] we showed that some of the phenomena observed by Vogel and Deligne
persist in all degrees. For example, let α denote the highest root of g (here we have
fixed a Cartan subalgebra and a set of positive roots). Let Yk be the k-th Cartan
power g(k) of g (the module with highest weight kα).

Theorem 2.2 ([36]). Use Vogel’s parameters α, β, γ as above. The k-th symmetric
power of g contains three (virtual) modules Yk, Y ′k, Y ′′k with Casimir eigenvalues
2kt− (k2−k)α, 2kt− (k2−k)β, 2kt− (k2−k)γ. Using binomial coefficients defined
by
(
y+x
y

)
= (1 + x) . . . (y + x)/y!, we have:

dim Yk =
t− (k − 1

2 )α
t+ α

2

(− 2t
α −2+k
k

)( β−2t
α −1+k
k

)( γ−2t
α −1+k
k

)(− βα−1+k
k

)(− γα−1+k
k

)
,
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and dim Y ′k, dim Y ′′k are respectively obtained by exchanging the role of α with β
(resp. γ).

The modules Y ′k, Y ′′k are described in [36]. This dimension formula is also the
Hilbert function of Xad

G([α,β,γ]).

2.4. Cartan-Killing classification via projective geometry. If X = G(k,W )
⊂ P(ΛkW ) then the variety of tangent directions to lines through a point E ∈ X is
Y = Seg

(
PE∗ × P(W/E)

)
⊂ P(E∗⊗W/E) = PTEX. Moreover one can recover X

from Y as the image of the rational map P(T ⊕C) 99K PN given by the ideals in
degree r + 1 of the varieties σr(Y ), multiplied by a suitable power of a linear form
coming from the C-factor to give them all the same degree. In [31] we showed that
the same is true for any irreducible cominuscule variety. This enabled us to give a
new, constructive proof of the classification of CHSS, without having to first classify
complex simple Lie algebras. Moreover, a second construction constructs the adjoint
varieties and gives a new proof of the Killing-Cartan classification of complex simple
Lie algebras without classifying root systems. Here is the construction for adjoint
varieties:

Let Y ⊂ Pn−2 = PT1 be a generalized cominuscule variety. Define Y to be
admissible if the span of the embedded tangent lines to Y , as a subvariety of the
Grassmannian, has codimension one in Λ2T1. For generalized cominuscule varieties,
this condition is equivalent to Y being embedded as a Legendrian variety. In
particular τ(Y ) is a quartic hypersurface (for the exceptional series, it is the quartic
hypersurface described in §2.2). Linearly embedded T1 ⊂ Cn ⊂ Cn+1 respectively
as the hyperplanes {xn = 0} and {x0 = 0} and consider the rational map

φ : Pn 99K PN ⊂ P(S4Cn+1∗)

[x0, ..., xn] 7→ [x4
0, x

3
0T
∗
1 , x

3
0xn, x

2
0I2(Y,PT1), x2

0xnT
∗
1

− x0I3(τ(Y )sing,PT1), x2
0x

2
n − I4(τ(Y ),PT1)]

In [31] we showed that the image is an adjoint variety and that all adjoint varieties
arise in this way. Here are the Legendrian varieties Y and the Lie algebras of the
Xad
G that they produce:

Y ⊂ Pn−2 g

v3(P1) ⊂ P3 g2
P1 ×Qm−4 ⊂ P2m−5 som
Gω(3, 6) ⊂ P13 f4
G(3, 6) ⊂ P19 e6

S6 ⊂ P31 e7
Gw(O3,O6) ⊂ P55 e8.

The two exceptional (i.e., non-fundamental) cases are

Pk−3 t Pk−3 ⊂ P2k−3 slk
∅ ⊂ P2m−1 sp2m.
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See [31, 34] for details. The varieties Y ⊂ Pn−1 are the asymptotic directions
B(IIXad

G ) ⊂ PTxXad
G defined in the next section.

3. Projective differential geometry and results

3.1. The Gauss map and the projective second fundamental form. Let
Xn ⊂ PV be an n-dimensional subvariety or complex manifold. The Gauss map is
defined by

γ : X 99K G(n+ 1, V )

x 7→ T̂xX

Here T̂xX ⊂ V is the affine tangent space to X at x, it is related to the intrinsic
tangent space TxX ⊂ TxPV by TxX = (T̂xX/x̂)⊗ x̂∗ ⊂ V/x̂⊗ x̂∗ where x̂ ⊂ V is
the line corresponding to x ∈ PV . Similarly NxX = Tx(PV )/TxX = x̂∗⊗ (V/T̂xX).
The dashed arrow is used because the Gauss map is not defined at singular points
of X, but does define a rational map.

Now let x ∈ Xsmooth and consider
dγx : TxX → TT̂xXG(n+ 1, V ) ' (T̂xX)∗⊗ (V/T̂xX)

Since, for all v ∈ TxX, x̂ ⊂ ker dγx(v), where dγx(v) : T̂xX → V/T̂xX, we may
quotient by x̂ to obtain

dγ
x
∈ T ∗xX ⊗ (T̂xX/x̂)∗⊗V/(T̂xX) = (T ∗xX)⊗ 2⊗NxX .

In fact, essentially because mixed partial derivatives commute, we have
dγ

x
∈ S2T ∗xX ⊗NxX

and we write IIx = dγ
x
, the projective second fundamental form of X at x · IIx

describes how X is moving away from its embedded tangent space to first order at
x.

One piece of geometric information that IIx encodes is the following: Think of
PTxX ⊂ PTx(PV ) as the set of tangent directions in TxPV where there exists a
line having contact to X at x to order at least one. Then B(IIx) := P{v ∈ TxX |
II(v, v) = 0}, often called the set of asymptotic directions, is the set of tangent
directions where there exists a line having contact to X at x to order at least
two. To study the (macroscopic) geometry of X, we may study the smaller variety
B(IIx) and ask: What does B(IIx) tell us about the geometry of X? Note that
B(IIx) is usually the zero set of codimX quadratic polynomials and thus we expect
it to have codimension equal to codim (X,PV ) (assuming the codimension of X is
sufficiently small, otherwise we expect it to be empty).

Now let X = G/P ⊂ PV be a homogeneous variety. In particular we have
IIX,x = IIX,y for all x, y ∈ X so we will simply write IIX = IIX,x. To what extent
is X characterized by IIX?
Aside. If the ideal of a projective variety X ⊂ PV is generated in degrees at
most d, then any line having contact with X to order d at a point must be
contained in X. By an unpublished theorem of Kostant, the ideals of rational
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homogeneous varieties are generated in degree two, so B(IIG/P ) corresponds to the
tangent directions to lines through a point. Thus, for example, when X = G(k, V ),
B(IIE) = Seg

(
PE∗ × P(V/E)

)
.

3.2. Second order rigidity. For the Segre variety, B(IISeg(P2×P2)) ⊂ P3 is the
union of two disjoint lines (P1’s). The Segre has codimension four, and normally
the common zero set of four quadratic polynomials on P3 is empty. This prompted
Griffiths and Harris to conjecture:

Conjecture 3.1 ([15]). Let X = Seg(P2 × P2) ⊂ P(C3⊗C3). Let Z4 ⊂ PV be a
variety such that at z ∈ Zgeneral, IIZ,z = IIX , then Z is projectively equivalent to
the Segre.

Theorem 3.2 ([26, 27]). The conjecture is true, moreover the same result holds
when X is any rank two cominuscule variety except for Qn ⊂ Pn+1 and Seg(P1 ×
Pm) ⊂ P(C2⊗Cm+1).

One can pose more generally the question: Given a homogeneous variety G/P ⊂
PV , an unknown variety Z ⊂ PW and a general point z ∈ Z, how many derivatives
must we take at z to conclude Z ' G/P?

3.3. History of projective rigidity questions. The problem of projective rigi-
dity dates back 200 years when Monge showed v2(P1) ⊂ P2, the conic curve in the
plane, is characterized by a fifth order ODE, i.e., it is rigid at order five. More
recently, about 100 years ago [14], Fubini showed that in dimensions greater than
one, quadric hypersurfaces are rigid at order three, i.e., characterized by a third
order system of PDE.

A vast generalization of Theorem 3.2 was obtained by Hwang and Yamaguchi:

Theorem 3.3 ([20]). Let X ⊂ PV be an irreducible homogeneously embedded CHSS,
other than a quadric hypersurface or projective space, with osculating sequence of
length f . Then X is rigid at order f .

See §7.1 for the definition of the osculating sequence.
Even more exciting than the theorem of Hwang and Yamaguchi are the methods

they used to prove it. More on this in §6.4.
If one changes the hypotheses slightly, one gets a second order result:

Corollary 3.4 ([28]). Let X ⊂ PV be a cominuscule variety, other than a quadric
hypersurface. Let Y ⊂ PW be an unknown variety such that dim 〈Y 〉 = dimV , and
such that for y ∈ Ygeneral, IIY,y = IIX . Then Y is projectively equivalent to X.

The proof of this result uses two facts: that the higher fundamental forms of
cominuscule varieties are the (full) prolongations of the second, and that any variety
with such fundamental forms must be the homogeneous model (which follows from
Theorem 3.3). See [28] for details.
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3.4. Rigidity and flexibility of adjoint varieties. For the adjoint varieties,
it is easy to see that order two rigidity fails (see [33]), even though they have
osculating sequence of length two. These lectures will be centered around the proof
of the following theorem:

Theorem 3.5 ([24]). For simple groups G, the adjoint varieties Xad
G ⊂ Pg (other

than G = A1) are rigid at order three.

In the case G = A1, Xad
A1

= v2(P1), which Monge showed to be rigid at order
five but not four.

Robles and I originally wrote a “brute force” proof of this theorem in December
2006, although we had been attempting to use the methods of Hwang and Yama-
guchi. Finally, when A. Cǎp visited us in June 2007, in what can only be described
as an incredible synchronicity, we made the breakthrough needed, in parallel with
Cǎp making a breakthrough in his work on BGG operators with maximal kernel. In
§8 I describe the methods, which involve a reduction to a Lie algebra cohomology
calculation, and which should be useful for other EDS questions. I conclude this
section with the description of a result that was obtained using traditional EDS
techniques:

The adjoint varieties are the homogeneous models for certain parabolic geometries,
a much discussed topic at this conference. In particular they are equipped with an
intrinsic geometry that includes a holomorphic contact structure. All the intrinsic
geometry is visible at order two (including the distinguished hyperplane) except
for the contact structure. This inspires the modified question:

Assume Z ⊂ PV is such that at z ∈ Zgeneral we have IIZ,z = IIX
ad
G and the

resulting hyperplane distribution is contact, can we conclude Z ' Xad
G ? Of course

for G = A1, we know the answer is no, thanks to Monge.

Theorem 3.6 ([24]). If G 6= A1, A2, then YES! If G = SL3 = A2, then NO!; there
exist “functions worth” of impostors.

Remark 3.7. Although the results are formulated in the holomorphic category,
the exact same result holds in the real analytic category.

The second conclusion has interesting consequences for geometry. A 3-manifoldM
equipped with a contact distribution which has two distinguished line sub-bundles is
the path space for a path geometry in the plane. Such structures have two “curvature”
functions, call them J1, J2, which are differential invariants that measure the
difference between M and the homogeneous model, which is Xad

SL3
= Flag1,2(C3).

This geometry has been well studied by many authors, including E. Cartan [10].
For example, if J1 ≡ 0, then the paths are the geodesics of a projective connection.
See [21], Chapter 8 for more.

Theorem 3.8 ([24]). The general impostor above has J1, J2 nonzero, although
they do satisfy differential relations.

This is interesting because it is difficult to come up with natural restrictions on
the invariants J1, J2 short of imposing that one or the other is zero. A classical
analog of this situation, where the condition of being extrinsically realizable gives
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rise to a natural system of PDE, is the set of surfaces equipped with Riemannian
metrics that admit a local isometric immersion into Euclidean 3-space such that
the image is a minimal surface. Ricci discovered that for this to happen, the Gauss
curvature K of the Riemannian metric of the surface must satisfy the PDE

∆log (−K) = 4K

where ∆ is the Riemannian Laplacian. See [11, 21] for details.

4. From PDE to EDS

Exercise: show that any system of PDE can be expressed as a first order system.
(Hint: add variables.) Thus we only discuss first order systems. We want to study
them from a geometric perspective, that of submanifold geometry.

Let Rn have coordinates (x1 . . . xn) = (xi) and Rm coordinates (u1 . . . um) =
(ua), let

(4.1) F r(xi, ua, pai ) = 0 1 ≤ r ≤ R

be a system of equations in n+m+ nm unknowns. We view this as a system of
PDE by stating that a map

f : Rn → Rm

x 7→ u = f(x)

is a solution of the system determined by (4.1) if (4.1) holds when we set ua = fa(x)
and pai = ∂ua

∂xi .
To rephrase slightly, let J1(Rn,Rm) := Rn × Rm × Rnm have coordinates

(xi, ua, pai ). Consider the differential forms

θa := dua − pai dxi ∈ Ω1(J1(Rn,Rm)
)

1 ≤ a ≤ m.

Then we have the following correspondences:

Graphs of maps f : Rn → Rm, ↔ immersions i : Mn → J1(Rn,Rm)
Γf ⊂ Rn × Rm such that i∗(θa) = 0

and i∗(dx1 ∧ · · · ∧ dxn) is nonvanishing.

Graphs of maps f : Rn → Rm, immersions i : Mn → Σ ⊂ J1(Rn,Rm)
Γf ⊂ Rn × Rm satisfying ↔ such that i∗(θa) = 0

the PDE system determined and i∗(dx1 ∧ · · · ∧ dxn)
by(4.1) is nonvanishing, where Σ is the zero set

of (4.1).

Now we are ready for EDS:

Definition 4.2. A Pfaffian EDS with independence condition on a manifold Σ is
a sequence of sub-bundles I ⊂ J ⊆ T ∗Σ. Write n = rank (J/I).

An integral manifold of (I, J) is an immersed n-dimensional submanifold i : M → Σ
such that i∗(I) = 0 and i∗(J/I) = T ∗M .
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In the motivating example we had I = {θa} and J = {θa, dxi}.
Thus we have transformed questions about the existence of solutions to a system

of PDE to questions about the existence of submanifolds tangent to a distribution.
We next show how to determine existence. But first, here are a few successes of

EDS:
– Determination of existence of local isometric embeddings of (analytic) Rie-

mannian manifolds into Euclidean space and other space forms (e.g., Cartan-Ja-
net theorem), see, e.g., [1, 6].

– Proving the existence of Riemannian manifolds with holonomy G2 and Spin7
(Bryant [4]).

– Rigidity/flexibility of Schubert varieties in Grassmannians and other symme-
tric spaces (Bryant [5]).

– Proving existence of special Lagrangian and other calibrated submanifolds
(Harvey and Lawson, [16]).

5. The Cartan algorithm to determine local existence of integral
manifolds to an EDS

The essence of the Cartan algorithm is to systematically understand the ad-
ditional conditions imposed by a system of PDE by the fact that mixed partial
derivatives commute. In the language of differential forms, this is the statement

i∗(θ) = 0 V i∗(dθ) = 0 ∀θ ∈ I .
For example, in §4, i∗(dθ) = 0 forces ∂pai /∂xj = ∂paj /∂x

i. On integral manifolds
pai = ∂ua/∂xi.

5.1. Linear Pfaffian systems. Among Pfaffian systems, there are those where
the set of integral elements through a point forms an affine space, the linear systems.

Definition 5.1. A Pfaffian EDS is linear if the map
I → Λ2(T ∗Σ/J)

θ 7→ dθ mod J

is zero.

To simplify the exposition we will restrict to linear Pfaffian systems. (This is
theoretically no loss of generality, see [21], Chapter 5.)

Although some of the theory is valid in the C∞ category (see, e.g., [48]), we will
work in the real or complex analytic category where the theory works best, and in
the applications of this paper, we will actually work in the holomorphic category.
In particular, it makes sense to talk of a general point of an analytic manifold,
where general is with respect to the EDS on it (e.g., points where the system does
not drop rank, where the derivatives of the forms in the system don’t drop rank,
etc.)

Fix x ∈ Σgeneral. To determine the integral manifolds through x we work
infinitesimally and reduce to problems in linear algebra (as one does with most
problems in mathematics).



EDS, LIE ALGEBRA COHOMOLOGY, AND RIGIDITY 431

Definition 5.2. An n-plane E ⊂ TxΣ is called an integral element if θx |E= 0 and
dθx |E= 0 for all θ ∈ I.

Let V(I)x ⊂ G(n, TxΣ) denote the set of all integral elements at x. As remarked
above, if (I, J) is linear, then V(I)x is an affine space. Set

V = (J/I)∗x
W = I∗x .

Fix a splitting T ∗xΣ = Jx⊕ Jcx and define a bundle map

W ∗ → Λ2V

θx 7→ dθx mod I, Jc

we may consider this map as a tensor T ∈W ⊗Λ2V ∗, which we call the apparent
torsion of (I, J) at x. Since the apparent torsion changes if we change the splitting,
we instead consider

(5.3) [T ] ∈W ⊗Λ2V ∗/ ∼

called the torsion of the system at x, which is well defined. The equivalence ∼ is
precisely over the different choices of splittings and is made explicit in (5.5) below.

Since on the one hand we are requiring I to vanish on integral elements but
J/I to be of maximal rank, if [T ] 6= 0, there are no integral elements over x, i.e.,
V(I)x = ∅. If this is the case, we start over on the submanifold (analytic subvariety)
Σ′ ⊂ Σ defined by [T ] = 0.

Now consider the bundle map given by exterior differentiation, θ 7→ dθ mod I,
a component of which is I → (T ∗Σ/J)⊗ J . Pointwise this is a linear map W ∗ →
(T ∗Σ/J)x⊗V ∗, which we may consider as a linear map (T ∗Σ/J)∗x →W ⊗V ∗. Let

A ⊂W ⊗V ∗

denote the image of this map at x, which is called the tableau of (I, J) at x. For
linear Pfaffian systems A corresponds to V(I)x, where we transform the affine space
to a linear space by picking a base integral element θax = πεx = 0, where the θax give
a basis of Ix and πεx give a basis for a choice of Jcx. The quantity dimA gives us an
answer to the infinitesimal version of the question: How many integral manifolds of
(I, J) pass through x ?

Example 5.4. Say J = T ∗Σ, which is the situation of the Frobenius theorem.
Then the tableau A is zero, which corresponds to the uniqueness part of the theorem.
There exist integral manifolds if and only if T = [T ] = 0.

We may think of the tableau A as parametrizing the choices of admissible first
order terms in the Taylor series of an integral manifold at x expressed in terms of a
graph. From this perspective, the next question is: What are the admissible second
order terms in the Taylor series? At the risk of being repetitive, the condition to
check is that: Mixed partials commute!
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5.2. Prolongations and the Cartan-Kähler theorem. Let

δ : W ⊗V ∗⊗V ∗ →W ⊗Λ2V ∗

denote the skew-symmetrization map. Define

A(1) := ker δ |A⊗V ∗= (A⊗V ∗) ∩ (W ⊗S2V ∗)

the prolongation of A. We may think of A(1) as parametrizing the admissible second
order terms in the Taylor series.

At this point we can make explicit the equivalence in (5.3). It is

(5.5) [T ] ∈W ⊗Λ2V ∗/δ(A⊗V ∗)

Now we know how to determine the admissible third order Taylor terms etc.,
but should we keep going on forever? When can we stop working? The answer is
given by the following theorem:

Theorem 5.6 (Cartan, Cartan-Kähler (see, e.g., [6, 21])). Let (I, J) be an analytic
linear Pfaffian system on Σ, let x ∈ Σgeneral. Assume [T ]x = 0. Choose an A-generic
flag V ∗ = V 0 ⊃ V 1 ⊃ · · · ⊃ V n−1 ⊃ 0. Let Aj := A ∩ (W ⊗V j). Then

dimA(1) ≤ dimA+ dimA1 + · · ·+ dimAn−1 .

If equality holds then we say (I, J) is involutive at x and then there exist local
integral manifolds through x that depend roughly on dim (Ar/Ar−1) functions of r
variables, where r is the unique integer such that Ar−1 6= Ar = Ar+1.

5.3. Flowchart and exercises. Here Ω ∈ Λn(J/I) encodes the independence
condition:

Rename Σ′ as Σ -

Input:
linear Pfaffian system

(I, J) on Σ;
calculate dI mod I

�

“Prolong”, i.e., start over
on a larger space Σ̃;

rename Σ̃ as Σ
and new system as (I, J)

6

N
�

�
��

�
�

��

Q
Q
QQ

Q
Q
QQ

Is Σ′ empty?

?
�

�
��

�
�

��

Q
Q
QQ

Q
Q
QQ

Is [T ] = 0? -Y

6
N

�
�
�

��
�

�
�

��

Q
Q
Q
QQ

Q
Q
Q
QQ

Is tableau
involutive?

?

Y

Done:
there are no

integral manifolds

?
N

Restrict to Σ′ ⊂ Σ
defined by [T ] = 0

and Ω |Σ′ 6= 0

Q
Q
Q

Q
QQk

?

Y

Done:
local existence of
integral manifolds

Exercises 5.7:
Set up the EDS and perform the Cartan algorithm in the following problems:
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1. The Cauchy-Riemann equations ux = vy, uy = −vx. (Work on a codimension
two submanifold of J1(R2,R2).)
2. Find all surfaces M2 ⊂ E3 such that every point is an umbillic point.
3. Determine the local existence of special Lagrangian submanifolds of R2n ' Cn.
4. (For the more ambitious.) Pick your favorite G ⊂ SO(p, q) and determine local
existence of pseudo-Riemannian manifolds with holonomy ⊆ G.
5. After you read §6, show that Seg(P2 × P2) ⊂ P8 is rigid to order two. Then roll
up your sleeves to show that Seg(P1 × Pn) is flexible at order two.

5.4. For fans of bases. Here is a recap in bases: take a local coframing of Σ
adapted to the flag I ⊂ J ⊂ T ∗Σ, i.e., write I = {θa}, 1 ≤ a ≤ rank I, J = {θa, ωi},
1 ≤ i ≤ rank (J/I), T ∗Σ = {θa, ωi, πε}, 1 ≤ ε ≤ rank (T ∗Σ/J). Then there exist
functions A, ...,H such that

dθa = Aaεiπ
ε ∧ ωi + T aijω

i ∧ ωj + Eaε,δπ
ε ∧ πδ

+ F abiθ
b ∧ ωi +Gabεθ

b ∧ πε +Ha
bcθ

b ∧ θc .
Since we only care about dθa mod I we ignore the second row. The system is linear
iff Eaεδ = 0. The apparent torsion is T = T aijv

i ∧ vj ⊗wa ∈ Λ2V ∗⊗W . The tableau
is

A = {Aaεivi⊗wa | 1 ≤ ε ≤ rank (T ∗Σ/J)} ⊂ V ∗⊗W .

The torsion is
[T ] = T aijwa⊗ vi ∧ vj mod

{
(Aajεeεi −Aaiεeεj)wa⊗ vi ∧ vj | eεj ∈ F

}
∈W ⊗Λ2V ∗/δ(A⊗V ∗) .

Here F = R or C.

6. Moving frames for submanifolds of projective space

Let U = CN+1. Let G ⊆ GL(U) have Maurer-Cartan form ωg ∈ Ω1(G, g). Recall
that the Maurer-Cartan form has the following properties:

– left invariance: L∗gω = ω where Lg : G→ G is the map a 7→ ga.
– ωId : TIdG→ g is the identity map
– dω = −ω ∧ ω or equivalently, dω = − 1

2 [ω, ω] (Maurer-Cartan equation)
(Here [ω, η](v, w) := [ω(v), η(w)]− [ω(w), η(v)].)

6.1. Adapted frame bundles. We want to study the geometry of submanifolds
Y ⊂ PU from the perspective of Klein, that is we consider Y ∼ Z if there exists
g ∈ GL(U) such that g.Y = Z. In order to efficiently incorporate the group action,
we will work “upstairs” on GL(U). Consider the projection map

π : GL(U)→ PU

(e0 . . . eN ) 7→ [e0]
where we view the ej as column vectors. Fixing a reference basis, we may identify
GL(U) with the set of all bases of U . We will restrict ourselves to submanifolds of
GL(U) consisting of bases adapted to the local differential geometry of Y ⊂ PU .
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First, consider F0
Y := π−1(Y ), the 0-th order adapted frames (bases). Let n = dimY .

Next consider
F1
Y :=

{
f = (e0 . . . eN ) ∈ F0

Y | T̂[e0]Y = {e0 . . . en}
}

the frames adapted to the flag x̂ ⊂ T̂xY ⊂ U over each point, called the first
order adapted frame bundle. Write L = x̂, T = T̂xY/x̂, N = U/T̂xY . Adopt
index ranges 1 ≤ α, β ≤ n = dimTxY , n + 1 ≤ µ, ν ≤ dimU − 1. Write
gl(U) = (L⊕T ⊕N)∗⊗ (L⊕T ⊕N) and let, for example, ωL∗⊗T denote the
component of ω taking values in L∗⊗T ⊂ U∗⊗U = gl(U). Write

(6.1) ωgl(U) =

ω0
0 ω0

β ω0
ν

ωα0 ωαβ ωαν
ωµ0 ωµβ ωµν

 =

ωL∗⊗L ωT∗⊗L ωN∗⊗L
ωL∗⊗T ωT∗⊗T ωN∗⊗T
ωL∗⊗N ωT∗⊗N ωN∗⊗N

 .

Write i : F1
Y → GL(U) as the inclusion. We have i∗(ωµ0 ) = i∗(ωL∗⊗N ) = 0. (Note

that at each f ∈ F1
Y we actually have a splitting U = L⊕T ⊕N .)

6.2. Fubini Forms. Now anytime you ever see a quantity equal to zero, Differen-
tiate it! We have

i∗(ωµ0 ) = 0V i∗(dωµ0 ) = 0
which, using the Maurer-Cartan equation tells us that

i∗(ωµα ∧ ωα0 ) = 0
(note use of summation convention). We are assuming that the forms i∗(ωα0 ) are
linearly independent (as they span the pullback of T ∗Y by our choice of adaptation)
so we must have

i∗(ωµα) = qµαβi
∗(ωβ0 )

for some functions qµαβ : F1
Y → C. Moreover (exercise) qµαβ = qµβα for all α, β (this

is often called the Cartan Lemma). The functions qµαβ vary on the fiber, but they
do contain geometric information. If we form the tensor field

F2 := qµαβω
α
0 ◦ ω

β
0 ⊗ e0⊗ (eµ mod T̂xY ) ∈ Γ

(
F1
Y , π

∗(S2T ∗Y ⊗NY )
)

a short calculation shows that F2 is constant on the fibers, i.e. F2 = π∗(II) for some
tensor II ∈ Γ(Y, S2T ∗Y ⊗NY ). II is indeed the projective second fundamental
form defined as the derivative of the Gauss map in §3.

Unlike with the case of the Gauss map, where it was not clear how to continue,
here it is - we have a quantity equal to zero: ωµα − q

µ
αβω

β
0 so we differentiate it!

(From now on we drop the i∗ when describing pullbacks of differential forms to
simplify notation.) The result is that there exist functions

rµαβγ : F1
Y → C

such that
−dqµαβ − q

µ
αβω

0
0 − qναβωµν + qµαεω

ε
β + qµβεω

ε
α = rµαβγω

γ
0

which gives rise to a tensor field
F3 ∈ Γ

(
F1
Y , π

∗(S3T ∗Y ⊗NY )
)
.
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This tensor, called the Fubini cubic form does not descend to be well defined on Y ,
but it does contain important geometric information.

6.3. Second order Fubini systems. Fix vector spaces L, T,N of dimensions
1, n, a and fix an element F2 ∈ S2T ∗⊗N ⊗L. Let U = L⊕T ⊕N , and let
ω ∈ Ω1(GL(U), gl(U)

)
denote the Maurer-Cartan form.

Writing the Maurer-Cartan equation component-wise yields, for example,

dωL∗⊗T = −ωL∗⊗T ∧ ωL∗⊗L − ωT∗⊗T ∧ ωL∗⊗T − ωN∗⊗T ∧ ωL∗⊗N .

Given F2 ∈ L⊗S2T ∗⊗N , the second order Fubini system for F2 is

IFub2 =
{
ωL∗⊗N , ωT∗⊗N − F2(ωL∗⊗T )

}
, JFub2 = {IFub2 , ωL∗⊗T } .

Its integral manifolds are submanifolds F2 ⊂ GL(U) that are adapted frame
bundles of submanifolds X ⊂ PU having the property that at each point x ∈ X, the
projective second fundamental form F2,X,x is equivalent to F2. (The tautological
system for frame bundles of arbitrary n dimensional submanifolds is given by
I = {ωL∗⊗N}, J = {I, ωL∗⊗T }.)

Let R ⊂ GL(L)×GL(T )×GL(N) denote the subgroup stabilizing F2 and let

r ⊂ (L∗⊗L)⊕ (T ∗⊗T )⊕ (N∗⊗N) =: gl(U)0,∗

denote its subalgebra. These are the elements of gl(U)0,∗ annihilating F2. (The
motivation for the notation gl(U)0,∗ is explained in §7.1.) Assume r is reductive so
that we may decompose gl(U)0,∗ = r⊕ r⊥ as an r-module.

In the case of homogeneous varieties G/P , F2 ∈ S2T ∗⊗N ⊗L will correspond
to a trivial representation of the Levi factor of P , which we denote G0. For example,
let G/P = G(2,M) ⊂ PΛ2M be the Grassmannian of 2-planes. Then R = G0 =
GL(E)×GL(F ), T = E∗⊗F , N = Λ2E∗⊗Λ2F , and we have the decomposition
S2T ∗ = (Λ2E⊗Λ2F ∗)⊕ (S2E⊗S2F ), and F2 ∈ S2T ∗⊗N corresponds to the
trivial representation in (Λ2E⊗Λ2F ∗)⊗ (Λ2E⊗Λ2F ∗)∗.

In the notation of §5,

V ' L∗⊗T , W ' (L∗⊗N)⊕ (T ∗⊗N) , A ' r⊥ ,

with L∗⊗N ⊂W in the first derived system. That r⊥ ⊂ V ∗⊗W may be seen as
follows

d
(
ωT∗⊗N − F2(ωL∗⊗T )

)
= − ωT∗⊗L ∧ ωL∗⊗N − ωT∗⊗T ∧ ωT∗⊗N
− ωT∗⊗N ∧ ωN∗⊗N + F2(ωL∗⊗L ∧ ωL∗⊗T )
+ F2(ωL∗⊗T ∧ ωT∗⊗T + ωL∗⊗N ∧ ωN∗⊗T )
≡ − ωT∗⊗T ∧ F2(ωL∗⊗T ) − F2(ωL∗⊗T ) ∧ ωN∗⊗N(6.2)
− F2(−ωL∗⊗L ∧ ωL∗⊗T − ωL∗⊗T ∧ ωT∗⊗T ) mod I

≡ (ω0,∗ · F2) ∧ ωL∗⊗T mod I

≡ (ωr⊥ · F2) ∧ ωL∗⊗T mod I .
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To understand the last two lines, ω0,∗ ·F2 denotes the action of the gl(U)0,∗-valued
component ω0,∗ of the Maurer-Cartan form on F2 ∈ S2T ∗⊗N . Recall that r is the
annihilator of this action. By definition ω0,∗ · F2 = (ωr + ωr⊥) · F2 = ωr⊥ · F2.

For the Cartan algorithm we need to calculate A(1) = ker δ where

δ : r⊥⊗V ∗ →W ⊗Λ2V ∗ .

One can check directly that A is never involutive for any F2 system. (One has not
yet uncovered all commutation relations among mixed partials. This is essentially
because we have yet to look at the entire Maurer-Cartan form).

Thus we need to prolong, introducing elements of A(1) as new variables and
differential forms to force variables representing the elements of A(1) to behave
properly, just as the θa’s forced the pai ’s to be derivatives in §4.

Before doing so, we simplify our calculations by exploiting the group action
to normalize A(1) ∼ F3 as much as possible. Write gl(U)1,∗ := T ∗⊗L + N∗⊗T .
Consider the linear map

δ : gl(U)1,∗ → (L∗⊗T )⊗ r⊥ = V ∗⊗A

defined as the transpose of the Lie bracket

[ , ] : gl(U)1,∗ × L⊗T ∗ → r⊥ ⊂ gl(U)0,∗ .

Now L⊗T ∗ ⊂ gl(U)−1·∗ := gl(U)∗1·∗. Then we define

A
(1)
red := ker δ : A⊗V ∗ →W ⊗Λ2V ∗

Image δ : gl(U)1,∗ → A⊗V ∗
.

One can calculate directly, that if X is a rank 2 CHSS in its minimal homogeneous
embedding (other than a quadric or P1 × Pm) and F 2 = IIX , then A

(1)
red = 0. In

these cases, we begin again with a new system

Ĩ := {I, ωr⊥}

on GL(U). Again, one can check that Ã is never involutive, but that Ãred
(1) = 0.

Finally, one defines
˜̃I = {Ĩ , ωr⊥}

which turns out to be Frobenius in the case of rank 2 CHSS, i.e. ˜̃A(1) = 0, which
implies rigidity.

6.4. An easier path to rigidity? A better way to obtain the same conclusion is
to observe that A(1)

red looks like the graded Lie algebra cohomology group H1
1 (g−, g⊥)

defined in §8. In the CHSS case, it indeed is this cohomology group, but in all
other cases it is not. In the next few sections we will see that the correspondence is
exact in the CHSS case, and how it fails in all other cases - it fails in two ways, but
none the less, with the introduction of certain filtered EDS, the use of Lie algebra
cohomology can be recovered.
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7. Osculating gradings and root gradings

As mentioned above, for homogeneously embedded CHSS, the osculating filtra-
tion and a filtration induced by the Lie algebra coincide, but that these two differ
for all other homogeneous varieties. In this section we explain the two filtrations.

7.1. The osculating filtration. Given a submanifold X ⊂ PU , and x ∈ X, the
osculating filtration at x

U0 ⊂ U1 ⊂ · · · ⊂ Ur = U

is defined by

U0 = x̂ ,

U1 = T̂xX ,

U2 = U1 + F2(L∗⊗S2TxX)
...

Ur = Ur−1 + Fr(L∗ ⊗ (r−1)⊗SrTxX) .

We may reduce the frame bundle F1
X to framings adapted to the osculating

sequence by restricting to e = (e0, eα, eµ2 , . . . , eµf ) ∈ F1
X such that [e0] ∈ X,

T̂[e0]X = span {e0, eα} and Uk = span {e0, eα, eµ2 , . . . , eµk}. (The indices α and µj
respectively range over 1, . . . , n and dim Uj−1 + 1, . . . ,dim Uj .) From now on we
work on this reduced frame-bundle, denoted FrX ⊂ F1

X .
At each point of FrX we obtain a splitting of U . This induces a splitting

gl(U) = ⊕gl(U)k,∗ .

(The asterisk above is a place holder for a second splitting given by the representa-
tion theory when X = G/P that we define in §7.2.)

The osculating filtration of U determines a refinement of the Fubini forms.
Let L = U0. Let Nk = Uk/Uk−1 and define Fk,s : N∗k → L⊗ (s−1)⊗SsT ∗xX by
restricting Fs ∈ Nk ∗ ⊗L∗⊗ (s−1)⊗SsTxX to N∗k . Although the Fubini forms do
not descend to well-defined tensors on X, the fundamental forms Fk,k do. By
construction, Fk,k : L∗⊗ (k−1)⊗SkTxX → Nk,xX is surjective.

7.2. The root grading. Let g̃ be a complex semi-simple Lie algebra with a fixed
set of simple roots {α1 . . . αr}, and corresponding fundamental weights {ω1, . . . , ωr}.
Let I ⊂ {1, . . . , r}, and consider the irreducible representation µ : g̃→ gl(U) of
highest weight λ =

∑
i∈I λ

iωi. Set g = µ(g̃), and let µ(G) ⊂ GL(U) be the
associated Lie group so that G/P ⊂ PU is the orbit of a highest weight line. Write
P = PI ⊂ G for the parabolic subgroup obtained by deleting negative root spaces
corresponding to roots having a nonzero coefficient on any of the simple roots αi,
i ∈ I.

Since g̃ is reductive, we have a splitting gl(U) = g⊕ g⊥, where g⊥ is the
g̃-submodule of gl(U) complementary to g. Let ω ∈ Ω1(GL(U), gl(U)

)
denote the
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Maurer-Cartan form of GL(U), and let ωg and ωg⊥ denote the components of ω
taking values in g and g⊥, respectively.

The bundle F1
G/P admits a reduction to a bundle FGG/P = µ(G). On this

bundle the Maurer-Cartan form pulls-back to take values in g, that is, ωg⊥ = 0.
Conversely, all dim (G) dimensional integral manifolds of the system I = {ωg⊥}
are left translates of µ(G).

Let Z = ZI ⊂ t be the grading element corresponding to
∑
is∈I αis . The grading

element Zi for a simple root αi has the property that Zi(αj) = δij . In general
Z =

∑
is∈I Zis . Thus, if (c−1) denotes the inverse of the Cartan matrix , then given

a weight ν =
∑
νjωj ,

(7.1) Z(ν) =
∑

1≤j≤r
is∈I

νj(c−1)j,is .

The grading element induces a Z-grading of g = ⊕k−kgk. To determine k in the case
P = Pαi is a maximal parabolic, let α̃ =

∑
mjαj denote the highest root, then

k = mi.
The module U inherits a Z-grading

U = UZ(λ)⊕UZ(λ)−1⊕ · · · ⊕UZ(λ)−f .

The Uj are eigen-spaces for Z. This grading is compatible with the action of g̃:
µ(g̃i) ·Uj ⊂ Ui+j . We adopt the notational convention of shifting the grading on U
to begin at zero. The component U0 (formally named UZ(λ)) is one dimensional,
and corresponds to the highest weight line of U , and G · PU0 = G/P ⊂ PU . (The
labeling of the grading on gl(U) = U∗⊗U is independent of our shift convention.)

Note, in particular, that the vector space T̂[Id](G/P )/Îd ' g/p is graded from
−1 to −k. The osculating grading on U induces gradings of gl(U), g and g⊥. In
Examples 7.3 and 7.4 the summands in TxG/P appearing are in order from −1 to
−k

We write
gl(U) =

⊕
s,j

gl(U)s,j

where the first index refers to the osculating grading (§7.1) induced by G/P ⊂ PU
and the second the root grading. We adopt the notational convention

gl(U)j =
⊕
s

gl(U)s,j ;

so if there is only one index, it refers to the root grading. Note that the grading of
gl(U) is indexed by integers −f, ..., f .

7.3. Examples of tangent spaces and osculating filtrations of homoge-
neous varieties.

Example 7.2. Consider G(k, V ) ⊂ PΛkV = PU . Fix E ∈ G(k, V ). Then the
osculating sequence is
U0 = ΛkE ⊂ (Λk−1E ∧V ) ⊂ (Λk−2E ∧Λ2V ) ⊂ · · · ⊂ (Λ1E ∧Λk−1V ) ⊂ ΛkV = U.
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Remark. The only nonzero Fubini forms of a homogeneously embedded CHSS are
the fundamental forms. For the adjoint varieties, the only nonzero Fubini forms
are F2,2, F2,3, F2,4.

One definition of G/P ⊂ PV being cominuscule is that TId(G/P ) is an irreducible
P -module. Here are some examples describing tangent spaces and osculating
sequences of non-cominuscule varieties.

Example 7.3. For orthogonal Grassmannians GQ(k, V ) ⊂ PΛkV (assume k <
1
2 dimV ), (

TE(GQ(k, V ))
)
−1 = E∗⊗ (E⊥/E)(

TE(GQ(k, V ))
)
−2 = Λ2E∗ ,

where the ⊥ refers to the Q-orthogonal complement, gr to the associated graded
vector space of the filtered vector space TEGQ(k, V ). Note that E ⊂ E⊥ because
E is isotropic.

Example 7.4. For the 89 dimensional variety (E8/P3) ⊂ PVω3 = P6696999

T−1 = U ⊗Λ2W

T−2 = Λ4W

T−3 = U ⊗Λ6W

T−4 = W

where U = C2 is the standard representation of A1 and W = C7, the standard
representation of A6.

Remark. For those familiar with Dynkin diagrams, it is possible to obtain T−1
and T−f pictorially, where T−f is the last summand. For simplicity assume P is
maximal, take the Dynkin diagram for g, delete the node for P , and mark the
adjacent nodes with the multiplicity of the bond assuming an arrow points towards
the marked note, otherwise just mark with multiplicity one.

◦ ◦ ◦ ◦ ◦��
@@

◦

◦
X = GQ(4, 12)

• =⇒ ◦ ◦ • •��
@@

◦

◦
T−1 = C4⊗Λ2C4

The last filtrand, T−f is obtained by marking the node(s) associated to the
adjoint representation of g and taking the dual module in the new diagram. These
coincide iff G/P is CHSS.

7.3.1. Symplectic Grassmannians. Here is the full osculating sequence and some
details for the symplectic Grassmannians taken from [33] (where many other cases
with P maximal may be found as well):

Let Gω(k, 2n) = Cn/Pk denote the Grassmannian of k-planes isotropic for a
symplectic form. Its minimal embedding is to Vωk = Λ〈k〉V = ΛkV/(Ω∧Λk−2V ), the
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k-th reduced exterior power of V = C2n, where Ω ∈ Λ2V denotes the symplectic
form on V ∗ induced from ω ∈ Λ2V ∗.

Let E ∈ Gω(k, V ) and write U = E⊥/E. A straightforward computation shows
that Vωk has the following decomposition as an H = SL(E)× Sp(U)-module:

Vωk = Λ〈k〉V =
⊕
a,b

ΛbE∗⊗Λa+bE∗⊗Λ〈a〉U .

(Here dimE = k and dimU = 2n− 2k.) Note that U is endowed with a symplectic
form induced by the symplectic form on V = C2n.

Proposition 7.5 ([33]). Let E ∈ Gω(k, 2n), let E⊥ ⊃ E denote the Ω-orthogonal
complement to E and let U = E⊥/E. Then the tangent space and normal spaces
of Gω(k, 2n) are, as G0-modules,

T−1 = E∗⊗U ,
T−2 = S2E∗ ,

N2,−2 = Λ2E∗⊗Λ〈2〉U ,
N2,−3 = S21E

∗⊗U ,
N2,−4 = S22E

∗ ,

Np,∗ =
⊕

a+b+c=p
Λ〈a〉U ⊗S2b−c1a+2cE∗

=
⊕
d+e=p

ΛdU ⊗S2e1dE
∗ .

SπE is the irreducible GL(E) module associated to the partition π. (Here S2a1bE
corresponds to the partition with a 2’s and b 1’s.) In particular, the length of the
osculating sequence is equal to k+ 1, the last non zero term being Nk ' Λk(C⊕U).

Corollary 7.6 ([33]).

B
(
IIGω(k,2n),E

)
= P{e⊗u⊕ e2 | e ∈ E∗\{0}, u ∈ U\{0}} .

This set of asymptotic directions contains an open dense P -orbit, the boundary of
which is the union of the two (disjoint) closed H-orbits

Y1 ' Pk−1 × P2n−2k−1 ⊂ P(T−1) and Y2 ' v2(Pk−1) ⊂ P(T−2) .

7.3.2. The bigrading for adjoint varieties. For adjoint varieties, TxXad
G has a two

step filtration, with the hyperplane being the first filtrand, and the osculating
sequence is simply x̂ ⊂ T̂ ⊂ U . The induced bi-grading on gl(U)osc,alg is indicated
in the table below.
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x̂∗ T−1
∗ T−2

∗ N−2
∗ N−3

∗ N−4
∗

x̂ (0,0) (-1,1) (-1,2) (-2,2) (-2,3) (-2,4)
T−1 (1,-1) (0,0) (0,1) (-1,1) (-1,2) (-1,3)
T−2 (1,-2) (0,-1) (0,0) (-1,0) (-1,1) (-1,2)
N−2 (2,-2) (1,-1) (1,0) (0,0) (0,1) (0,2)
N−3 (2,-3) (1,-2) (1,-1) (0,-1) (0,0) (0,1)
N−4 (2,-4) (1,-3) (1,-2) (0,-2) (0,-1) (0,0)

In all cases T−1, T−2 may be determined by the remark above (T−2 is the trivial
module as there is no node left to mark), and N−2 = I2(Y )∗, N−3 = I3

(
(τ(Y ))sing

)
and N−4 is trivial (corresponding to the quartic generating I4(τ(Y ))).

8. Lie algebra cohomology and Kostant’s theory

Let l be a Lie algebra and let Γ be an l-module. Define maps

∂j : Λj l∗⊗Γ→ Λj+1l∗⊗Γ

in the only natural way possible respecting the Leibniz rule. This gives rise to a
complex and we define Hk(l,Γ) := ker ∂k/Image ∂k−1. We will only have need of
∂0 and ∂1 which are defined explicitly as follows: if X ∈ Γ and v, w ∈ l, then

∂0(X)(v) = v ·X ,

and if α⊗X ∈ Λ1l∗⊗Γ, then

(8.1) ∂1(α⊗X)(v ∧ w) = α([v, w])X + α(v)w ·X − α(w)v ·X

Now let l be a graded Lie algebra and Γ a graded l-module. The chain complex
and Lie algebra cohomology groups inherit gradings as well. Explicitly,

∂1
d : ⊕i (l−i)∗⊗Γd−i → ⊕j≤m (l−j)∗ ∧ (l−m)∗⊗Γd−j−m .

Kostant [23] shows that under the following circumstances one can compute
Hk(l,Γ) combinatorially:

(1) l = n ⊂ p ⊂ g is the nilpotent subalgebra of a parabolic subalgebra of a
semi-simple Lie algebra g.

(2) Γ is a g-module.
Under these conditions, letting g0 ⊂ p be the (reductive) Levi factor of p,

Hj(n,Γ) is naturally a g0-module. Kostant shows that for any irreducible module
Γ it is essentially trivial to compute H1(n,Γ), one just examines certain simple
reflections in the Weyl group. However, in our situation, where we need to compute
H1(g, g⊥), there may be numerous components to g⊥, and moreover we would like
to avoid a case by case decomposition. Here the beauty of the grading element
comes in, because it is easy to prove that in many situations H1

d(g,Γ) is zero in
positive degree. This is well documented in [47, 20, 24] among other places.
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9. From the Fubini EDS to Filtered EDS

I now explain how we were led to work with filtered EDS in an effort to use Lie
algebra cohomology to determine rigidity of homogeneous varieties.

9.1. Problem 1: Osculating v.s. root gradings. As mentioned above, for
CHSS, the osculating grading coincides with the root grading, but for all other
homogeneously embedded homogeneous varieties this fails. Thus to have any hope
to exploit Lie algebra cohomology, we need to work with an EDS that respects the
root grading.

From now on we will work on SL(U) ⊂ GL(U) which will not change anything
regarding our study of rigidity of subvarieties of PU . Define the (Ip, Jp) system on
SL(U) by Ip = {ωg⊥≤p

}, Jp = {Ip, ωg−}.
In specific examples, after a short calculation, the k-th order Fubini system

can be shown to be strictly stronger than some (Ip, Jp) system (where of course p
depends on k). At the moment we have no general method of determining this, but
we do so uniformly for adjoint varieties in [24]. In summary, this problem is easy
to resolve in specific cases or even classes of cases, but work remains to resolve the
general case.

Here is the proof in the adjoint case:

Proposition 9.1. Every integral manifold of the third-order Fubini system (IFub3 ,
JFub3) for a given adjoint variety is an integral manifold of the (I−1, J−1) system
for the same adjoint variety.

Proof. Suppose that F ⊂ SL(U) is an integral manifold of third-order Fubini
system. We wish to show that the g⊥∗,<0–valued component of the Maurer-Cartan
form vanishes when pulled-back to F . That the g⊥>0,∗–valued component vanishes
is an immediate consequence of the injectivity of the second fundamental form F2
on each homogeneous component.

Referring to the table above, we see that there remain four blocks of the
component of the Maurer-Cartan form in g⊥∗,<0 to consider: the three (0,−1)
blocks ωT−2⊗T∗−1

, ωN−3⊗N∗−2
and ωN−4⊗N∗−3

; and the singleton (0,−2) block
ωN−4⊗N∗−2

. The third Fubini form is defined by (3.5) of [21, §3.5]. The vanishing
of the g⊥–component of the first two blocks is a consequence of the S3T ∗−1⊗N−3
component of F3. (This is the only nonzero component of F3.) The vanishing of the
g⊥-component of the third and fourth blocks is given by the S3T ∗⊗N−4-component
of F3. �

9.2. Problem 2: Even the systems defined by the root grading do not
lead to Lie algebra cohomology. For simplicity we take p = −1 and k = 2.
Notice that g⊥s = sl(U)s for all s ≤ −3. Abbreviate

ωsl(U)s =: ωs ,

so that ωg⊥s
= ωs, for all s ≤ −3. Thus

I−1 =
{
ωg⊥−1

, ωg⊥−2
, ω−3, . . . , ω−f

}
.
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The calculations that follow utilize the Maurer-Cartan equation (see §6), and
that [g, g] ⊂ g and [g, g⊥] ⊂ g⊥. It is easy to see that dωs ≡ 0 modulo I−1 when
s ≤ −3. Next, computing modulo I−1,

−dωg⊥−2
≡
[
ωg−2 , ωg⊥0

]
and

−dωg⊥−1
≡
[
ωg−2 , ωg⊥1

]
+
[
ωg−1 , ωg⊥0

]
.

In order for these two equations to be satisfied, on an integral element we must
have

ωg⊥0
= λ0,1(ωg−1) + λ0,2(ωg−2)(9.2)

ωg⊥1
= λ1,1(ωg−1) + λ1,2(ωg−2)(9.3)

for some λi,j ∈ g⊥i ⊗ g∗−j .
Consider the degree two homogeneous component δ2 of the Spencer differential

δ : A⊗V ∗ →W ⊗Λ2V ∗, where A = g⊥1 ⊕ g⊥0 , W = g⊥≤−1 (but we may and will
ignore the first derived system g⊥≤−3) V = g−1⊕ g−2:

δ2 : (g⊥1 ⊗ g∗−1)⊕ (g⊥0 ⊗ g∗−2)→ (g⊥−1⊗ g∗−1 ∧ g∗−2)⊕ (g⊥−2⊗ g∗−2 ∧ g∗−2)
λ1,1⊕λ0,2 7→

{
(u−1 ∧ v−2) 7→

[
λ1,1(u−1), v−2

]
+
[
u−1, λ0,2(v−2)

]
⊕ (x−2, y−2)7→

[
λ0,2(x−2), y−2

]
+
[
x−2, λ0,2(y−2)

]}
Here x−2 ∈ g−2 etc. This is exactly the Lie algebra cohomology differential ∂1

2 !
Now consider the degree one component δ1

δ1 : (g⊥0 ⊗ g∗−1)→ (g⊥−1⊗ g∗−1 ∧ g∗−1)⊕ (g⊥−2⊗ g∗−1 ∧ g∗−2)

λ0,1 7→
{

(u−1 ∧ v−1)⊕ (x−1, y−2)

7→
[
λ0,1(u−1), v−1

]
+
[
u−1, λ0,1(v−1)

]
⊕
[
λ0,1(x−1), y−2

]}
This fails to be the Lie algebra cohomology differential because we are “missing” a
term λ−1,2([u−1, v−2]) on the right hand side. One can try to “fix” this by adding
in such a term. At first this appears unnatural, but if one takes into account that
there is a natural filtration on our manifold, it is not unreasonable to weaken the
condition ωg⊥−1

= 0 to the condition ωg⊥−1
|T−1 = 0, i.e., ωg⊥−1

= λ−1,2(ωg−2) where
λ−1,2 ∈ g⊥−1⊗ g∗−2 at each point of our manifold.

We make this “fix” precise and natural with the introduction of filtered EDS:

9.3. The Fix for problem 2: Filtered EDS.

Definition 9.4. Let Σ be a manifold equipped with a filtration of its tangent
bundle T−1 ⊂ T−2 ⊂ · · · ⊂ T−f = TΣ. Define an r-filtered Pfaffian EDS on
Σ to be a filtered ideal I ⊂ T ∗Σ whose integral manifolds are the immersed
submanifolds i : M → Σ such that i∗(Iu)|i∗(Tu−r) = 0 for all u, with the convention
that T−s = TΣ when −s ≤ −f .
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Another way to view filtered EDS is to consider the ordinary EDS on the sum
of the bundles Iu ⊗ (TΣ/Tu+r). In our case these bundles will be trivial with fixed
vector spaces as models.

Define (I f
p,Ω) to be the (p + 1)-filtered EDS on GL(U) with filtered ideal

I f
p := ωg⊥≤p

and independence condition Ω given by the wedge product of the forms
in ωg− . We may view this as an ordinary EDS on

GL(U)×(
[g⊥p ⊗ (g−2⊕ · · · ⊕ g−k)∗]⊕ [g⊥p−1⊗ (g−3⊕ · · · ⊕ g−k)∗]⊕ · · ·⊕ [g⊥p−k+2⊗ g∗−k]

)
where, giving g⊥i ⊗ g∗−j linear coordinates λi,j , we have

I f
p =

{
ωg⊥s

, s ≤ p− k + 1; ωg⊥
p−k+2

− λp−k+2,k(ωg−k) ,(9.5)

ωg⊥
p−k+3

− λp−k+3,k(ωg−k)− λp−k+3,k−1(ωg−k+1) , . . .

ωg⊥p
− λp,k(ωg−k)− · · · − λp,2(ωg−2)

}
However, as is explained below, it is more natural to work in the category of filtered
EDS.

Returning to the p = −1, k = 2 system, the first derived system is ω≤−4.
Computing similarly to above, only now modulo I f

−1, we obtain

−dω−3 ≡
[
ωg−2 , ωg⊥−1

]
≡
[
ωg−2 , λ−1,2(ωg−2)

]
,(9.6)

−dωg⊥−2
≡
[
ωg−2 , ωg⊥0

]
+
[
ωg−1 , ωg⊥−1

]
+
[
ωg⊥−1

, ωg⊥−1

]
g⊥

(9.7)

≡
[
ωg−2 , ωg⊥0

]
+
[
ωg−1 , λ−1,2(ωg−2)

]
+
[
λ−1,2(ωg−2), λ−1,2(ωg−2)

]
g⊥
,

(9.8)

−d
(
ωg⊥−1

− λ−1,2(ωg−2)
)
≡
[
ωg−2 , ωg⊥1

]
+
[
ωg−1 , ωg⊥0

]
+
[
ωg⊥−1

, ωg0

]
+
[
ωg⊥−1

, ωg⊥0

]
g⊥

+ dλ−1,2(∧ωg−2)

− λ−1,2
([
ωg−2 , ωg0

]
+
[
ωg1

, ωg−1

]
+
[
ωg⊥−1

, ωg⊥−1

]
g

)
≡
[
ωg−2 , ωg⊥1

]
+
[
ωg−1 , ωg⊥0

]
+
[
λ−1,2(ωg−2), ωg0

]
+
[
λ−1,2(ωg−2), ωg⊥0

]
g⊥

+ dλ−1,2(∧ωg−2)

− λ−1,2
([
ωg−2 , ωg0

]
+
[
ωg−1 , ωg−1

]
+
[
λ−1,2(ωg−2), λ−1,2(ωg−2)

]
g

)
Here [·, ·]g (resp. [·, ·]g⊥) denotes the component of the bracket taking values in g

(resp. g⊥).
Note that if we were to view the filtered EDS as an ordinary EDS on SL(U)×

g⊥−1⊗ g∗−2, the term λ−1,2 is part of the torsion whereas here it is simply part of
the tableau of the filtered Spencer differential.
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The degree one homogeneous component of (9.6,9.7,9.8), is as follows: λ1 :=
⊕0
s=−1λs,1−s must be in the kernel of the map

δ1 : ⊕0
s=−1 (g⊥s ⊗ g∗−s−1)→ (g⊥−1⊗ g∗−1 ∧ g∗−1)⊕ (g⊥−2⊗ g∗−1 ∧ g∗−2)

defined as follows. Given u−1, v−1 ∈ g−1,
(9.9) δ1(λ1)(u−1 ∧ v−1) = [λ0,1(u−1), v−1] + [u−1, λ0,1(v−1)]− λ−1,2([u−1, v−1]).
For u−1 ∈ g−1, v−2 ∈ g−2

δ1(λ1)(u−1 ∧ v−2) = [λ0,1(u−1), v−2] + [u−1, λ−1,2(v−2)] .
That is, δ1 = ∂1

1 , where ∂1
1 is the Lie algebra cohomology differential described in

§8.
Moreover, g⊥1 = n∩ gl(U)1, and the Lie algebra cohomology denominator ∂0

1(g⊥1 )
is the space of admissible normalizations of the prolongation coefficients λ1. Thus,
the vanishing of H1

1 (g−, g⊥) implies that normalized integral manifolds of the
(If−1,Ω) system are in one to one correspondence with integral manifolds of the
(If0 ,Ω) system.

Punch line: by working with filtered EDS and by homogeneous degree we do
obtain Lie algebra cohomology. The vanishing of the Lie algebra cohomology reduces
the system to the (If0 ,Ω) system, and vanishing of the Lie algebra cohomology
group H1

2 (g−, g⊥) moves one to the (If1 ,Ω) system etc... Moreover, there was
nothing special about beginning with p = −1. The final result is:

Theorem 9.10. Let U be a complex vector space, and g ⊂ gl(U) a represented
complex semi-simple Lie algebra. Let Z = G/P ⊂ PU be the corresponding homo-
geneous variety (the orbit of a highest weight line). Denote the induced Z-gradings
by g = g−k ⊕ · · · ⊕ gk and U = U0⊕ · · · ⊕U−f . Fix an integer p ≥ −1, and let
(I f
p,Ω) denote the linear Pfaffian system given by (9.5). If H1

d(g−, g⊥) = 0, for all
d ≥ p+ 2, then the homogenous variety G/P is rigid for the (I f

p,Ω) system.

10. Open questions and problems

– Does H1
d(g−, g⊥) nonzero imply flexibility? If so, can one prove this directly

and in general without going through the (sometimes quite long) Cartan
algorithm?

– Give a uniform description of the Fk for all G/P ’s to obtain uniform determi-
nations of Fubini rigidity.

– Determine the class of extrinsically realizable non flat parabolic geometries
modeled on Flag1,2(C3) as some natural class of parabolic geometries.

– Apply Cǎp’s machinery to study parabolic geometries having families of
differential operators whose kernel is large but not maximal.
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