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(Received Septembe r 29, 1992, enlarged version June 1, 1994) 

0 . INTRODUCTION 

The integral of a stepfunction (on an n-dimensional interval I) is given by an 
elementary formula so that a linear functional A on the linear space S of stepfunctions 
is defined in the natural way. The idea of obtaining an integration theory directly as 
an extension of A from 5 to a wider space has been used several times. Monotone 
convergence was used by E. J. McShane in [8] and by F. Riesz and B. Sz.-Nagy 
in [9] to develop Lebesgue integration. If S is made a normed space by putting 
\\x\\ = A(|.r|) for x G 5, then the Lebesgue integral is the continuous extension of 
A to the completion of S (cf. the approach to Bochner integration in [10]). In the 
case n = 1 Lee and Chew in [7] proved that for every Denjoy integrable (in the 
restricted sense) / : I —•> (R there exists a sequence of stepfunctions fk: I —> R such 
that fk is control convergent to / for k —J» oo (and, consequently, ( D + ) / 7 / d l is 
the limit of A(//.)). On the other hand, any g: I —> IR which is the limit in the 
control convergence of a sequence of Denjoy integrable gk is itself Denjoy integrable 
and (I)*) fj gk dt —> (D*) / 7 g dt for k —•> CXD. In this paper an analogue to the result 
of Lee and Chew is proved in the multidimensional case. The concept of integral 
involved is the strong D-integral which was introduced by the authors in [3]; in the 
onedimensional case the strong D-integral reduces to the Henstock-Kurzweil integral 
which is equivalent to the Denjoy and Perron integrals. The paper is organized in 
three sections. In Section 1 the relevant notions and results from [3] are recalled and 
a suitable convergence concept (strong D-equiconvergence) is introduced. In Section 2 
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we formulate the main result and establish some auxiliary facts. Section 3 is devoted 
to the proof of the main result. 

1. T H E STRONG O-EQUTCONVERGENCE 

The same notation and concepts as in [3] will be used throughout the paper, in 
particular 

I = [a,b] = [Oi,bi] x [a2,b2] x . . . x [an,bn] C Un 

is a nondegenerate compact interval and 

Q: I x (0,oo) -> [0,1) 

fulfils 

(1.1) limsupO(£,O-) < 1 for t G / , 

(1.2) inf{O(6,O); t G I, a > 0} > 0, 

(cf. [3], (2.1), (3.1)). 

As usual, <9J, IntJ, m(J) and d(J) denote the boundary, the interior, the measure 
and the diameter of J C (Rn. 

1.1 Definition. A function / : I —•> Un is called strongly g-integrable if there 
exists an additive interval function F such that for every e > 0 there is a gauge 5 
such that 

(1.3) ^ | / ( i ) m ( M ) - F ( M ) K e 
A,M 

holds for every 5-fine O-regular system A = {(l,J)} and every set M = {AI} of 
intervals such that the inclusion M C J defines a one-to-one correspondence between 
A and fV0. For brevity, such a set of intervals will be called an associated (with A) 
family. 

Of course, a strongly O-integrable function / is O-integrable and F is its primitive. 
For n = 1 the two integrals coincide and, moreover, reduce to the Perron integral. 

A convergence theorem concerning a pointwise convergent sequence of strongly 
O-integrable functions, which was proved in [3], Theorem 4.6, is the starting point 
for further convergence results. 



1.2. Theorem. Let fj: I —•> U be strongly Q-integrable for j e N,Fj being the 

primitives, let f: I -> R. Assume that 

(1.4) foT eveTy £ > 0 there is a gauge uo such that 

J^ fj(t)m(M) - Fj(M) <£ 

for any uo-fine Q-regular system A = {(£, J)}, any j and any associ

ated family of intervals M, 

and that 

(1.5) fj(t)^f(t) forteIJ-+oo. 

Then f is strongly Q-integrable and Fj(K) —•> F(IO foT j -> oo. if C I being an 

inteTvai. F being- the primitive of f. 

Our aim is to prove that any strongly D-integrable function g is the limit of a 
sequence of stepfunctions in a suitable convergence. Of course, / : I —> IR is called 
a stepfunction if there exist intervals Ji, J2,..., Jk C I such that U;Jj = I, IntJi D 
IntJ/ = 0 for i ^ / and if the restriction of / to any IntJ; is a constant function. The 
convergence from Theorem 1.2 cannot be directly applied to our purpose since the 
condition (1.5) is too restrictive. The assumption of pointwise convergence can be 
weakened to the assumption of convergence almost everywhere as a consequence of 
the following theorem, the proof of which is straightforward. 

1.3 Theorem. Assume that there is N C I, m(N) = 0 such that 

(1.6) gjiI^R forjeN,g:I^>U, 

(1.7) fi(t)=9j(t)J(t)=g(t) forte I\N, j eN, 

fj(t)=0,f(t) = 0 fort£N,jeN. 



Then the following two properties are equivalent: 

(1.8) (i) 9j(t) -> g(t) for j -> oo,£ G I \ IV, 
(ii) theTe exists an additive interval function Gj on I for j G N and 

for every r; > 0 there is a gauge d such that 

J2\9j(t)m(M)-Gj(M)\^i1 
A,M 

for j G N and for any d-fine g-regular (I \ N)-tagged system A = 
{(£, J)} and any associated family M of intervals M, and 

AM 

for j G N and for any d-hne g-regular IV-tagged system A = {(l, J)} 
and any associated family M of intervals M; 

(1.9) fj is strongly g-integrable for j G N and both (1.4) and (1.5) hold. 

1.4. Remark. Let (1.8) hold. Then Gj is the primitive of gj so that G'- = gj 

a.e. (cf. [3], Definition 2.6 and Theorem 2.8). Moreover, [3], Lemma 1.8 implies that 
(1.8) holds if IV is replaced by IVi provided IV C IVi C I, m(Ni) = 0, since {gj(t): 

j G N} is bounded for t G I \ IV. 

1.5 Definition. Let gj : I —> U for j G N, g: I —r IR. The sequence gj is said 
to be strongly g- equiconvergent to g for j —> oo if there exists IV C I such that 
ra(IV) = 0 and (1.8) holds. 

The next theorem is a direct consequence of Theorems 1.2 and 1.3. 

1.6 Theorem ([3], Theorem 4.9). Let gj: I -> IR for j G N, g: I -> R and let gj 
be strongly g-equiconvergent to g for j —r oo. Then g is strongly g-integrable and 
Gj(K) —> G(K) for j -j> oo and any inteTvai K C I (Gj and G being the primitives 
of gj and g, respectively). 

The concept of strong O-equiconvergence plays the crucial role in Theorem 1.3; 

observe that {gj(t); j G N} need not be bounded if t e N. 



2. DENSITY OF THE SET OF STEPFUNCTIONS 

Let Qk: I x (0, oo) -> (0,1) fulfil (1.1), (1.2) for k G N and let 

(2.1) Qk(t,a) > Qk+i{t,a) for k G N, * G I, O" > 0. 

2.1 Theorem (Main Result). Let g: I —>> (R be strongly Qk-integrable for k G N. 

T1ien there exists a sequence of stepfunctions gy. I -» (R, j G N such that gj is 
strongly Qk-equiconvergent to g for j -» oo and every k E N. 

> 
The proof will be given in Section 3. Now we will only establish some auxiliary 

results. 

2.2 Remark. If Qk(t,o) = Q(t,o) for k G N, then by Theorem 2.1 any strongly 
O-integrable g can be obtained as the limit of a strongly O-convergent sequence of 
stepfunctions Oj, j G N and the primitive G of g is the limit of the sequence Gj 
of the primitives of gj. If we put Qk(t,o) = -A^ for t G / , o > 0, k G N, then in 
an analogous way any O may be obtained which is strongly O-integrable for every 
constant function O, Q G (0,1). Such a g need not be Perron integrable, see [5]. 

2.3 Remark. Let n = 1. The strong O-integral reduces to the Henstock-Kurweil 
integral (cf. [3], Note 4.3) independently of O and the Henstock-Kurzweil integral is 
known to be equivalent both to the Perron integral and to the Denjoy integral. Lee 
and Chew in [6] introduced the control convergence for sequences of Denjoy integrable 
functions and proved the corresponding convergence theorem. In [7] they proved 
that every Denjoy integrable function is the limit of a control convergent sequence 
of stepfunctions. Another concept of convergence was introduced and studied by R. 
A. Gordon, [1], [2]; it follows from his results that any control convergent sequence 
is equiconvergent. 

2.4. Lemma. Let K C (Rn be a nondegenerate compact interval, let 0 < A < 1 
and regIi ^ A. Denote by fl(S,r) the neighbourhood of a set S with radius r. 

Then there exists a constant K = &(n) > 0 such that 

(2.2) m(n(dK,(d(K))) ^ KAl-nQm(K) 

provided 0 < C < \A. 

P r o o f . Without loss of generality, let us assume 

(2.3) K = [0, Oi] x [0, a2] x . . . x [0, on], 

d(K) = Oi ^ O2 ^ • • • ^ a>n ^ Oi-4. 



Then 

n(dK,(d(K)) = [-Cai,ai + Cai] x [~Cai,a2 + (ai] x ... x [-(a1,an + (ax] 

\[COi,ai -Ca i ] x [COi,a2 - Cai] x ... x [COi,an - Cai], 

m(n(dK, (d(K))) = (ai + 2Cax)(a2 + 2Cax). . . (an + 2(ax) 

- (ai - 2Cai)(a2 - 2Cax). . . (an - 2Cax) 

= 2 J^(2Cai)a i l . . . ain_, + 2 J](2Cai) 3a i l . . . ain_3 +... 

^ AcanC ^ KAl~n(m(K). 

D 

2.5. Lemma. Let K, Hi, H2, ..., Hv be nondegenerate compact intervals in Un, 
letO < A <1, ( > 0, vegHi ^ A and d(H{) ^ (d(K) for i = 1,2, ..., p. Let Hi, 
H2, . . . , Hp be nonoverlapping. 

Then 

#{Hi; Hi n I, 7- 0} < 3 n A x - n max{V C~n}. 

P r o o f . Assume that K has the form (2.3) from the proof of Lemma 2.4. If 

Hi n K 7- 0 then 

m(Hi n R a i , a i + Cax]
n) ^ (CaiJM"-1 , 

hence 

#{Hi,H{nK ^ 0 } < (ai +2Cai ) n /C n a n A n " 1 ^ 3 M 1 - n m a x { l , ( - n } . 

• 

Put 

V(£, i/) = [h - v, ti + v] x . . . x [tn -v,tn + v] for t eUn, v>0. 

The authors proved in [4], Corollary 2 and Theorem 1, the following result: 
Let G be an additive function of interval on I, g e U, t G Int I. Let G be regularly 

differentiable to fj at t. Then for every e > 0 there is r > 0 such that 

(2.4) | G ( J ) - a m ( J ) | ^ ( 2 ^ ) n 

for every interval J C V(t,v), where v ^ r. 
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(2.4) can be rewritten in the following way. For L = [c\, d\] x . . . x [cn, dn], s E Hn 

let il)(s,L) be the smallest v such that L C V(s,v) (i.e. ip(s,L) = max{|d; — C{\, 
\ci — Si\, \di — Si\\ i = 1,2,... ,n}. Obviously ip(t, J) can be substituted for v in (2.4) 
so that (2.4) can be replaced by 

(2.5) \G(J)-gm(J)\{2i,(t,J)Yn^e, 

provided ip(t,J) ^ r. 

From this result we prove in a standard manner: 

2.6. Lemma. Let F be an additive function of interval on J. Denote by Dp the 

set of such t £ I that F is regularly differentiable to (some) F'(t) € U at t and put 

Np = J \ Dp. Asume that m(Np) = 0 and that F is continuous at any interval 

L C Int J (i. e. for every s > 0 there is n > 0 such that \F(K) - F(L)\ ^ e for every 

interval K C J satisfying m(K \ L) + m(L \ K) ^ n). Put 

f(t)=Ff(t) for teDF. 

Then f is measurable and there exist 

NCI, NDNFUdI, m ( N ) = 0 , £ G (0,1/4), 

1: [0,f] - • [0,1) increasing, rj(0) = 0, n(a) > a for a G (0,£], lim r](a) - 0, 
(7-^0 + 

u;: J \ J V - > (0,f] measurabie, \f(*,a;(*)) C J forteI\N, 

such that 

(2.6) | F ( / 0 - / ( * M / 0 | ^ i 7 ( i / K 

for every t e I\N, is e (0,co(t)], K C Int V(l, */) (If beiI2g- ari interval). 

P r o o f . Let J = [Oi,bi] x . . . x [an ,bn]. / is measurable since f(t) — 

lim F(V(t,a))(2a)~n for t G £>F Hint J and F(V(t,a)) is continuous with re

spect to t on (Oi + a, b\ — a) x . . . x (an + a, bn — a). For M = [a\, /3\ ] x . . . x [an, 0n], 
l = ( t l r . . , g G Rn put 

M(t) = [a\+t\,(3\+t\]x ...x [an + tn,(3n + tn]. 

For a G (0, | min{bi - a ; ; i = 1, 2 , . . . ,n}), t G [a\ +a, b\ - a] x . . . x [an + a,bn -a], 
put 

(2.7) ^a(t)= sup {\F(M(t))-f(t)m(M(t))\-(mM))-n; 

M C V(0,cr),ai,/3i rational}. 



<Pcr: [ai + O, bi - O] x . . . x [an + O, bn - O] -» R is measurable and it follows from 
(2.5) that 

<A-(*) \ 0 for O \ 0, t G DF n Int J. 

For A > 0 put 

£(<7,A) = {t G Int J; V(l,O) C I^a(t) ^ A}. 

F(O, A) has the following properties: 

E(o,\) is measurable, 

F(Oi,A) D F(O2,A) for 0 < Oi ^ O2, 

(J £(O\A) =L )FnIn t I , 
C7>0 

limm(F(O,A)) = m(I). 

Therefore , for i € N there exists O; > 0 such that 

Oi < 1/4, 0 < Oi+i < -Oi, m(l \ E(oi,2'{)) ^ 2 " \ 

Put 
oo oo 

N = I \ liminf B(CT., 2-f) = / \ M f | £(<-<, 2"{). 
j = l i = j 

It can be seen that ra(jV) = 0, N D NF U 9J. 
Let f = or. For .v G (0,£] there exists a unique i G N such that *v G (O;+i,O;]; put 

7/(tv) = 2~ \ Since O; < 2~ ' _ 1 for i G foJ, we have ?/(O2) > Oi for i G N and obviously 
j](v) > /v for v G (0,f] and lim r/(O) = 0. 

<7-»0-f 
oo 

For t G J \ jV let li(£) be the smallest j such that £ G f| £ ( ^ , 2 ^ ) . Put cj(l) = 
i=j 

Oh(t)'i u 1S measurable. 
If t G J \ IV, v G (0,u;(l)], then .v G (Ok+i,^] for some k ^ li(l) so that t G 

E(ok,2~k). Assume that M = [ai,/?i] x . . . x [an,/3n] C V(0,i/), a,, ft being 
rationals (i.e. ^(0 ,M) < v). By (2.7) we have 

i!(v)=2-k > \F(M(t)) - f(t)m(M(t))\(^(0,M))-n 

>\F(M(t))-f(t)m(M(t))\v-\ 

Since F is continuous at any interval L C Int J, we obtain 

\F(M(t))-f(t)m(M(t))\^V(v)v» 

for every M = [ai ,f t] x . . . x [an,/3n] C Int V(0, i/), a,, ft being reals, i = 1, 2, . . . , 
n. (2.6) holds since any Int K C V(t, v) is equal to some M(t) with M C Int V(0, v). 

• 



2.7. Corollary. IfteI\N,teH C V(t,u>(t)) ,KcH, H, K being intervals, 

then 

(2.8) \F(K) - f(t)m(K)\ <: V(d(H)) (d(H))n; 

if, moreover, regH ^ A with 0 < A < 1, then 

(2.9) \F(K) - f(t)m(K)\ ^ J4
1-",?(d(//))m(ff). 

The last inequality follows from the fact that the longest edge of H has the length 

d(H) while all the others have lengths not less than Ad(H). 

2.8. Lemma. If g: I -> U is Lebesgue integrable, then g is strongly g-integrable. 

P r o o f , a is O-integrable by [3], Note 1.5. Let G be the primitive of g. By [3], 
Theorem 3.2 we conclude that m(I \ DQ) = 0 and G' = g a.e. Since (L) JKf = 
(Q) JK f for every interval K C I, the absolute continuity of the Lebesgue integral 
implies that (4.2) from [3] holds. Take into account that the correct version of 
condition (B) in [3], Theorem 4.12, is 

(B) F is additive, m(I \ DF) = 0, (4.2) holds and F' = / a.e. 

(by a misprint the incorrect (4.4) appears instead of the correct (4.2) in condition 
B of [3], Theorem 4.12). Thus (B) from [3], Theorem 4.12, is fulfilled and it follows 
that g is strongly O-integrable and G is its primitive. • 

3. P R O O F OF MAIN RESULT 

Let g: I —> U be strongly Qk-integrable for k £ N. For any interval L C I we put 
F(L) = (gk) JL g; the right hand side is independent of k (cf. (2.1)) and F is called 
the primitive of g. F is an additive function of interval on I and it is continuous at 
any interval L C IntI by [3], Theorem 2.1 (in [3], Theorem 2.1 the correct form of 
the assumption on L is L C I and the corresponding form of continuity of F at L is 
described even if L <£ In tI). By [3], Theorem 2.8 and Definition 2.6 F is regularly 
differentiable to F'(t) at every t £ Dp, m(NF) = 0 where NF = I \ DF and F' = g 
a.e. The assumptions of Lemma 2.6 being fulfilled, let / , V, £, ?7, v, to have the same 
meaning as in Lemma 2.6 so that, in particular, (2.6) holds. If necessary the set jV 
can be enlarged so that 

(3.1) f(t) = g(t) for t e I \ N, m(N) = 0. 



Moreover, by [3], Theorem 4.5 we conclude that simultaneously 

(3.2) for every A > 0 and i E N there is a gauge 7 such that 

£|F(M)KA 
S,M 

for every 7-fine Oz-regular N-tagged system H = {(s,K)} and any 
associated family of intervals M. 

Let us choose a sequence {£k} such that 

(3.3) ^ 6 ^ 6 ^ • • • > 0, lim & = 0, 
k—>-oo 

([0, f] being the domain of 77). There is a measurable CJI : I \ N -> (0,1] such that 

(3.4) 1/(01 ^W-^iW)]"* 

for t e I\N. Let us set 

(3.5) 4(0=min{i^,^iW^W} 

for t G I \ IV, k = 1, 2 ,3 , . . . , where u is from Lemma 2.6. 
Referring to (3.2) let us choose Sk(t) for t G N such that 

(3.6) Sk(t) < i & 

and 

(3.7) J2 lF(M)l < ^ 
S,M 

provided H = {(s, K)} is a $fc-nne D^-regular V-tagged system and Ml = {M} is 
an associated family of intervals (i.e., the inclusion M C K defines a one-to-one 
correspondence between M and H). 

For the basic interval I let us write 

I = [Oi,bi] x [02,62] x . . . x [an,bn]. 

If K = [ci, d\] x [C2, d2] x . . . x [cn,dn] C I, then we write 

I^0 = [ c , d 1 ] 0 x [ c 2 , d 2 ] ° x . . . x [ c n , d n ] 0 
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where 
r ,m f[c»'»d») if di<bi 
[Ci,di\ = < 

([c»,dt] ifJi = bi. 
Now we can define the desired sequence of stepfunctions gk. 
For k E N let us choose a OVfine Di-regular partition A& = {(t, J)} of the interval 

I, and for 5 E I let us set 

(3.8) 9k(S) = m 

where J is such that (t, J) E A^ for some t and s E J°. (Evidently, there is a unique 

J with the property.) 

The function gk is integrable (cf. Lemma 2.8); let Gk be its primitive function, 

k E N. For any interval M C I we have 

(3.9) G f c (M)= £ - ^ m ( J n M ) . 
^-^ m[J) 

(t,J)eAk:
 v ' 

The result to be established can be formulated as follows. 

3.1. Theorem. For every i E N the sequence {gk} is strongly Qi-equiconvergent 

to g. 

It is a consequence of the following two propositions. 

3.2. Proposition. For every e > 0 and i E N there aTe l\ E N and d\: IV -> (0,1] 
such that 

(3.10) Ei = ^ | G f c ( M ) | ^ e 
0,M 

foT eveTy di-hne Qi-regular IV-tagged system 0 = {(H,L)}, eveTy associated family 

M = {M} and eveTy k^lY. 

3.3. Proposition. FoT eveTy e > 0 and i E N cIieTe aTe l2 E N and d2 : I \ IV -> 
(0,1] sucn that 

(3.11) E2 = ^ \Gk(M) - 9k(u)m(M)\ ^ e 
e,M 

for every i92-I7ne Qi-regular I\N-tagged system 0 = {(H, L)}, eveTy associated family 
M and every k ^ Z2. MoTeoveT, 

(3.12) 0fc(s) -> a(s) for s £ I\N, k -> oc. 

11 



3.4. Convention. Since Qk fulfil (1.1), (1.2) and (2.1), for every fc G N there is 
Ak, 0 < Ak ^ Qk(t,a) ^ Qi(t,a), and we may assume .A&+1 ^ A* for k € f̂ J. Hence 
regJ ^ Ai ^ Ai for (l, J) G Ak and any fc, I G N, and regL ^ A, for (H,F) G 0 
since 0 is Oz-regular. The index i G N is fixed throughout the proofs of Propositions 
3.2, 3.3 and Ai ^ A{. Therefore we may and will write A instead of Ai and A{, 
which implies that Ak, k £ N, as well as 0 are A-regular. To simplify the formulas 
we will also assume (without loss of generality) that m(I) ^ 1. 

P r o o f of P r o p o s i t i o n 3.2. Given e > 0 and i G N, let us choose j G f̂J 
such that 

(3.13) j ^ i , €i(3 + 2 - 3 M 1 - n ) < l e 

and denote 

(3.14) r(u) = minjfc G N; & ^ 6j(u)} for u G N. 

For every k eN there is an open set Uk C Un such that N C Uk and 

^ 1 ^ l . r w ^ R min{m(J); (l, J) e Ak} 
(3.15) m ( t / f c ) ^ A . . A = m a x { 1 + | F ( J ) | ; ( f j J ) € A f c } . 

For every fc G N there is a gauge uk: V -» (0,1] such that 

(3.16) V(u,/ifc(u)) C C/fc 

for u e N. We choose a gauge i?i: IV -> (0,1] satisfying the condition 

(3.17) i?i(u) ^ lI/c(H) for fc < r(u), it G IV, 

i?i(u) < ^(H) for uG N. 

Now we start estimates leading to (3.10). Let 0 = {(u,L)} be a tfi-fine ^-regular 
V-tagged system and let M be an associated family of intervals. For fc G N we have 

E i ^ r i + r 2 = £ \Gk(M)\+ £ \°^M)\-

3(t,. 

By virtue of (3.9) we obtain 

,м ,м 
3(ř,Ј)єА f c ,LCЈ L\Ј^0,V(Í,Ј)ЄАА: 

r,,rЈ + r 4 = S : £ wШ«M£!ì 
&ь ,м 

3 ( Í , Ј ) Є Д А : , L C Ј 
к<r(u) 

+ E E i в д i ^ -
лfc ,м 

3(ř,J)ЄА^,LCJ 
к^r(u) 
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If (l, J) G A*, (w, L) G 0 , A < r(u), L C J then M n J C L C U / c H J since u G N 

(cf. (3.16), (3.17)), and consequently (cf. (3.15)) 

(3.18) ^ £ £ m(L)KP^^m(JnUk). 

3(t,Ј)ЄA^,LCЈ 
fc<r(гi) 

We proceed to T 4. For (l, J) G A* let Q(£, J) be the set of (u,L) G O such that 

L C J, fc ^ r(u). We have 

Г4^^|Ғ(Ј)| £ 
ӣ(t,J) 

тn(JnL) 

m(J) 
š £ \F(J)\. 

3(u,L)є , L C Ј 
/c^r(гг) 

Obviously u e N since 0 is N-tagged.In the last sum we have u G L C J, 

J(J) ^ 2^(f) ^ ^ ^ Sj(u) by (3.6) and (3.14), hence J C V(H,^(H)). From 

(3.7) we conclude 

(3.19) Г4 < &. 

(We apply (3.7) for a system of pairs (u, J) which is o*j-fine, Di-regular and N-tagged, 

putting M = J.) 

Now we shall estimate T2- Using (3.9) we obtain 

Г2 < Г5 + Г6 = 5 2 \F(M)\ 
,м 

,M 
£ (Sr m ( M n J ) - F ( M n J ) ) 

L\Ј^Ø,V(í,Ј)ЄAfc 

0 is Di-regular and ^i-fine; by the first inequality in (3+3) it is Dj-regular and by 

(3.17) it is (5j-fine. (3.7) can be applied with k replaced by j , so that 

(3.20) 

Further, we can write 

г 5 ^ &. 

Г6 < Г7 + Г 8 = £ |£(^™(MnJ)-f(MnJ)) 
e,M A^ 

L\J^0,V(í,J)GAfc 
teN 

+ £ |£(Щҷ(мnЈ)-ғ(мnЈ)) 
e,M A^ 

L\J#0,V(í,J)6AA: 
tei\N 

13 



The first sum can be divided into three terms: 

\F(J)\ r7 ^ r9 + r10 + r„ = T -4-^ T m(M n j) 
Ti m(J) £M 
teN 

+ E E \F(MnJ)\ + J2 £ \F(MnJ)\. 
@M Ak. Ak e,M 

d(J)^d(L) teN d(L)>d(J) 

By (3.7) we obtain 

(3.21) r9 ^ a 

since the inner sum (for fixed (t, J) G A/,) does not exceed m(J). Further, 

Vio ^ Yl sup{|F(10|; # C L} • #{(*, J) G A, ; J n L ^ 0, d(J) ^ d(L)}. 
e 

By Lemma 2.5 the number of elements of Ak on the righthand side of the inequality 

has the upper bound 3 n A 1 _ n (since ( = 1), which together with (3.17) and (3.7) 

yields 

(3.22) r 1 0 ^ 3nA1-nJ2sup{\F(K)\;K C L} <: 3nA1~n^j. 
& 

Similarly, with the role of Ak and 0 interchanged, we obtain 

(3.23) r n ^ Yl S U P { I F W 5 H C J} • #{(u, L) G 0 ; L n J / 0, 
AA:; tG/V 

d ( L ) > J ( J ) } ^ 3 n A 1 " n ^ . 

Returning to T8, we note that (2.6) and (3.5) yield for (t, J) G Afc and t G I \N 

(3.24) |K(J) - f(t)m(J)\ ^ A1-ni1(d(J))m(J), 

\F(M n J) - f(t)m(M n J)| ^ Al~nr1(d(J))m(J), 

hence 

(3.25) 

14 

Д 4 ' » ( M П J) - F(M П Ј ) U 2Al-n (dЏ))m{J). 
m{J) I 



Consequently, 

г 8 < г 1 2 + г 1 3 = J2 Jľ F{J) 

Ak ,M 
tЄ/\Д/ LПJ^Ø 

m(J) 
m ( M П J ) - F ( J П M ) 

+ £ £ 
d(L)Җr,(d(J))}4„. d(J) 

F(J) 

Ak; tGl\N 
L\J#0 

d(L)<[V(d(J)))ňd(J) 

m(J) 
m(M П Ј) - F(M П Ј) 

Estimating T 1 2 with help of (3.25) and Lemma 2.5 we arrive at 

T 1 2 < y ^ 2Ai-n

V(d(J))m(J) 

A.,; t&I\N 

x #{(u,L) G G; i n J^9,d(L) > [7?(d(J))]*d(J)} 

<2A1~n £ ' ? K J ) ) m ( J ) 3 M 1 - " [ r , ( d ( J ) ) ] - ? 

A I ; tei\N 

and by (3.5) we obtain 

(3.26) r 1 2 ^ 2 - 3 M 2 - 2 n h & ) ] i 

In order to estimate T13 we use the first inequality (3.24): 

r13^r14 + r15 + r16 = £ |/(Í)| £ m ( M П J ) 

Ak e,M 
tei\N LnJ^0^éL\J 

d(L)<[r,(d(J))]-Srd(J) 

+ ЛІ~П E E ^И^))m(M П J) 4- ~P E И M П Ј)l' 
Дь- л ,M д A . 

d(J)>d(L) 

Now (3.4), (3.5) imply 

Гi4 ^ X) b(dШ 4n 

Д Ł 
E m(LГ)J) 

e 
LnJ^0^L\J 

d(L)<[r7(d(J))]-íírd(J) 

and, assuming 

(3.27) mk)]& < \A 

15 



we conclude by (3.4), (3.5) and Lemma 2.4 

(3.28) T14 <. V 2 [ ^ ( d ( J ) ) ] - - K A 1 - n m ( J ) [ 7 ? ( d ( J ) ) ] * 
At 

^KAi-nmk)}^. 

Evidently, 

(3.29) r15 ^ Al~n J2v{d(J))m(J) <. A^fa) 
At 

and finally, by Lemma 2.5 and (3.7), 

(3.30) T16 ^ VJsup{|F(A') | ; K C L} • #{(*, J) G A , ; JnL # 0,d(J) > d(L)} 
e 

<. S ' 1 ^ 1 - "^ . 

Putting together the estimates (3.18)-(3.23), (3.26) and (3.28)-(3.30) we obtain 

Si < 3£j + Hk + S M 1 " ^ + 3nA1-nZk 

+ 2 • 3M2-2 n[r ,(&)]i + KA1-"^)}^ 

+ A1-nr,fe)+3nA1-n0. 

This together with (3.13) implies that Proposition 3.2 holds for A; >- lx where l\ is 

such that (3.27) and 

&(1 + 3 M 1 - " ) + 2 • 3M2-2 n[r .(&)]i + K A 1 " " ^ ) ] - + Al-n
n($k) < \e 

hold for every k^l\. • 

P r o o f of P r o p o s i t i o n 3.3. Given £ > 0 and i e N, let us choose b G N 
such that 

(3.31) a + A 1 -" - .^ . ) + 3"^2-2"7j(2a) < \e 

and denote 

(3.32) R(s) = min{k e N ; 2£k ^ 6h(s)} for s e I\N. 

For k e N let a gauge j k : I \ IV -> (0,1] be such that 

(3.33) £ |Gfc(M) - gk(s)m(M)\ < & 
S,M 
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is satisfied provided E = {(s, K)} is a 7/c-fine Ot-regular (I \ N)-tagged system and 
Ml an associated family of intervals (cf. Lemma 2.8). We choose a gauge d2 : I\IV —> 
(0,1] satisfying the condition 

(3.34) d2(s) ^ -yk(s) for k < R(s), seI\N, 

Ms) ^Sh(s) for s eI\N. 

According to the definition of the functions gk we have gk(s) = F(K)/m(K) where 
(z,K) e Ak, s e K°. If, moreover, s e I\N, k ^ R(s), then K C V(z,Sk(z)), 
d(K) ^2Sk(z) ^£k^ ±6h(s) ^u;(s) (see (3.5) and (3.32)), hence K C V(s,Sh(s)) C 
V(s,u(s)), and putting H = K in (2.6) we obtain 

\F(K) - f(s)m(K)\ ^ Al-n
n{d(K))m(K) 

and consequently, 

(3.35) \gk(s)-f(s)\^A1-n
V(^k). 

Now we start estimates leading to (3.11). Let 0 = {(u, L)} be a $2-fine Dt-regular 
(I \ N)-tagged system and let Ml be an associated family of intervals. For k e N we 
have (cf. (3.11)) 

£ 2^r 1 7 + r1 8= £ \Gk(M)-gk(u)m(M)\+ £ \Gk(M) - gk(u)m(M)\. 
0,M 0,M 

k<R(u) k^R(u) 

By (3.34) and (3.33) we have 

(3.36) T17 ^ £h. 

Further, we can write 

r i 8 ^ r i 9 + r2 0= £ \f(u)-gk(u)\m(M)+ ]T \Gk(M)-f(u)\m(M) 
e,M © , M 

k^R(u) k^R(u) 

and, by virtue of (3.35) we have 

(3.37) T19 ^ Al-nrj(^k) 

since u £ I \N. Proceeding to V2o we estimate it as 

r20 ^ r2i + r22 = £ \F(M) - f(u)m(M)\ 

e,M 

+ E E |£^m(MnJ)-F(MnJ) 
0,M A

 V ' k^R(u) 
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Applying (2.9) with M, u, L respectively instead of AT, l, H and then (3.34) we 

conclude (m(I) ^ 1 by Convention 3.4) 

(3.38) r 2 1 ^ Al-nr!(Zh). 

The term r 2 2 is divided into three sums: 

\F(J) 
V22 ^ Г23 + Г24 + Г25 = 2 ^ 2 ^ 

' M A^; /c^R(u) 
d(J)^d(L) 

+ E E 
,м Afc ; Л^R(u) 

t£І\NҖL)>d(J) 

m(J) 

m(J) 

m(MПJ) -F(MПJ) 

m(M П Ј) - F(M П Ј) 

+ Ľ £ 
,м 

F(J) 

A fc; /c^R(u) 
t£N,d(L)>d(J) 

m(J) 
m(M П J) - F(M П J) 

where 

V23 ^ V26 + V27 

= E E 
>M Д f c ; k^R(u) 

d(J)^d(L) 

F(J) 

m(J) 
f(u)\m(MnJ) 

+ E E \f(u)m(MnJ)-F(MnJ)\. 
e,M &k 

d(J)^d(L) 

Let us estimate r 2 6 . The partition A^ is or/c-fine so that d(J) ^ ^ by (3.5) and also 

d(L) ^ £&. Moreover, k ^ Ii(H) implies & ^ ^ ( H ) (cf. (3.32)). If a summand in 

T26 is nonzero then necessarily L n J 7- 0, which implies J C V(i*,d(L) 4- d(J)) C 

V(u,2^) C V(uA(u)) C V(U,LU(U)) (see (3.5)). Replacing A', t, v in (2.6) by J, 

H, 2d(J), respectively, we obtain 

|F (J ) - / (« )m(J) |<»7(2d(J ) ) [2d(J ) ]" 

and taking into account that m(J) ^ An~l (d(J)) , we conclude that 

\F(J) - f(u)m(J)\ ^ 2nA1-ni1(2d(J))m(J) 

and, eventually, 

(3.39) r 2 6 ^ 2nA1-nr,(2t;k). 
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For the nonvanishing summands of r2? we again use the fact that J n L ^ 0, 

u€ I\N, M n J C L, hence (2.9) yields with t = u, K = M n J, H = L 

\f(u)m(M n J) - F(M n J)| ^ >l1-n77(d(L))m(L) 

since L is A-regular (cf. Convention 3.4). By Lemma 2.5 we find 

(3.40) r 2 7 ^ A 1 - n ^ r ? ( d ( L ) ) m ( L ) 
e,M 

#{(*, J) e Ak ; J n L ? 0, d(J) ^ d(L)} ^ 3nA2-2 nr7(2^) 

(see (3.34)). 

In the sum T24 we consider only terms with t G I \N, therefore we can use (2.9) 

replacing H with J and K with J or J n M. We arrive at the inequalities 

|F(J) - f(t)m(J)\ <: A1-nr?(d(J))m(J), 

|F(M n J) - f(t)m(M n J)| ^ A1-nr/(d(J))?n(J), 

which yield 

F(J) 
m(M П J) - F(M П J) ^ 2Ax-nr](d(J))m(J) 

\m(J) 

and, eventually, Lemma 2.5 implies 

(3.41) T24 < 2.41-" 2~2v(d(J))m(J) 

x # { ( u , L) € 0 ; L n J £ 0, d(L) > d(J)} 

^ 2A1_n 53 v(d(J))m(J) • TAl-n 

A,. 

2 - 2 n <$ 2 • З M ^ rç tø fc 

since d(J) ^ 2 4 ( l ) ^ & by (3.5). 
Finally, we write 

V25 ^ V28 + V29 = 2_^ Z_^ 
0 ,M AA: ; teN 

\F(J)\ 
m(J) 

m ( M П Ј ) + ^ ^ | F ( M П J ) | . 
1 AA. ; tЄN 

d(L)>d(J) 

By (3.7) we have 

(3.42). r 2 8 ^ £ lF(J)\2Z^£^< £ |F(J)|<ft, 
AA:,í€iV 

?n(J) 
AA:; ÍЄN 
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and again by (3.7) and Lemma 2.5 we conclude 

(3.43) T 2 9 ^ J2 sup{\F(K)\; K C J} 
Aiь i íЄ/V 

x # { ( « , í ) є ; I П ^ M ( i ) ><*V)} 
П Л 1 — n 

^ & • 3 M 

Combining (3.36)-(3.43) we obtain 

^2 ^ ^k + Al-n

V(^k) + Al~niMh) 

+ 2nA1-n
V(2£k) + TA2-2nr,(2ih) 

+ 2 • 3M 2 - 2 n r , (&) + & + 3 M ' - " & . 

Since /i satisfies (3.31), it is sufficient to choose I2 such that 

0 4 1 - " + 2 • 3M2-2n)f7(&) + 2nA1~n
V(2tik) + (1 + 3 'M 1 " " )^ < i e 

is satisfied for all k >- /2. (3.H) holds and the proof of Proposition 3.3 is complete, 
since (3.12) holds by (3.25) and (3.1). • 
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