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SOME NOVEL GENERATING FUNCTIONS OF EXTENDED 

JACOBI POLYNOMIALS BY GROUP THEORETIC METHOD 

A.K. CHONGDAR and N . K . MAJUMDAR, Ca lcu t t a 

(Received April 15, 1993) 

1. INTRODUCTION 

The extended Jacobi polynomials defined by Patil and Thakare [1] 

(1.1) Fn(a,P;x) = ^^(x-a)-a(b-x)-'3(-^-)n 

n\ \b — a/ 
xDn[(x-a)n+a(b-x)n+% 

where D — -—• and A is a number such that ^ - - > 0, satisfy the ordinary differential 
equation [2] 

(1.2) [(x - a)(b-x)D2 + {(a + l)(b-x) - ((3 + l)(x -a)}D + n(l + a + (3 + n)]y = 0. 

Very recently, attempts have been made [2, 3] in connection with the derivation of 
generating functions of the extended Jacobi polynomials from the Lie-group view
point. 

The aim of the present paper is to investigate some novel generating relations of 
the extended Jacobi polynomial Fn(a, /3\ x) by the application of L. Weisner's group-
theoretic method [4] which is vividly presented in the monograph by E.B. McBride 
[5]. It may be of interest to remark that in course of constructing a Lie algebra we 
obtain a pair of linear partial differential operators which simultaneously raise (lower) 
and lower (raise) the parameters a and f3 of the polynomial under consideration. 
We would like to mention that our results differ from the traditional concept of a 
generating function for orthogonal polynomials. 
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2. GROUP-THEORETIC METHOD 

Replacing -£ by | - , a by y-^, f3 by z-§-z and u by u(x,y,z) in (1.2), we get the 
partial differential equation 

(2.1) [ ( l - « ) ( k - I ) ^ + { ( s | + l ) ( 6 - l ) - ( i | + 1 ) ( l _ a ) } | 

+ n (l + y— + z— + nj j n(:r, u, 2) = 0. 

Thus we see that u(x,y,z) = Fn(a,(5;x)yocz(3 is a solution of (2.1), since Fn(a,f3;x) 
is a solution of (1.2). 

We now define linear partial differential operators 

(2.2) Ai=vr> 
oy 

A3 = (x-b)yz-^ + yl, 

A4 = (x-a)y z - + z -

such that 

(2.3) Al [Fn(a, (3; x)y(Xz^] = aFn(a, 0; x)y«z?, 

A2[Fn(a,(3;x)yazP] = (3Fn(a,(3;x)y(*ze, 

A3[Fn(a,P;x)y«zP] = (f3 + n)Fn(a + \,(3-\;x)y«+1z(3-1, 

A4[Fn(a,P;x)yazf3] = (n + a)Fn(a-\,f3 + \;x)y(*-1z(3+1. 

The commutator relations satisfied by A{ (i = 1, 2, 3, 4) are 

(2.4) [Ai,A2] = 0, [A2,A3] = - ^ 3 , 

[Ai,A3] = -43, [A2,A4] = A4, 

[Ai,A4] = - A 4 , [A3,A4] = Ai - A 2 

where [A,B]u = (AB - BA)u. 
Thus we arrive at the following theorem: 

Theorem. The set of operators {\,A{ (i = 1,2,3,4)} where 1 stands for the 

identity operator, generates a Lie algebra C. 
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It can be shown that the partial differential operator L, 

д2 д л „ , í д л, л д 
(2.5) L = (X-a)(b-X)-2 + [(y- + l)(b-X)-(Z- + l)(x-a)]dx 

+ n(l + ydy+ZYz+n) 

can be related to A. (i = 1, 2, 3, 4) as follows: 

(2.6) L = -A3A4 + AyA2 + Ax + n(l + Ax + A2 + n). 

Now one can easily verify that L commutes with each A{ (i = 1, 2, 3, 4), i.e., 

(2.7) [L,Ai} = 0. 

The extended form of the groups generated by Ai (i = 1, 2, 3, 4) are 

(2.8) eaiAlf(x,y,z)=f(x,eaiy,z), 

ea2A2f(x,y,z) = f(x,y,ea2z), 

ea3A*f(X,y,z) = f(x + a3^-^-,y,z + a3y), 

ea^f(x,y,z) = f(x + ai

{x~z

a)y,y + a4z,z). 

FVom he above we get 

(2.9) eaiA*ea3A3ea2A2eaiM f(x,y,z) 

= /((, + a 4(£____t)[1 + a 3 ( a 4 + M ) ]_ a 3 6 ( a 4 + M), 

e^(l + ^),e^{l + a 3 ( f + a 4 ) } ) . 

3 . GENERATING FUNCTIONS 

Now it follows from (2.1) that u\(x,y,z) = Fn(a,/3;x)yoczf3 is a solution of the 

system 

Lu = 0, 

(_4i - a)u = 0; 

Lu = 0, 

(_42 - 0)u = 0; 

Lu = 0, 

(Ai + A 2 - a - (3)u = 0. 

31 



From (2.7) one can easily verify that 

S(L(Fn(a,(3',x)y«zP)) = L(S(Fn(a,P;x)yaz^)) = 0, 

where 
S = e a 4 ^ 4 e a 3 y i 3 e a i ^ 2 e a i ^ 1 

Therefore S(Fn(a,/3;x)yazf3) is annihilated by L. 
Putting Oi = O2 = 0 and replacing f(x,y,z) by Fn(a,f3\x)yotz^ in (2.9), we get 

(3.1) ea*A*ee*A>[Fn(a,f3;x)y«zP} 

= Fn (a, /J; {x + O4 ~Q ) Z}{l + a3 (a4 + 7) } ~ a3&(a4 + 7 ) ) 

x y - ( l + ^ ) ° x ^ { l + a 3 (a 4 + f )} / 3 . 

However, 

(3.2) eo«^3 A 3[Fn(a1/?;.-)y0 ,~/ ?] 

— — (-n - a - k)p N^ —j-f-(-0 - «)fc 
p=0 ť ' fc=0 

x Ғ„(a + k - p, ß - k + p; x)ya+k~pzß~k+P. 

Equating (3A) and (3.2), we get 

(3.3) (l + a4^Y{l + a3 (aA + | ) ^Fn (a, /?; {s + a4
 (* ~ Q)" } 

x | l + a3(a4 + - J } - a2b(aA + - J J 

= .L "^i - ( _ n " a " k)p Z- ~~~r~(~^ ~ n)fc 

p=0 ^ ' /c=0 

x Fn(a + k - p, /? - fc + p; x)yk-pz-k+p. 

We now consider the following cases: 

Case 1. Putting a3 = 1, aA = 0 and replacing --̂ - by - l , we get 

(3.4) (1 - tfFn(a,(3;x- (x - b)t) = £ " T ^ F - ( Q + ^ ~ ^ T ) ^ 
fc=0 
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Case 2. Putting a3 = 0, a4 = 1 and substituting ------ = t, we get 

(3.5) (1 + t)aFn (a, /?; a; + (x - a)t) = £ ^ M ~ n - cr)pFn(cr - p, /3 + p; x)rp 

P=o p' 

Case 3. Putting a^ = -^, a4 = 1 and £ = l, we get 

(3.6) ( l + r ( l + I(l + I ) ) / 5 

Fn(a)/3;{x- + (,-a)i}{l + I(l + I)}-A(l + I)) 

H ) p , „ „ ^ ^ ( ~ ^ ) f c 

X 

= E Чг(-n -«- - *)P E ^ fч-ø - »)* 
P=0 ^ ' k=0 

x Fn(a + k -pђß - к + p;x). 
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