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Czechoslovak Mathemat ica l Journal, 46 (121) 1996, P r a h a 

ON CLOSED 4-MANIFOLDS ADMITTING A MORSE FUNCTION 

WITH 4 CRITICAL POINTS 

WENXUE HUANG, London 

(Received June 9, 1993) 

1. INTRODUCTION 

It is not hard to see that both S2 x S2 and S1 x 5 3 amdit a Morse function with 
exactly 4 critical points (see our Lemma 2's proof); we can also find a topological S4 

having this property (see §4). The main concern here is the inverse problem. Similar 
topics have been well investigated which can be found in [1], [2], [4], etc. 

By Z, Ek, Sl we denote the groups of integers, k—Euclidean space and i— 
Euclidean sphere, respectively. 

Our main result is as follows 

Theorem. Let M with x(M) ^ 0 be a closed connected C°° 4-manifold which 

admits a Morse function with exactly 4 critical points, where x{M) is the Euler 

characteristic of M. Then either M is a topological S4 or M is simply connected 

and 

(1) H*(M;Z)^H*(S2xS2;Z), 

i.e., M has the integral homology groups of S2 x S2. Furthermore, 

a) If (I) holds and such isomorphisms can be geometrically realized (i.e., if there 

exists a continuous mapping 

h: S2 x S2 —> M 

such that its induced homomorphisms 

h„: H{(S
2 x S2; Z) —• H,(M; Z), i = 0, 2,4 
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are isomorphisms), M has the homotopy type of S2 x S2; 

b) if M is of a C°° product structure, M is diffeomorphic with S2 x S2; 

c) if M admits a Riemannian metric of positive curvature and with this metric 
M can be isometrically immersed into E6, M is a topological 5 4 ; if M admits a 
Riemannian structure of non-negative curvature and with this structure M can be 
isometrically embedded into E6, either M is a topological S4 or M is diffeomorphic 
with S2 x S2 . 

Remarks . 1. (See §3) We have two alternate versions for the hypothesis 
"\-(M) # 0" in the theorem. 

2. I wonder whether the condition in a) is superfluous or not. The realization for 

general simply connected spaces is not always possible. (See [15, p. 183]) 

The proof of the theorem will be given in §3. We shall present some preliminaries 

in §2 and discuss the case "O2(/) = 1" of the theorem in §4. 

2. PRELIMINARIES 

Unless otherwise specified, all manifolds involved in this paper are closed, con­

nected, smooth and finite dimensional. M n means manifold M is n-dimensional, en 

an n-cell, F an arbitrary field, \(M) the Euler characteristic of M, 

Pi(Mn;l) = rank H,(Mn; Z); 

(3i(Mn;F) = dimH ,(Mn ;F); 
n 

/3(Mn;F) = ^ / 3 , ( M n ; F ) . 
i=0 

Given a Morse function / defined on a smooth manifold M n , by c(f),Ci(f) we 

denote the number of critical points of / and that of index i, respectively. The 

Morse number of M n is denoted by 7(M n) , i.e. 

7 ( M n ) = min{c((D) | <D: M n -> (R is a Morse function}. 

Similarly, 

ji(Mn) = min{cz((D) | </?: M n -> K is a Morse function}. 

Clearly, for any Morse function (D defined on M, we have 

Pi(M
n;¥)^li(M

n)^ci(^), 
n 

/3 (M n ;F )^^ 7 i (M n )^c ( (D ) . 
i = 0 

48 



In particular, if (3(Mn;F) = c((D), all inequalities above become equalities. 

Using Kunneth's formula, we slightly modify the result in [5, p. 217-218] as follows 

Lemma 1. Given two Morse functions 

cp: Nn -> R, i/>: Qq -> R, 

then the function <p + ip: Nn x Qq -> R defined by 

(x, y)£Nn xQq .-> ip(x) + r/>(y) G R 

is a Morse function and 

Ci((f + 1p)= Y^ Cj(<P)Ck(i>)-
j+k=i 

In particular, if both (D and ip are tight (i.e., c(<p) = 7(N) and c(ip) = j(Q)), 

c(<p + *!>)= l(Nnh(Qq) > 7(1Vn x Qq). 

If there exists a field F such that 

l(Nn) = (3(Nn;F) and 7(Q*) = f3(Qq;F), 

then 7(Nn x Qq) = -y(Nn)f(Qq). 

3. T H E P R O O F OF T H E THEOREM 

To prove the theorem and study the general case, we establish first the following 

main lemma. 

Lemma 2. Let f be a Morse function defined on a closed connected smooth 
4-manifold M and c(f) = 4. Then 

(a) TFAE 

(a)i M is a topological 5 4 ; 
(a)2 c 0 ( f ) - fc 4 ( f )=3orc 2 ( f ) = l; 

(a)3 X(M) = 2. 
(b) TFAE 

(b)i M is simply connected and has the integral homology groups of S2 x S2; 

(b)2 c 2 ( f )=2 ; 
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(b)s X(M)=4; 

(b)4 there exist CW-complexes K and L with the same collection of cells such 
that M and S2 x S2 have the homotopy type of K and L respectively 

(c) TFAE 

(c)i M has the mod 2 homology groups of S1 x S3 and the umod 2" is replaced 
by "integral" when M is orientable; 

(c)2 c1(/) = c3(/) = l; 
(c)3 X(M) = 0; 

(c)4 there exist CW-complexes S and T with the same collection of cells such that 
M and S1 x S3 have the homotopy type of S and T respectively; 

(c)5 M is non-simply connected. 
(d) TFAE 
(d)i x ( M ) ^ 0 ; 
(d)2 M is simply connected; 

(d)3 c i ( / ) + c 3 ( / K l . 

P r o o f . The condition c(f) = 4 and Theorem 12.1 in [10, p. 383] imply 

2^co(/) + c 4 ( /K3. 

1) When co(/) + c4(/) = 3, M is a topological S4 by Theorem 12.1 in [10, p. 383] 
and Reeb theorem. 

If c2(/) = 1, then co(/) = 1 = c4(/) , otherwise we can set c4(/) = 2, then by 
Theorem 12.1 in [10, p. 383] we have c3(/) ^ 1 that implies c(f) ^ 5, contradicting 
the hypothesis c(f) = 4. Therefore we can set 

ci( /) = l, c 3 ( / ) = 0 . 

By the improved Morse inequalities by Pitcher that 

Ci(f) > A(M; Z) + U(M; 1) + U^(M- Z), 

where ti(M\ 2) is the torsion number of H;(M; Z), we have 

A(M;Z)=A-(S 4 ;Z) , t = 0,1,2,3,4, 

H,(S4;Z)="H*(M;Z). 

Since C i ( - / ) = 0, M is simply connected by Cor. 10.18 in [13, p. 225], it follows 

that M is a homotopy S4 , i.e. M is a topological S4 by Freedman's theorem in [3, 

p. 371]. 
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2) If c2(/) = 2, then c0(/) = c4(/) = 1 and ci( / ) = c3(/) = 0. It follows that M 
has the integral homology groups of S2 x S2. Since ci (/) = 0, M is simply connected 
by Cor. 10.18 in [13, p. 225]. 

3) If c i( / ) = c3(/) = l ,c 0 ( / ) = c4(/) = 1 and c2(/) = 0. By Morse inequalities, 
we have 

&(M;F) = 0 , ft(M;F) = A>(M;F), /34(M;F) = fo(M;W) 

hold for any field F. Therefore 

H4M;I2)^H,(S1xS3;22); 

and so 

pi(M;l2) = pi(S
1xS3;l). 

In particular, if M is orient able, then by the homology duality and the improved 

Morse inequalities, we have 

H*(M;Z)=^H+(51 x 5 3 ; Z ) . 

4) We claim cx(/) 7- 2(equivalently c3(/) 7-- 2). Otherwise c0(/) = c4(/) = 1 and 
c2(/) = c3(/) = 0, and then 

ft(M;F)=0, i = 1,2,3; #>(M;F) = 1, 

resulting in 

- 1 = C2(f) - Cl(f) + co(f) > /32(M;F) - f i !(M;F) -|-/30(M;F) = V 

which is absurd. 
We have exhibited all possible values of Ci(f) and proved that (a)2 => (a)i, (b)2 => 

(b)i and (c)2 => (c)i. That (a)i => (a)3,(a)2 => (a)3, (b)i => (b)3 and (c)i =-> (c)3 

are trivially true. 

Our conclusion (b)3 => (b)2 follows from the facts that 1) implies x(M) = 2 and 
that 3) implies x(M) = 0. 

The proof of (b)2 => (b)4: Given c2(/) = 2, then c0(/) = c4(/) = 1 and cx(/) = 
c3(/) = 0. By Theorem 3.5 in [7, p. 20], M has the homotopy type of a CW-complex 
with a collection of one c°, two e2's and one e4. 

On the other hand, given a natural embedding Sn M> En+l, then for any unit 
vector p G En+l, the linear height function lp: Sn -•> IR defined by a; G 5 n i-> (p,x) 
(where (.,.) denotes the usual inner product in En+l) is a Morse function with only 
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2 critical points, so lp is tight and f3(Sn;¥) = 2 = 7(5n) . From Lemma 1, we know 
that 

(f = lp + lq : 5
2 x S2 -> R 

satisfies 

c ( » = 7(S2)7(S2) = 7(S2 x S2) 

and 

co(^) = c4((D) = 1, c2((D) = 2, ci((D) = c3((D) = 0, 

so S2 x 5 2 like M has the homotopy type of a CVV-complex with a collection of one 
e°, two e2's and one e4. 

The proof of (b)4 => (b)3: The Euler characteristic of a manifold is a homotopy 
type invariant and K and L have the same collection of cells, so 

X(M) = X(K) = X(L) = X(S2 x S2) = 4. 

The proofs of (c)i => (c)3 => (c)2 =>• (c)4 =>> (c)3 are the analogues of that of (b). 

The proof of (c)s => (c)2: M is non-simply connected if and only if C\(f) = c 3 ( / ) = 
1 holds according to 1) and 2). 

(c)i => (c)5 is trival. 
The proof of (a)3 => (a)2: When x(M) = 2, only c0(/) + c4(/) = 3 or c2(/) = 1 

holds by 2) and 3). 
Now the (d) follows immediately from (a), (b) and (c). 
This concludes the proof of the lemma. • 

Now we are in a position to prove the theorem. 

P r o o f of T h e o r e m . Since x(M) 7- 0, from the proof of Theorem 2 we 
know that M is simply connected and furthermore either M is a topological S4 or 
M has the integral homology groups of S2 x S2. 

a) If M is the latter and there exists a continuous map 

h: S2 x S2 -> M 

for which its induced homomorphisms 

hf. Hi(S2 xS2;l) ->Hi(M;I), i = 0,2,4 

are isomorphisms, then since both M and S2 x S2 are simply connected CW-

complexes, using Theorem 25 in [14, p. 406], we conclude that M is homotopically 
equivalent to S2 x S2. 
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b) Let M have a C°° product structure, i.e. M = N x Q, then dimN = 2 or 1. 

If dimN = 1, N « 5 1 (here we denote "diffeomorphic to"by « ) , which contradicts 

the simply-connectedness of M. It follows that 

dimN = 2 = dimQ. 

But 7(iV) = 4 - X(N) , 7(Q) = 4 - X(Q), thus 

/ 3 ( N ; Z 2 ) = 7 ( N ) , /3(Q;Z2) = 7(Q). 

Applying Lemma 1 to N and Q, we get 

7 ( M ) = 4, 7(.V) = 2 = 7 (Q). 

Therefore 

M = i V x Q « 5 2 x S 2 . 

c) Let M be an orientable Riemannian manifold of positive curvature and let I: 
M —•> E6 be an isometrical immersing. By Moore's theorem (e.g. see [6, p. 116]) 
or [8, p. 72]), I{M) is a topological 5 4 and so I is an embedding, M is therefore a 
topological 5 4 . 

Let M with a Riemannian structure of non-negative curvature be isometrically 
embedded into E6 and I: M —•» F6 such an embedding. Since M is simply connected, 
by Baldin and Mercuri's result (see [6, p. 116]), we conclude that either M is a 
homotopy 5 4 and hence a topological 5 4 or M « 5 2 x 5 2 . This completes the proof 
of the theorem. • 

Remark . Under the hypothesis of Lemma 2, if M is a non-simply connected 
product manifold, M & S1 x Q3; if Q3 satisfies 7(Q3) = (3{Q3; Z2), M « 5 1 x 5 3 . 
Because product manifold M is non-simply connected, M = iV1 x Q3 « 5 1 x Q3 by 
the proof of the Theorem. Therefore 

H*(M;F) ^H*{Sl x 5 3 ; F ) 

holds for any field F and therefore 

f3{M;¥) = 4 = 7(M). 

By Kunneth's formula, we know that 

/?(Q3;F) = 2 
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holds for any field F, so 

H*(Q3;Z)=-H*(S3;_). 

If, in addition, <y(Q3) = 0(Q3- 12),Q
3 » S3 . Hence 

M « 5 1 x 5 3 . 

4. O N CASE c2(f) = 1 

For (M, / ) satisfing 

(2) c0(/) + c4(/) = 3 

or 

(3) c2(/) = 2 

or 

(4) C l ( / ) = c 3 ( / ) = l 

we have its corresponding models. In fact, models (M, / ) satisfying (3) and (4) have 
been shown in the proof of Lemma 2; the model (M, / ) for (2) can be realized by 
a hypersurface of E5, which is similar to a U-shape tube with two smooth caps on 
its two ends, and a linear height function defined on the hypersurface. We show the 
model as follows: 

A subset T of Eh = {(x,y,z,u,v) \ x,y,z,u,v £ E1} is defined by the equation 

(yju2 + v2 - a)2 + x2 + y2 + z2 = b2, a>b> 0. 

Obviously, T can be obtained by "revolving a 3-sphere in E5 

((v-a)2+x2+y2 + z2 = b2, 

\ u = 0 

around subspace Oxyz"; so T is connected and closed. If hyperplane v = 0 is 
regarded as a "level surface" and D-axis as the "vertical" axis, then sublevel set T_ : 
v < 0 can be given by 

v = —y(a± \Jb2 — x2 — y2 — z2)2 — u2. 
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Similar to the case of a "vertical" torus in E3, the linear height function on T_ can 
be expressed as 

f(x,y,z,u,v) = -\J(a± \/b2 - x2 - y2 - z2)2 - u2 +a + b. 

Then 

df = 0&x = y = z = u = 0, v = ±b — a, 

i.e. / has just 2 critical points (0,0,0,0, ±b - a) on T_ and of which (0,0,0,0, -b - a) 

is the minimum point of / . It is easily verified that the Hassian matrices of / at the 
2 critical points are nondegenerate, so / is a Morse function on T_. 

Since level surface v = 0, which is the boundary of T_, consists of two 3-spheres 
i n E 5 

J (u±a)2 +x2 +y2 +z2 = b2, 

1 v = 0, 
T_ is a "U-shape tube" with two upward ends. We cover its each end with a "cap", 
i.e., a smooth 4—disc and then obtain the required hypersurface M of E5. Meanwhile, 
we extend / naturally onto the two "caps". We still denote the extension of / , which 
is a linear height function defined on M, by / , then the two tops of the caps are 
critical points of / of index 4 and hence / has exactly 4 critical points on M, and 

co(/) + c4(/) = 3. 

Then M is a topological S4 by the Theorem. This concludes the construction of the 
required model. 

Our main purpose of this section is to probe into (just!) the probability of the 
existence of (M, f) satisfying 

(5) c0(/) = c 2 ( / ) = c 3 ( / ) = c 4 ( / ) = l, C l ( / ) = 0. 

To the end, we assume that (5) holds and under the assumption we determine the 
types of the 4 critical points of / and calculate the homology groups of the sublevels 
ft and level manifolds /*. We need some preliminaries. 

Morse introduced the following notions and results in his [11, p. 257-258] and [12, 
p. 259-260]: 

For a Morse function / defined on an orientable manifold Mn and a real number 
t, we denote the sublevel set {x G M \ f(x) ^ t} by ft, and /3k(fd]^) by /?*(_). 
Suppose open interval (a, b) contains just one critical value c of / and / take its 
critical value c only at one critical point pc of index k. Set 

A(3q(c)=(3q(b)-(3q(a), q = 0,l,...,n. 
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Then A/3^(c) = 1 or A/3k-i = - 1 . If the former (resp. latter) holds, the critical point 
pc is said to be of increasing (resp. decreasing) type or linking (resp. nonlinking) type. 

Notice that 

Pi(b) = /3i(c), 0i(a) = Pi(fc-{pc}), 

A(3q(c)=pq(c)-0q(fc-{pc}). 

By Theorem 29.2 in [12, p. 260] 

A(3q(c) = < 

' 1, if q = k and pc is of linking type, 

1, if q = k — 1 and pc is of nonlinking type, 

, 0, in other cases. 

Thus the notions of linking and nonlinking types are mutually exclusive and com­

plementary 

We write 

AB,(c) = pi(fc+r) - (3i(f-e) 

for any regular value c of / and any sufficiently small real number e. 
Let (M, / ) satisfy the conditions of Theorem 2 and (5), then M is a topological 

5 4 . Applying Corollary 39.1 of [12, p. 361] to this (M, / ) , we choose / such that 

f(pi)=h 2 = 0,2,3,4 

for which pi is a critical point of / of index i. Take regular values a, b, c, d, e of / 

such that 

O<0<b<2<c<3<d<4<e. 

Then we have 

Proposi t ion 3. For f chosen above, the critical points po, p2 and p± are of 

linking type and p% nonlinking type. Moreover, 

( 1, if(q,i) = (2, 2), (4,4) or (0,i), where i = 0,2,3,4. 
W ) = \ 0 , in other cases. 

P r o o f . Clearly, p0, PA are of linking type and as is p2, since by applying Morse 

inequalities to / , fc, we have 

02(C) = 1, 
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thus 

A A (2) = 1. 

It is easily checked that 

Aft (3) = 0, 

and so 

A/?2(3) = - l , 02(d) = 0 . 

Hence p3 is of nonlinking type. • 

Remarks . 1. An analogous argument shows that to —/, its critical points 
P4, P3. a n d Po> with indeces 0, 1, 4, resp., are of linking type but p2 , with index 2, 
nonlinking type. 

2. [1, p. 8-9] indicates: Let / be a Morse function defined on a closed C°° manifold 

M n , then the following three conditions are equivalent 
a) For any field F, ck(f\ft) = 0k(ft;F) holds for any t G U and k = 0,1, 2 , . . .,n; 
b) The homomorphisms between homology groups 

#,-(/*; F) ->.ffi(Mn;F), i = 0,1,2, . . .,n 

induced by inclusion /* <-» M n are injective; 

c) Every critical point of / is of linking type. 

Now our Proposition 3 implies that for (M, / ) satisfying (5), 
a)' l = c f c(/)>/J f c(M;F) = 0, k = 2,3; 
b)' The induced homomorphism 

( F - ) H2(/C;F)-+H2(M;F) (=0) 

is not injective; 

c)' the critical point p% of / is of nonlinking type. 
It follows that our Proposition 3 does not contradict the results in [1, p. 8-9]. 

It can be verified that (5) is compatible with Morse inequalities, the theorem on a 
character of homology S4 in [11, p. 259] and Corollary 1.2 as well as (7.11) in [9, 
p. 256-257]. Besides, by Lemma IT in [10, p. 352], the critical point p% of —/ of 
index 1 is of linking type,which is continent with our Proposition 3. All these facts 
seem to be to a great extent in favor of the existence of (M, / ) satisfying (5). 

3. In his [16, p. 100], Willmore said that recent work by Cerf made it appear that 
(which has not been proved! cf. V. V. Sharko's work, say, MH1989/, 57038) 

7 (M) = £ > ( M ) 
i=0 
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holds for any closed C°° manifold. If the equality holds, our / satisfying (5) has two 
superfluous saddle points, i.e., there exists a Morse function /* : M -•> (R with only 
2 critical points. 

As the end of this paper, we study the topology of the level hypersurfaces of M 
with respect to any regular value of / and obtain 

Proposition 4. Under the hypothesis of Proposition 3, fb « S3 « fd, fc has 

the integral homology groups of S1 x S2 . 

P r o o f . We denote set {x E M \ f(x) ^ t} by / + . Since the points p0 in ft, and 
PA in f£ are extreme points of / and fb (resp. f£) contains no critical points of / 
other than p0 (resp. p.*), and fb (resp. fd) is the boundary of fb (resp. f ^ ) . Then 
by Morse lemma, 

fb « 53 « /d. 

For / c , since M is a homology S4, po and P2 as critical points of / are of increasing 

type rel. / ° and / 2 , resp., but p% decreasing type rel. / 3 by Corollary 7.2 in [9, 

p. 256]. Thus by Theorem 5.1 in [9, p. 252], 

l = AB2(2)=(32(f
c), 

l = AB1(2)=f3l(f
c), 

0 = ABi(2) = pi(fc) - 1, z = 0,3. 

that is, 

/J.(/C;F) = f3i(Sl x 52;F) = f3{(S
l x 5 2 ; Z), i = 0,1,2,3 

hold for any field F. Then by the improved Morse inequalities, we have 

H*(fc-2)=H*(Sl xS 2 ;Z) . 

It follows, moreover, that / b , fc and fd are connected closed orientable hypersur­

faces of M. This proves the proposition. • 
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