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Czechoslovak Mathemat ica l Journal, 46 (121) 1996, P r a h a 

F R E E ALMOST-P-LATTICES 

HERNANDO GAITAN, Merida 

(Received August 23, 1993) 

1. INTRODUCTION 

This work is the result of trying to describe the free almost-p-lattices going along 

the lines with the paper [1] of Berman and Dwinger in which the finitely generated 

free distributive p-lattices are described. In doing so we find t h a t the varieties of 

almost-p-lattices generated by Lnn, n ^ 1 (see definitions next section) are defined 

by the same equations used by Lee in [2] in order to describe the subvarieties of the 

variety of distributive p-algebras. This is accomplished in Section 4. In Section 5 

we use this result to describe the join irreducible elements of a free almost p-lattices 

with n generators generalizing in this way to almost-p-lattices the results of Berman 

and Dwinger for distributive p-lattices. Section 2 is devoted to give the necessary 

definition and preliminares and in Section 3 some facts related to atoms of finitely 

generated almost-p-lattices, needed in the sequel, are studied. 

2. DEFINITIONS AND PRELIMINARIES 

An almost-p-lattice (abbreviated in the sequel to apl) is an algebra (L; -f, •/ ,0,1) 

of type (2, 2,1,0,0) where (L; -f, •, 0,1) is a distributive lattice with greatest and least 

elements and the unary operation ' satisfies: 

• 0' = 1 and V = 0. 

• (x + y)' = x'y'. 

• (xy)" = x"y". 

xx' = 0. 

Research supported by the CDCHT (project C-602-93) of thе Univеrsdad dе los Andеs, 
Merida, Vеnеzuеla. 
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The class of apVs is a variety which will be denoted APL. This variety is a subvariety 
of the variety of Semi De Morgan algebras introduced by Sankappanavar in [5]. The 
well known variety of distributive p-algebras (pdl for short) is a subvariety of APL. 

For a L G APL define: 

B(L) = {x':xe L}; 
D(L) = {x G L: x' = 0}; 
pdl(L) = {x G L: x ^ x"}; 

S(L) = {xeL:x£ x"} = L\pdl(L). 

An element of D(L) is called dense. (B(L); +, •/ ,0,1), where x+y = (x'y')', is a 
Boolean algebra [5 , Theorem 2.4 and Corollary 2.7]. pdl(L) is a pdl and it is a 
subalgebra of L. The subdirectly irreducible (s.i. for short) Opl's are characterized 
in [6, Theorem 5.5] by being those having just 2 dense elements. If L G APL is s.i., 
its dense element different from 1 will be denoted generically by d. In [3] the finite 
s.i. apVs are described. They are denoted by Lnk, n = 1, 2, • • •; k = 1, 2, • • •, n. Their 
main properties are: 

(i) B(Lnk) = 2 n , the n-atom Boolean algebra, 
(ii) Lnk has k coatoms one of them being d. 

(Hi) B(Lnk)\{l} = [0,d). 

(iv) ([0, d); + , . , ~, 0, d), where x~ = x' if x ^ 0 and 0~ = d, is a Boolean algebra, 
(v) S(Lnk) = {x G L: x" < x} = L \ ([0,d] U {1}). 

(vi) pdl(Lnk) = [0,d}U{l}^Lnl. 

(vii) No element of S(Lnk) can be an atom of Lnk. In other words, d covers all 

the atoms of Lnk. 

(viii) (S(Lnk), +, •) is a sublattice of Lnk. Moreover, it is isomorphic to a sublattice 
of [0, d), an embedding being x i-> xd. 

(ix) If b G S(Lnk) is a coatom of Lnk then bd = b" is a coatom of [0,d] or 
equivalently, b' is an atom of Lnk. 

(x) There exists a unique atom a of Lnn such that (US(Lnn))d = a. 

(xi) Lmk G V(Lnn), the variety generated by Lnn, k ^ m ^n. 

The following rules of computation will be used frequently. The first two are valid 

in any apl. The last two are valid just in any pdl. 

• x ^ y implies y' ^ x'. 
• x" = 0 iff x = 0 [6, Theorem 2.2] 
• xy = 0 implies y ^ x'. 
• x < x". 
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3. ATOMS AND COATOMS 

In this section Lemma 2.1 of [1] (in any finite pdl the unary operation ' is de­
termined by the atoms), is extended to apVs. This result is the key fact in the 
description of the join irreducible elements of a free finitely generated apt. In what 

follows, L will stand for a finite apl. For x G L define 

Ax — {a G L: a ^ x,a atom of L}. 

By L ^ S D EI Li we mean that L is a subdirect product of the family {Li: i G I}. 
iei 

If the L^s are s.i. then it is said that f] Li is a subdirect representation of L and 
-€/ 

the IVs are called the components of L in such a subdirect representation. If (£i)ie/ 

corresponds to x G L then Xi is called the i-coordinate of x. 

Fact 1. Let a be an atom of L. Then the coordinates of a different from 0 in any 
subdirect representation of L are necessarily atoms in the respective component. 

P r o o f . Let Y\ Li be a subdirect representation of L and suppose that a; / 0;. If 
iei 

ai is not an atom of Li then there exists Ci G Li with 0; < Q < a .̂ As L ^SD Yl Li 
iei 

there is 6 G L such that 6; = Q . SO, 0 < 6a < a (because (6a)* = 6; < ai), a 
contradiction. • 

Fact 2. Let :r,H G L. Then x' = u' implies Ax — Ay. 

P r o o f . Let a G Ax. Then ax = a and therefore an' = 0. If ay = 0, then 
a(y + g') = 0. Consider a subdirect representation of L. Let i be such that ai / 0;. 
Clearly j / f + u/ G L>(LZ) = {di, l j . Then by property (vii) and Fact 1, y* + T/Z- ^ a*. 
As i was arbitrary the only condition being ai / 0;, it follows that y + y' ^ a, a 

contradiction. So, ay = a and oG/i i , . • 

Fact 3. Suppose that L is s.i. Then Ax = Ay implies x' = y'. 

P r o o f . From property (vii) it follows that Axd — Ayd and since xd and yd are 
in pdl(L) which is a pdl, then by [1, Lemma 2.1], x' = (xd)' = (yd)' = y'. • 

Fact 4. Let L = Yl Li where the Li's are s.i. and x,y G L. Then Ax = Ay 
iei 

implies x' = Hr. 

P r o o f . Select Xi / 0; and let Zi G Ac-. Call z the element of L whose i-
coordinate is Zi and all the others are zeros. Then z e Ax = Ay. It follows that 
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Zi ^ Hi, i.e., Zi G Ayi. So, AXi C Ayi. Clearly, y{ ^ 0t-. Then, by symmetry, 
Avi Q Axi- So AXi = Ayi. Now apply Fact 3 to get x / = y^. Remains to prove that 
if Xi = 0; then yt• = 0,. But this can be seen in the argument above. D 

Lemma 3.1. Let L be a finite apl and let x,y G L. Then x' = y' if and only if 
A.x = J\y. 

P r o o f . One direction is Fact 2. For the other direction let L = f] Lz be a 
iei 

subdirect representation of L. For z G L define 

/42 = { a G L : o atom of L, a ^ z}. 

Let a € Ay. We claim that there exists ao, atom of L, such that a ^ a0. For if this 
were not true then z = £{ atoms of L} G L would be such that za = 0. As ~' = 0 
in L, z' = 0 in L which means that 2 would covered all the atoms of L. This would 
implied za = a, a contradiction. Now, if ao ^ ^4y then aoH = 0. But a0y ^ a. So, 
ao € j4y = Ax and therefore a ^ a0 ^ x, i.e., a e Ax. It has been proved that 
Ay C Ax. Similarly one get the reverse inclusion and the desired result is received 
now by applying Fact 4. D 

Fact 5. If a is an atom of L then a G pdl(L). 

P r o o f . Let Yl Li be a subdirect representation of L. By Fact 1, for each 
iei 

i, either at- = 0; or at- is an atom of Li. By properties (v), (vi), and (vii), a, G 

[0i,di] U {1;} = pdl(Li). (ai = 1, implies Li = {0;,li}). So ai ^ a". As i was 

arbitrary we have a ^ a". D 

Fact 6. Let c' be a coatom of B(L). Then c covers exactly one atom a of L. 

P r o o f . Suppose that c covers the atoms ai and a2 of L. Then a/ ^ c', i = 1, 2. 

By Fact 2, a / ^ 1 = 0'. Then, as c' is coatom of B(L), a- = c', i = 1,2. So, 
Aai = {«i} = Aa2 = {^2}, i-e., Oi = a2 . O 

Fact 7. a atom and ab = 0 implies a ^ b'. 

P r o o f . It is an easy consequence of Fact 1 and the fact that b + b' is dense. D 

Fact 8. If a is atom of L then a' is a coatom of B(L). 

P r o o f . Suppose that b' ^ a', As a is atom, either ab" = a or ab" = 0. In 
the former case, a ^ b" and consequently a' ^ b'. So a' = b'. In the later case, 
(ab")" = a"b" = (ab)" = 0. From [6, Theorem 2,2] it follows ab = 0 and since a is 
atom then a ^ b' (Fact 7). Now we have a + a' ^ b' implies 0 = (a -h a')' ^ b" so 
that b' = 1. • 
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4. T H E EQUATION (En) 

In [2] Lee consider the family of equations 

n 

(En) (xi • • • xn)
f + ^ f a i • • • Xi • • • a;n)' = 1, n ^ 1 

i = l 

for pOTs. There it is proved that if L is a pdl then L G V(Lni) if &nd only \i L\= En. 

Here we consider the equation (En) for apl's. The main result is the following: 

Theorem 4 .1. Let L G APL. Then the following are equivalent: 

(1) L^(En). 
(2) L E V ( L n n ) . 

The comparison between the number of maximal filters of L that contain a given 
prime ideal P of L and that one of the maximal filters of pdl(L) that contain P n 
pdl(L) allows us to approach the proof of this result in the same way as in [2]. The 
following Lemma will be used very often in this section. 

Lemma 4.2. Let M he a maximal filter of L and let c G L. Then c (£ M <£> 
c' G M. 

P r o o f . (=>) Suppose on the contrary that c' £ M. Then [M U {c}) = [M U 
{c'}) = L from which it follows that there exist x,y G M such that c' ^ xc and 
c ^ yc'. Putting z = xy one has: 

0 = (z(c + c'))" = z"(c + c7)'7 = ^ V c " / = z". 

Now invoke [6, Theorem 2.2] to get z = xy = 0 £ M, a, contradiction. The other 
implication is obvious. • 

The next proposition is one direction of [2, Theorem 2] extended to ap/'s. The 
proof is exactly the same if the previous lemma is used. 

Proposition 4 .3. Suppose L \= En. Then for each prime filter P of L. there 
are at most n distinct maximal filters that contain P. 

For a prime filter P of L define: 

P = Pnpdl(L); 

J{P — maximal filters of L that contain P ; 
- # P = maximal filters of L that contain P ; 
Mp = maximal filters of pdl(L) that contain P. 
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Notice that J/p C J/p and consequently \J/p\ ^ \J/p\. 

Proposition 4.4. \J/p\ = \Jfp\. So, \J/p\ ^ \J/p\. 

P r o o f . One proves first that \J/p\ ^ \J/p\ by proving that the application 
J/p —> J/p\ M i-> M is one to one. For suppose that Mi = M2. Let x G Mi. If 
x $. M2, then by Lemma 4.2, x' G M2. So x' G M2 = Mi, a contradiction because 
x G Mi. So, Mi C M2. Similarly one obtains the reverse inclusion. To prove the 
reverse inequality consider the application J/p —> J/p; M i-> [M). Notice first 
that it make sense. Clearly [M) D P. To see that [M) is a maximal filter of L, pick 
x G L\[M). One wants [{x}u[M)) = L. There are two cases to be consider: x" G M 
and x" £ M. In the former one, put y = xx". As y" = (xx")" = x" ^ xx" = u, 
y G pdl(L). Clearly y£M(yeM=>xeM since x ^ y) and since M is maximal 
filter of pdl(L) it follows that [{y} U M) = pd/(T). Let 0 / T C M, T finite, 
such that 0 = ylYT. Then 0 = xUS where S = T U {x"} C M. This means that 
0 G [{x} U [M)), i.e., [{x} U [M)) = L as wanted. In the case x" ^ M, one get from 
Lemma 4.2 that x' G M. Then 0 = xx' G [{x} U [M)), i.e., [{x} U [M)) = T. This 
finish the proof that [M) is a maximal filter of L. Now we show that the map is 
one to one. Let MUM2 G J/p, Mx ^ M2. If [Mi) = [M2), pick x G Mi \ M2. As 
x G Mi C [Mi) = [M2) one may pick 0 7- T C M2, T finite, such that x ^ nT . Since 
M2 is filter and x G pdl(L) then x G M2, a contradiction. Therefore, [Mi) 7̂  [M2). 
This ends the proof. • 

Lemma 4.5. Let P be a prime filter of L such that \J/p\ = n and \J/p\ = k 

Then L is a homomorphic image of Ln,n-k+\. 

This makes sense since as it was observed, k ^ n. Notice that if L is a pa7 then 
k = n and the conclusion of the lemma is that L is a homomorphic image of Ln?i 
which is [2, Lemma 1]. 

P r o o f of L e m m a 4.5. Let a i ,*- - ,a n be the atoms of Ln)n_A;+i and 
bk+i,- • • ,bn its coatoms distinct from d. Here the coatoms are numbered in such 
a way that bid = ^2 CLJ; in other words, (bid)' = a2-, k + 1 ^ i ^ n. Observe that 

a,i+bi = l. Let J/p = {Mi,M2 , • • • ,M n } and J/P = {ML, • • • ,M/J . Define^: 

L —r Ln,n-k+i by the formula 

f n{b;: x g Mi, k + 1 ^ i ^ n}, if x G P; 
V?(x) = < 

[ E{a^: x G Mi, 1 ^ i ^ ?i}, otherwise. 

It can be verified, in the same way as in [2, Lemma 1], that (f is an epimorphism. 

• 
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P r o o f of T h e o r e m 4 . 1 . (1) => (2). L \= (En) implies pdl(L) |= (En). 
Then by Proposition 4.3 (or [2, Theorem 2]), \jip\ ^ n. So by Proposition 4.4, 
\JZp\ ^ \JZp\ ^ n. Now repeat the proof of [2, Theorem 3] verbatim using of course 
Lemma 4.5 instead of [2, Lemma 1]. For (2) => (1) it will be enough to prove that 
Lnn |= (En). Suppose on the contrary that there exist ci, • • •, cn £ Lnn such that 

e / + • • • + en ' + e n + / < 1 

where ej — (Hi^jCi)cj', 1 ^ j ^ n, en+i = IIcz-. It is clear that ej ^ c / , 1 ^ j ^ n, 
and that the left hand side of the inequality above is dense, i.e., is precisely d. Thus 
0 < ei = EAj, 1 ^ i ^ n, where A; ^ 0 is some set of atoms of [0,c(|. See Section 2, 
property (iv). If 1 ^ i ^ j ^ n, then e^ej = 0 and consequently Ai n Aj = 0. Hence 
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51 |-4{| = n, and \Ai\ — 1, 1 ^ i ^ n. So, the e '̂s are the atoms of [0,d] which are 
i= i 
exactly those of Lnn. Since e;en+i = 0, 1 ^ i ^ n, it follows that en+i = 0; but then 
en+i' = 1, a contradiction. D 

Corollary 4.6 ([4, Lemma 8]). The following are equivalent: 

(1) LeV(Lnn). 
(2) L satisfies the following property: let XQ, • • • ,x n 6 L such that XiXj = 0, 

i T*- j , 1 ^ 2,7 ^ n. Then xo' + • • • + # n ' = 1-

P r o o f . (2) => (1) is the same as in [4]. (1) => (2). XiXj = 0 implies X"XJ" — 0. 

As Xi'.Xj" € pdl(L), Xi" ^ Xj'" = Xj'. Thus, x0" ^ xi 'x2 ' • • • xn . So, 

-co' + a;/ + • • • + z n ' ^ ( x / • • • x / ) ' + (x^'xj • • • z / ) ' 

+ --- + (a;i /--.a;n.-i /a;n
//) / = l, 

later equality due to Theorem 4.L D 

5. FINITELY GENERATED apVS 

In this section, unless stated otherwise, L will stand for a apl generated by the set 
X — {x1,x2, • • • ,xn}. For 1 ^ i ^ n define: 

*XJ i — Ju^JU i a n o Xí — Xi . 

For 1 ^ j <C 2n define: 

a5 =Xl
eix2

£2 ---xn
£n,ei e {0,1}; bj = a / ; (&/; = ( a / ; = ^ . 
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Define also the following sets: 

A = {cij : 1 ^ j <: 2n}; B = {bj : 1 ^ j ^ 2n}; G = X U B. 

This sets coincide with those defined in [1] in the case L is a pdl. 

Lemma 5.1 ([1, Lemma 2.3]). 

(1) If aj 7- 0 then cij is an atom. 

(2) If for i 7- j , cii and aj are atoms then cii ^ aj. 

(3) Each atom of L is in A. 

P r o o f . (1) It is easy to see that OjT, G {0,Oj}. Also, if OjH and cijZ are 
in {0,Oj} so are ajyz and aj(y + z). Suppose now that ajZ = 0. Observe that 
aj G pdl(L). Since z + z' is dense then aj ^ z + z'. So, Oj ^ z'. Clearly, if Oy- ^ z 
then ajz' = 0. So, ajZ G {0,Oj} implies ajZ1 G {0,Oj}. 

(2) Suppose on the contrary that O; = aj. Let 

Oz — X\ ' Xfi , aj — X\ ' '' XJI 

Since i 7- j , we may assume that there is a k such that Sk = 0 and 7/̂  = 1. Thus O; ^ 

xk° = XkXk" and O; = Oj ^ Xkl = Tfc7- Hence Ot- ^ XkXk'xk = 0, a contradiction. 
2Tl 

(3) Let s = Y, aJ- T h u s s = n ^ ^ T ^ + T i 1 ) . Now verify s' = 0. So, by Lemma 3.1, 
i=i 

A!=AS. n 

From the previous lemma, Fact 6 and Fact 8, it follows that the bj's different from 

1 are distinct and exhaust all the coatoms of B(L). If L is freely generated by A" 

then no bj = 1. 

Proposition 5.2. Let R and T be non-empty subsets of G and consider the 

following statements: 

(0) UR <: ET; 
(1) ItnT^0; 

(2) R 2 {bj : (bj)i = 0 for each x{ G R); 
(3) \THB\ > m; 
(4) |H \ It n H| > m. 

Then, 

(i) in FAPL(X), (0) iff either (1) oT (2). 
(ii) In L = FV{L )(A), (0) impJies either (1) oT (2) oT (4) and either (1) oT (2) 

or (3) implies (0). 

68 



P r o o f . It is an adaptation of the proof of [1, Theorem 2.8]. 
(i): (<=) (l) suffices in any lattice. (2) implies that UR = 0. 

(=>) Suppose that neither (1) nor (2) are satisfied. With out loss of generality, we 
may add to T those b's that are not in R. Let \T D B\ = t. If t = 0 then all b's 
are in R and therefore IIH ^ IIH = 0. Assume that t > 0. Let g: L —> 22 be 
the epimorphism obtained by composition of the canonical epimorphism L —> L/§ 

($ = {(z,w) G L x L: z' = w'}) and some isomorphism L / $ —> 22". Notice that 
t ^ 2n . Let now h: 22 —> 2l be an epimorphism such that 

f atom of 2l, if b; G T; 

I 0, otherwise. 

Define now f: L —> 2l by / = hog. With out loss of generality we may assume that 
x\, • • •, Xk are all the x's in R. We claim that f(x\), • • •, f(xk) cover a common atom 
of 2t. For if all the atoms of L of the form (x\° • • • Xk° • • •) go to 0 by / then all the b's 
of the form (x\° • • • Xk° • • •)' are in R, (because (1) is not satisfied and the additional 
assumption R U T 2 B). This is against the assumption that (2) is not satisfied. 
Thus the claim is proved. Now select an atom of 2l covered by f(x\), • • •, f(xk), say 
a = f(xi)--- f(xk) • • •• Consider the apl Ltt and identify (B(Ltt) \ {1}) U {d} with 
2l in such a way that dUS(Ltt) = a (property (x) Section 2). Call Ui the element of 
S(Lu) such that Uid = f(xi), 1 ^ i ^ k. Define 7: X —> Ltt by: 

{ Ui if Xi G R; 

f(xi) if Xi£R. 
The definition of 7 is based on property (viii). Let 7 be the extension of 7 to L. It 
is easy to verify that 

7(nH) = U{ui: Xi G R} and 7(ET) G [0, d\. 

Now by property (viii), j(UR) G S(Ltt). So, by property (v), UR ^ ET. 
(ii): Assume (3). Then, by Lemma 5.1, â Oj = 0 if i ^ j . So, by Corollary 

4.6, ET = 1. Suppose now that neither (1) nor (2) nor (4) are satisfied. Then 
t = \T n B\ ^ m and since Ltt G V(Tmm) for t ^ m and the negation of (4), the 
argument above can be used again to conclude that IIH ^ ET. • 

Lemma 5.3. Let z G L. Then z' = U{bi: ai ^ z}. 

P r o o f . Observe first that II{bi: â  ^ z} = ( n { a / : a,j ^ z})". Let w = iU{cij': 
aj ^ z})'• We shall prove that Aw = Az. The desired result will follow then from 
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Lemma 3.1. Let a e Az. Then aIT{a/: a z ^ z} = 0. It follows from Fact 7 that 

a ^ (II{a/: a; < z})' = w, i.e., a E Aw. Conversely, let a E Aw. If az = 0 then 
aai = 0 for all i such that a; ^ z and again from Fact 7 a ^ a / = b,. Thus, a ^ Il{b;: 
az- ^ z} and therefore aw — 0, a contradiction. Hence a ^ z. D 

Corollary 5.4 ([1, Theorem 2.4]). L, as bounded distributive lattice, is gener­
ated byG = XuB. 

Define G = {IIP: T C G}. Observe that G contains the join irreducible elements 
of L. For z e G define: 

P(z) = {bieB:bi^ * } , x(z) = {Xi eX:Xi> z}. 

Clearly, z = U(3(z)UX(z). 

Theorem 5.5 ([1, Theorem 3.3]). The join irreducible elements of Fv^Liiiit^(X) 
are the non-zero elements zofG for which 2n — m ^ \0(z)\ < 2n . 

P r o o f . If z e G with \ji(z)\ = 2n then (3(z) = B and since UB = 0 it follows 

that z = 0. If \/3(z)\ < 2n - m then there exist say b0, • • •, bm e B with b, ^ z, 0 ^ 

i ^ m. As aiaj = 0 then by Corollary 4.6, z — z\ — z{b§-\ h6m) = zboH Yzb^. 

Finally, suppose that 2n - m ^ \/3(z)\ < 2n and that z = IIFi + • • • + nFr where 

TiCG,l^i^r. If IIFi ^ z for all i, then for each i there is a U e T{ such that 

ti ^ 2. Thus 0 ^ z = n/3(2)II\'(z) ^ ti + • • • + tr in contradiction with Proposition 

5.2 with R = p(z)UX(z) and F = {*i,-".*r}- • 

Corollary 5.6. G \ {0} is the set of join irreducible elements of L — FAPL(X). 

P r o o f . Just observe that for m ^ 2n , F^pL(A) e V(Lmm) from which it 
follows that FAPL(A) =" Fv{Linin)(X). D 

Let us give now formulas to compute the number of join irreducible elements. 
Denote the number of such elements z with \x(z)\ = k and \f3(z)\ = j by rjkj- Bear 
in mind that 

(Ux(z)Y = n{b,-: (bj)i = 0 for x{ G X(z)}. 

Then, for L — FAPL(A) we have 

f ( n ) ( 2 ; ) , ifk = 0 a n d l ^ j < 2 n 

rjkj = < or k ^ 1 and 0 < j < 2n~k; 

I (n) ((T) - ( " - ) ) . if *> l and 2n"fc < i < 2 n -
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Щj = < 

Consequently, the total number of join irreducible elements of L = FAPL(X) is given 

by 

2-"+»-£(»)2-"-»"-\ 
fc=0 ^ ' 

For the case L = PV(£,mm)(K) we distinguish two cases: 

(i) 771 ̂  2 n _ 1 . Then 

r (2J), if fc = 0 and 2n - m < j < 2n; 

^ = I (2) ((T) - K - ) ) > if O 1 and 2 n - ^ j < 2n. 
The total number of join irreducible elements for this case is given by 

<»> *-±n-±®±r-r 
j=i w 7 k=i v 7 j=i v J 

(ii) 77i > 2n~1 . Let 2 ^ fc0 ^ n - 1 such that 2n - 2n"/c° < m < 2n - 2n~(fc°+1). Then 

f (I) C-), if 0 < fc < fco and 2n - m ^ j 
< 2n~k; 

(I) ( ( 7 ) " (2i-_22T-)) > if 1 < A: ̂  /co and 2n"* < j < 2n 

or fc0 < fc and 2n - m ^ j < 2n. 

The total number of join irreducible elements for this case is given by 

» ^(7)-SCK---- ±Mrr 
For instance, if n = 2 and m = 3, as 3 > 22 *, apply (J) with fc0 = 1 to get 43. If 

n = 2 and m = 2 then apply (f) to get 28. 
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