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THE LARGEST PROPER REGULAR IDEAL OF S(X) 

K . D . MAGILL, J R . , Buffalo 

(Received September 13, 1993) 

1. INTRODUCTION 

An ideal of a semigroup S is regular if it is a regular subsemigroup of S. It is 
immediate that if a semigroup S with identity contains a proper regular ideal, then 
it has a largest proper regular ideal. It is simply the union of all proper regular 
ideals. Furthermore, suppose J is an ideal of S and every element of J is a regular 
element of S. Then every element of J is also regular in J. Specifically, if a G J is 
regular in S, then axa = a for some x G S. But then a(xax)a = a and xax G J. 
If a topological space X has more than one point, then S(X), the semigroup of all 
continuous selfmaps of A", has a largest proper regular ideal. Our task here is to 
describe the elements in that ideal. This problem was suggested to us by F. Pastijn 
who, together with D. Hardy, solved it for the semigroup of all binary relations on a 
set in [2]. 

Throughout this paper, LPR(X) will denote the largest proper regular ideal of 
S(X) and K(X) will denote the kernel of S(X) which consists of all the constant 
functions. It is evident that K(X) is a regular ideal. Consequently, LPR(X) exists 
and contains K(X) if X has more than one point. In all that follows, Ran(/) will 
denote the range of a function / . Section 2 is devoted to an explicit description of 
LPR(X) for a great many spaces and we investigate some of the properties of the 
semigroup LPR(X) in Section 3. 
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2 . A DESCRIPTION OF THE ELEMENTS IN LPR(X) 

Theorem 2.1. Let X be a completely regular Hausdorff space which contains an 
arc and whose components are open. Then LPR(X) = K(X). 

P r o o f . We must show that each / G LPR(X) is constant. We do this in stages 
and we first show that 

(2. LI) / i s constant on components. 

Suppose / is not constant on some component C of X. Choose a, b G C such that 
f(a) i=- /(b). Then there exists a continuous function a from X into / = [0,1] such 
that g(a) = 0 and g(b) = 1. Let h be any continuous surjective selfmap of / which is 
not injective on any subarc of I. For example, any surjective, continuous, nowhere 
differentiable selfmap will serve the purpose. Then let k be a homeomorphism from 
I onto a subarc A of X and note that k o h o g G S(X). According to Theorem 3.1 
of [6], an element t G S(X) is regular if and only if Ran(t) is a retract of X and t 

maps some subspace homeomorphically onto Ran(t). Now, Ran(k o h o g o f) — A is 
certainly a retract of X. However, kohogof cannot map anything homeomorphically 
onto A since h is not injective on any subarc of I. Hence, kohogof £ LPR(X) 

which means / ^ LPR(X). This contradiction means that (2.LI) must hold. 

We next prove 

(2.L2) | Ran(/) n C\ ^ 1 for each component C. 

Suppose Ran(/) n C contains two distinct points a and b for some component C and 
suppose / maps Y bijectively onto Ran(/). Since / is constant on components, it 
follows that distinct points in Y must lie in distinct components and since the com­
ponents are open, this means that Y is a discrete subspace of X. However, Ran(/) 
is not discrete. To see this, note that Theorem 3.1 of [6] tells us that Ran(/) must 
be a retract and this means that there is an idempotent continuous selfmap v of X 
such that Ran(U) = Ran(/). Since v(a) = a and v(b) — b, we see that v[C] is a non-
degenerate connected subspace of X which is contained in R(f). Evidently, Ran(/) 
is not discrete so that / cannot possibly map any subspace Y homeomorphically 
onto Ran(/) . According to Theorem 3.1 of [6], / is not regular and we again have a 
contradiction. Thus, we have verified (2.L2). Now we show, by way of contradiction, 
that / is constant. We know that / must satisfy both (2.LI) and (2.1.2). Suppose, 
however, that / is not constant. Then f(a) ^ /(b) for some a, b G X. This means 
that f(a) and /(b) must lie in different components since / satisfies (2.1.2). Let 

74 



Cn, Cb denote the components containing a and b respectively Choose two distinct 

points c and d in the arc A C X and define a function g by 

{ c for x e Ca, 
d for x £ Cb, 
x for x <£ Ca U C&. 

The restriction of a to each component is continuous and since components are 
open, this means that a is a continuous selfmap of X. However, go f does not satisfy 
condition (2.1.2) since the component which contains the arc A contains two points 
of Ran(O o / ) . This means g o f $ LPR(X) and hence, / £ LPR(X) since LPR(X) 

is an ideal of S(X). This is, again, a contradiction and we conclude that / , is indeed, 
constant. This completes the proof. D 

Corollary 2.2. Let X be a completely regular, locally connected Hausdorff space 

which contains an arc. Then LPR(X) = K(X). 

P r o o f . The components are open in a locally connected space. D 

One easily verifies that K(X) is the smallest ideal of S(X) for any space X what­
soever. So we have just shown that the largest proper regular ideal of S(X) coincides 
with the smallest ideal of S(X) for a great many spaces X. The situation is different, 
however, for O-dimensional spaces. We need to recall some terminology. A clopen set 
is one which is both closed and open. A space X is totally separated if for each pair 
of distinct points a, b £ K, there exists a clopen set containing a but not b and it is 
0-dimensional if it has a basis of clopen sets. A space is realcompact if it is home-
omorphic to a closed subspace of a product of real lines. One may consult [1] for 
further information about realcompact spaces, which turn out to be quite abundant. 
For example, Theorem 15.24 of [1] tells us that every metric space of nonmeasurable 
cardinal is realcompact. Finally, we denote by FR(X), the family of all functions in 
S(X) with finite range. Our next result gives us some information about FR(X). 

Theorem 2.3. FR(X) is an ideal of S(X) and for disconnected X, it is a regular 

ideal if and only if X is totally separated. 

P r o o f . It is immediate that FR(X) is an ideal of S(X) for any space X. Suppose 
X is totally separated and / G FR(X). We must show that / is regular. Let 
A = {an}^=1 be any finite subset of X. Choose n such that 1 ^ n ^ jV. For each 
j y£ n, there exists a clopen set Hj containing an but not Oj. Let Gn — f]{Hj}j^n. 
For each n, Gn is a clopen set containing an but not aj for j ^ n. Then let 
Vn = (X \ \J{Gj}j^n) n Gn. The sets Vn are clopen, mutually disjoint and an £ Vn 
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for each n. Define a selfmap w of X by 

( A - í an 

W^X) ~ \ Oi < " - , c Y \ l l/T/ \N 

for x G Vn, 1 ^ n ^ 1V, 

forxGK \U{K l}^1 . 

It is immediate tha t w is continuous and hence, is an idempotent element of FR(X) 

with the property tha t Ran(iv) = A. We have shown tliat every finite subset of 

X is a retract of X. Thus, R a n ( / ) is a retract of A". For each y G R a n ( / ) , choose 

xy G f~l(y) and let B = {xy: y G R a n ( / ) } . Since both B and R a n ( / ) are discrete, it 

follows tha t / maps B homeomorphically onto R a n ( / ) and it follows from Theorem 

3.1 of [6] tha t / is regular. 

Suppose, conversely, tha t FR(X) is a regular ideal of S(X) and let a and b be any 

two distinct points of X. Since A' is not connected, it contains a proper, nonempty 

clopen subset H. Define 

f a for x G H, 
J W ~ \b iov xeX\H. 

Since / is regular, R a n ( / ) is a retract of X by Theorem 3.1 of [6]. Tha t is, there exists 

a continuous idempotent selfmap, uj, of X such that Ran(ir) = R a n ( / ) = {a.b}. 

Then w~x(a) is a clopen set containing a but not b. • 

To help with the proof of our next theorem, we will first establish a lemma. 

L e m m a 2.4. Suppose X is a realcompact, noncompact. O-dimensional metric 

space. Then X can be decomposed into an infinite number of clopen sets. 

P r o o f . Since X is both realcompact and noncompact, there exists a positive 

unbounded continuous function / from X to the reals R. Then there exists a sequence 

{ x ' n } ^ ! of distinct points in X such that f(xn) = rn where rn + 2 < r,1 + i for each n. 

Let Gn = (rn - l , r n + 1) and choose a clopen set Hn such that xn e Hn C f~l[Gn]. 

Evidently, W = \J{Hn}n
<Ll is open. We assert that it is also closed. Suppose x £ W. 

Then x ^ Hn for all n. 

C a s e 1: x G f~l[Gnx] for some m. 

Then V = (f~l[Gin)) \ Hm is a neighborhood of x such that V n Hn = 0 for all n 

which means V D TV = 0. 

C a s e 2: x$ f~l[Gn] for all n. 

Suppose r m -f 1 < f(x) < r m + i - 1 for some m. Then choose a, b such that 

rm + 1 < a < f(x) < b < r m + i - 1 and / _ 1 ( a , b ) is a neighborhood of x which 

doesn't intersect W. On the other hand, if f(x) = rni + 1 for some m, then V = 

( / _ 1 ( r m , r m + 2)) \ Hm is a neighborhood of x such that V D Hn = 0 for all n and 
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we conclude that VD W = 0. The same sort of argument applies if f(x) = rm — 1 for 

some m and we have now shown that W is clopen. Consequently, X\W together with 

{Hn}^=l is an infinite family of clopen subsets of X which forms a decomposition 

ofK . • 

Theorem 2.5. Let X be a realcompact ^-dimensional metric space which is not 
discrete. Then LPR(X) = FR(X). 

P r o o f . In view of Theorem 2.3, we have FR(X) C LPR(X) so we must show 
that LPR(X) C FR(X). 

Case 1: X is not compact. 
Suppose / g FR(X). We must show that / g LPR(X). 

Case 1.1: Ran(/) is not discrete. 
Choose a countably infinite subset Y C Ran(/) which is not closed and then choose 

xy G f~l(y) for each y G Ran(/). By Lemma 2.4, there exists a decomposition 
{Hy}y£Y of X into mutally disjoint nonempty clopen subsets. Define g(x) = xy for 
each x G Hy. Then g G S(X). However, Ran(/ o g) = Y cannot be a retract of X 

since it is not closed and Theorem 3.1 of [6] assures us that fog is not regular. Since 
fog£ LPR(X), we must also have / g LPR(X). 

Case 1.2: Ran(/) is discrete. 
Since / $. FR(X), Ran(/) is also (countably) infinite. We may assume that / is 

regular since otherwise, it is immediate that / ^ LPR(X). Then Ran(/) is closed 
since it is a retract of X. Choose a closed countable nondiscrete subspace Y of 
A". Let g map Ran(/) onto Y and extend to a continuous map of X onto Y by 
Corollary 3, page 281 of [3]. Let h = g o f. Suppose h maps some subset B of X 
bijectively onto Ran(b) = Y. Now {/_1(?/): y G Ran(/)} is a decomposition of X 
into mutually disjoint nonempty clopen subsets since Ran(/) is discrete. Let any 
b G B be given. Then b G f~l(y) for some y G Ran(/) and thus, {b} = B D f~l(y). 
That is, b is an isolated point of B. Consequently, all points of B are isolated and 
B is discrete. This means that h cannot possibly map B homeomorphically onto its 
range Y since Y is not discrete. Then h is not regular by Theorem 3.1 of [6] and 
since h $ LPR(X), we must have / g LPR(X). 

Case 2: X is compact. 

We also divide Case 2 into two subcases. 

Case 2 .1: X has exactly one cluster point. 
Then S(X) is regular according to the theorem in [4]. Thus, LPR(X) coincides 

with the largest proper ideal of S(X) and according to Theorem 4.10 of [5], this 
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consists of all those functions / G S(X) such that if A and B are two retracts of A", 
both homeomorphic to X, then / does not map A homeomorphically onto B. But 
one readily verifies that this is the case if and only if Ran(f) is finite. 

Case 2.2: X has more than one cluster point. 

Suppose / ^ FR(X). Again, we must show that / £ LPR(X). Choose a compact 

subset A C Ran(/) with exactly one cluster point p. Then A = {p} U {an}n
<

=1 

where lim an = p. Now choose bn G f~1(an) for each n. Then {bn}n=zl has a 
n—>-oo 

convergent subsequence which converges to some point q and there is no loss of 
generality if we assume that subsequence is {bn}^Li itself. Let B = {q} U {bn}n

<
=1. 

Now choose a compact subset C, disjoint from B with exactly one cluster point r. 
Then C = {r} U {cn}n

<'=1 and lim cn = r. Choose mutually disjoint clopen subsets 
n—>oo 

{Gn}™=1 and {Hn}™=1 such that GnC\B = {bn}, HnC)C = {cn}, lim DiamGn = 0 
n—>oo 

and lim Diam Hn = 0 where Diam means diameter. Now define a selfmap a of X 
n-+oo 

by 

{ b2a-i for x G Gn, 
b2n for x G Hn, 
q forxeX\{J{GnUHn}%=l. 

We need to show that a is continuous. First of all, g is continuous at all points of 
Gn and Hn since these sets are clopen. Let a be any point of X \ {J{Gn U Hu}n

<=1 

and let V be any neighborhood of g(a) = q. Then there is a positive integer Ar such 
that bn G V for n > N. Let x eV\ [j{Gn U Hn}%=1. If x G Gn for some n > N, we 
have g(x) = b2n-i ~ V and if x G Hn for some n > N, we have a(x) = b2n G V. The 
remaining case is where x fi Gn U Hn for all n > N and hence x ^ Gn U Hn for all n. 

For this case, we have g(x) = q G V. Thus, V \ |J{Gn U Hn}^=1 is a neighborhood 
of a which a maps into V and we conclude that a is continuous at all points of A". 
That is, a G 5(A). We then see that 

{ a2n-i for x G Gn, 
a2n for x e Hn, 
p foixeX\\J{GnUHn}~=1. 

Thus, Ran(f o a) = A. Suppose fog maps some subset Y bijectively onto A. 
Then Y D Gn = {dn} and Y n Hn = {sn} for each n. Let any £ be given and let 
N(q,e) = {x G X: S(q,x) < e} where S(q,x) denotes the distance between q and 
x. There exists a positive integer Ni such that bn G N(q,e/2) for n > Ari and 
since lim DiamGn = 0, there exists a positive integer N2 such that DiamG„ < e/2 

n—>oo 

for n > N2. Let jV3 = max{IVi,IV2}. For n > V3, we have 5(q,dn) ^ 5(q,bn) + 
5(bn,dn) < e. Thus dn G N(q,e) for n > N3 and we see that lim dn = g. In the 

/ n—>oo 

same manner, one shows that lim sn = r and we see that both q and r are cluster 
?i—>-oo 
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points of Y. But Y = { d n } ~ , U { s n } ~ , U M where y 6 X \ l j{^n U .ffn}~ i-
Evidently, y cannot contain both q and r and is, therefore, not closed. Consequently, 
fog cannot map Y homeomorphically onto Ran(/ o g) and according to Theorem 
(3.1) of [6], / o g is not regular. Since / o ^ LPR(X), we must have / g LPR(X) 

and the proof is finally complete. • 

Theorem 2.6. Let Ar be discrete. Then LPR(X) consists of all those selfmaps 

f ofX such that |Ran( / ) | < \X\. 

P r o o f . LPR(X) coincides with the largest proper ideal, M(S(X)), oiS(X) since 

S(X) is regular. According to Theorem 4.10 of [5], M(S(X)) consists of all those 

functions / such that if A and B are any two retracts of X, both homeomorphic 

to Ar, then / does not map A homeomorphically onto B. Since X is discrete, it is 

immediate that / G LPR(X) if and only if | Ran(/) | < \X\. D 

3. SOME PROPERTIES OF THE SEMIGROUP FR(X) 

The semigroup FR(X) is not very sensitive for distinguishing between spaces 
when the spaces are not 0-dimensional and Hausdorff. For example, let X and Y 

be any two connected spaces with the same cardinality Then FR(X) = K(X) 

and FR(Y) = K(Y). But K(X) and K(Y) are left zero semigroups with identities 
whose cardinalities are equal, and hence, they are isomorphic. For another example, 
suppose X = A U B and Y = C U D where A and B are components of X, C 

and D are components of Y and \A\ = \C\ and \B\ = \D\. Then both FR(X) and 
FR(Y) contain many functions whose ranges consist of two elements. Let h map 
A bijectively onto C and B bijectively onto D. One can verify that the mapping (p 

which is defined by </?(/) = h o / o h~l is an isomorphism from FR(X) onto FR(Y). 

However the situation is quite different for 0-dimensional Hausdorff spaces as our 
next theorem shows. 

Theorem 3.1 . Let X and Y be 0-dimensional Hausdorff spaces and let ip be an 
isomorphism from FR(X) onto FR(Y). Then there exists a homeomorphism h from 
X onto Y such that (p(f) = h o f o h~l. 

P r o o f . The constant function which maps everything into the point x will be 
denoted by (x). It will be clear from context what the domain of (x) is. The left zeros 
of FR(X) are precisely the constant functions so that <p must map K(X) bijectively 
onto K(Y). Define a bijection h from X onto Y by h(x) = y if and only if <p(x) = (y). 
It follows that (p(x) = (h(x)) for all x e X. For any / £ FR(X), we have 

(h(f(x))) = tp(f(x)) = <p(f o (x)) = <p(f) o <p(x) = <p(f) o (h(x)) = (<p(f)(h(x))) 
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which implies 

(3.1.1) </?(/) o h = h o f for all / £ Fi?(X). 

It follows immediately from (3.LI) that </?(/) — ho f o h~l for each / £ FR(X). It 
remains to show that /i is a homeomorphism. Let £8 be a basis for y which consists 
of clopen sets. Choose two distinct points p and q in Y and for each B e ^ define 
a function G# £ FR(Y) by 

p for .r £ H, 
1 q for T £ A \ B. 

Let 2? £ 38 be given and let (D(/) = G#. We then use (3.LI) to get 

h-1[B} = h-l[g-1(p)] = (gBohr1(p) 

= Mf) o l*)-1^) = (h o ir'ip) = r'ih-'ip))-

Since h is bijective and / £ FR(X), it follows that f~1(h~l(p)) is a clopen subset of 
X and we conclude that h is continuous. It follows that h~l must also be continuous 
since c/?"1 is an isomorphism from FR(Y) onto FR(X). Thus, h is a homeomorphism 
and the proof is complete. • 

Corollary 3.2. Let X and Y be ^-dimensional Hausdorff spaces. Then FR(X) 

and FR(Y) are isomorphic if and only if X and Y are homeomorphic. 

P r o o f . If S(X) and S(Y) are isomorphic, then X and Y are homeomorphic 
by the previous theorem. If h is a homeomorphism from X onto y , then 9 is an 
isomorphism from S(X) onto S(Y) where (D(/) = h o / o li-1. • 

In view of Corollary 3.2, there is a one-to-one correspondence between the class 
of all O-dimensional spaces and their semigroups of continuous selfmaps with finite 
ranges. In other words, we have here a rather extensive class of mutually nonisomor-
phic semigroups. And yet, they all share a number of similar properties as the next 
several results indicate. We wish to determine Green's relations for these semigroups 
and this can be done directly without appeal to other results. But it can also be 
done quite easily by appealing to some general results already in the literature after 
a few definitions are introduced and this is the direction we choose to take. In what 
follows, T(X) is any semigroup of selfmaps of a set A" and T(X)1 — T(X) U {6} 

where 6 is the identity map. 

Definition 3.3 . Let A,B £ X. An element / £ T(N)1 is said to map A T-
isomorphically onto B if f[A] C B and there exists a g £ T(A')1 such that g[B] C A, 
fog\B — S\B and gof\A — S\A. In this case, we say that A and B are T-isomorphic 
and that f\A is a T-isomorphism from A onto B. 
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Definition 3.4. A subset A of A" is a T-retract of X if it is the range of an 

idempotent of T(X)1. 

Since we are dealing in this section with O-dimensional Hausdorff spaces, the 
FH-retracts here are precisely the finite subsets of X and / maps a subset A FR-

isomorphically onto a subset B if and only if both A and B are finite and / maps A 

bijectively onto B. Consequently, two subsets of X are FH-isomorphic if and only 
if they are finite and have the same number of elements. For any function / , let 

TT(/) = {f-x(y): y G Ran(/)}. The symbols %, @, Jf', Q) and J denote the usual 
Green's relations. 

Theorem 3.5. Let X be a O-dimensional Hausdorff space and let f,g£ FR(X). 
Then fJzfg if and only if n(f) = n(g), f&g if and only if Ran(/) = Ran(g) and, 
consequently, fJ^g if and only if n(f) = 7r(g) and Ran(/) = Ran(g). 

P r o o f . This is an immediate consequence of Theorems 2.6 and 2.7 of [5]. D 

Theorem 3.6. Let X be a O-dimensional Hausdorff space. Then the following 

statements about f, g G FR(X) are equivalent. 

(3.6.1) / and g are $)-equivalent. 

(3.6.2) / and g are J?-equivalent. 

(3.6.3) Ran(f) and Ran(g) have the same number of elements. 

P r o o f . Theorem 2.11 of [5] tells us that f2>g if and only if Ran(/) and Ran(g) 
are Fit-isomorphic and Theorem 2.12 of [5] tells us that / J' g if and only if the 
range of each contains an Fit-retract which is FiZ-isomorphic to the range of the 
other. The FH-retracts are precisely the finite subsets and two subsets of X are 
FH-isomorphic if and only if they are finite and have the same number of elements. 
It is now apparent that (3.6.1), (3.6.2) and (3.6.3) are all equivalent. D 

Theorem 3.7. Let X be an infinite O-dimensional Hausdorff space and let J 
be a proper ideal of FR(X). Then there exists a positive integer N such that 
J = {/ G FR(X): | Ran(/) | ^ IV}. Moreover, J is a principal ideal. 

P r o o f . Theorem 2.12 of [5] tells us that g G FH(K)1 o / o FH(K)1 if and only 
if Ran(g) is FH-isomorphic to an FH-retract contained in Ran(/), or alternatively, 
if and only if | Ran(g)| ^ | Ran(/) | . It follows that {| Ran(/) | : / G J} has a greatest 
element IV and J = {/ G FR(X): | Ran(/) | ^ IV}. Furthermore, J is generated by 
any / such that | Ran(/) | = IV. • 
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In our concluding result, we describe the maximal subgroups of FR(X). 

Theorem 3.8. Let X be an infinite O-dimensional Hausclorff space. Then each 

maximal subgroup of FR(X) is isomorphic to the full symmetric group on a finite 

set. Conversely, each full symmetric group on a finite set is isomorphic to a maximal 

subgroup of FR(X). 

P r o o f . Corollary 2.10 of [5] tells us that every maximal subgroup of FR(X) is 
isomorphic to FH-automorphism group of an FH-retract of X and conversely, every 
FH-automorphism group of an FH-retract of X is isomorphic to a maximal subgroup 
of FR(X). But the FR-automorphism groups of FP-retracts of X are precisely the 
full symmetric groups on finite subsets of X. • 

Acknowledgement. In conclusion, I would like to express my appreciation to 
the referee for a very careful reading of the first version of this paper which resulted 
in the detection of some errors. 
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