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A CONTINUOUS SEMICHARACTER 

VLADIMÍR KORDULA and VLADIMÍR MULLER, Praha 

(Received January 20, 1994) 

We exhibit an example of a continuous proper semicharacter on a Banach algebra. 

This gives an answer to the problem posed by Z. Slodkowski and W. Zelazko. 

A semicharacter on a Banach algebra A is a complex-valued function / defined 

on A such that, for every commutative subalgebra An C -4, the restriction f\Ao is 

a multiplicative linear functional (= character) on AQ (we do not assume continuity 

o f / ) . 

Multiplicative linear functionals play an important role in the theory of gener

alized spectra (see [3], [6], [2]) in commutative Banach algebras. As generalized 

spectra in non-commutative Banach algebras are defined only for commuting sys

tems of elements, it is natural to replace multiplicative linear functionals in the 

non-commutative case by semicharacters. 

However, usually it is rather difficult to find a proper semicharacter (i.e. a 

semicharacter which is not a character). Note that a linear semicharacter is clearly 

continuous and by [5] it is already multiplicative, so that it is a character. In [4] the 

problem was raised whether a continuous semicharacter is already a character. 

The aim of this note is to give a negative answer to this question. 

Theorem. There exist a Banach algebra B and a continuous semicharacter f: 

B -» C which is not a multiplicative linear functional. 

P r o o f . Denote by (R+ the set of all positive real numbers and by D = {z € 
C, 12:| < 1} the open unit disc in the complex plain. Let A be the disc algebra of all 
functions holomorphic in D and continuous in D. For a G A denote ||a|| = max |a(z)|. 

zeD 
Set B = A x A. We define the norm and the algebraic operations in B by 

ll(«,ь)ll = IHI + l|Ь||, 
(a,b) + (a',b') = (a + a',b + b'), 

133 



a(a,b) — (aa, ab), 

(a,b) • (a',b') = (aa',ab') (a,b,a',b' e A, ae C). 

In this way B becomes a Banach algebra. 

Let (a,b),(a',b') G B. Then ( a , b ) > ' , b') = (aa',ab') and (a',b')-(a,b) = (a'a,a'b) 

so that (a, b) and (a', b') G B commute if and only if ab' = a'b. Thus B has only few 

commutative subalgebras which are easy to describe. 

For n G N, A = (A2 , . . . , An) G Dn, r = ( n , . . . , r n) 6 R!f. and s > 0 we denote 

F\,r,s = {z € D,\z\ ^ 1 - s,\z - \i\ ^ r{ (i = V . . . , n)}. 

Clearly FA,r,s is a closed subset of D. Let k > 0 and 0 < s < | . Denote by Mk,s the 
set of all pairs (a, b) G B for which there exist n G N, A = (Ai , . . . , An) £ D n and 

n 

r = ( r i , . . . , r n ) G (R+ such that ]T r; < s and 
2 = 1 

Z Є Ғ ; ̂
ł Г ' S a(z) ф 0 and 

Ь(-) 

a(z) 
<k. 

Clearly, if Yl ri < s < | t n e n ^Vr>s *s a non-empty subset of D so that (a, b) G 
i = i 

Mfc,s implies a ^ 0. On the other hand, if a / 0 then (a,0) G M fc jS for every k > 0 

and 0 < s < | . Indeed, a has only a finite number of zeros Ai,..., An in the disc 
n 

{z G C, |z| ^ 1 - s} so that for any positive numbers r i , . . . ,rn with ^2 ri < s we 
i = l 

have z G PA,r,s => «(^) 7̂  0. 
Further, Mk,s C Mfct,s/ if k < k' and s < s'. 

1. If k > 0 and 0 < 5 < \ then Mk,s is an open subset of B. 

P r o o f . Let (a,b) G M fc,s. Let A = (A l 5 . . .,An) G Dn and r = ( r i , . . . , r n ) G (R£ 

satisfy ]C r* < 5 an (* * ^ ^V,s => a(z) i1 0 and 
i = i 

Ңz) 
a(z) 

< k. Denote by 

ko = niax 
zЄFx,r,* 

Ъ(z) 
< 

a(z)\ 

ki = max{||a||, ||b||} and 

k2 = min \a(z)\ > 0. 
z€FX,r,s 

Set 5 = min{k2/2,(k - Ao)fc|/2fci} > 0. Let (a',b') G 5 , ||(a,b) - (a',b ')|| < 8, 

i.e. ||a - a'|| + ||b - b'|| < 5. Then, for z G FA,r,s, we have 

\a'(z)\^\a(z)\-6^k2-^- = ^>0 
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and 

\b'(z) 

a'(z) 
< 

b(z) 

\a(z) 

<k0 + 

+ 
b'(z) b(z) 

a'(z) a(z) 
kxò 

<.k0 + 
a(z)(b'(z) - b(z)) + b(z)(a(z) - a'(z)) 

a'(z)a(z) 
2 k i ó ^ , 

k2(k,-ô)^k0 + ~kf^k-

Thus (a',b') G MkjS and Mk,s is an open subset of B. • 
2. Let (a,b) e Mk,s and let (a',b') G B satisfy a' ^ 0 and a'b = b'a. Then 

(a',b')eMk,s. 

P r o o f . Let A = (Xx,..., Xn) G Dn and r = (rx,..., rn) G R£ satisfy J2 ri < s 

and 
ѓ = l 

ZЄ F; X,r,s a(z) ф 0 and 
b(z) 

a(z) 
<k. 

The function a' has only a finite number of zeros X[,..., A^ in the disc {z G C, \z\ ^ 
m n 

1 - s}. Choose positive numbers r[,... ,r'm such that Yl r'j < s ~ S ri- Consider 
j=l i=l 

the set 

F = {zeD,\z\^l-s,\z-Xi\^n (i = 1,. . . , n), \z - X'j\ > r) (j = l,..., m)}. 

n m 

Then ^ n -f- J2 rj < 5 a n <^ 
z=l j = l 

z E Ғ -=> a'(z) Ť-- 0 and 
ò'(2) 
o'(z) = 

Ъ(z) 

a(z) 
<k. 

Hence (a',b') G M fc,s. D 

3. Let k, k', s, s' be positive numbers such that k < k' and s < s' < | . Then 

MkìSП{(а,b) Є B,афO} C Mk>ìS 

P r o o f . Let (a, b) G Mfc)S and a / 0. The function a has only a finite number of 
zeros Ai , . . . , A^ in the disc {z G C, \z\ ^ 1 - s ' } . Choose positive numbers Ti,... , r ^ 

n 
such that XI r j < s' - s. Consider the set 

j=i 

Fx>,r>,s> = { ^ G D , | ^ 1 - s', \z -\'j\> r'j (j = 1,.. .,m)}. 

Denote 
ki = max{||a||, ||b||} and 

k2 = niin \a(z)\ > 0. 
sGPV,,./,.,/ 
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Let 6 = min{k2/2,(k ' - k)k%/2ki} > 0. Then there exists (a', 6') G MKs such that 

IKa',6') - (a, 6)|| = \\a - a'|| + ||6 - 6'|| < 5. This means that there exist n G N, 
n 

A = (Ax,..., An) G Dn and r = ( n , . . . , r n ) G RJ such that X] U < s and 
i = l 

zeFx a'(z) ф 0 and 
b'(z) 

a'(z) <к. 

Then for z G FA,r,s n FA',r',s' we have a(z) / 0 and 

b(z) 
a(z) 

< 
6'(z) 
a'(z) 

+ 
b(z) b'(z 

a(z) a'(z) 
< к + 

b(z)(a'(z) - a(z)) + a(z)((b(z) - b'(z)) 

a(z)a'(z) 

<к + 
Һ6 2кjó 

k2(k2-б)^к + lą-^к-

Hence (a,6) G Mfc',s'. 

Denote H0 = {(a, 6) G 5 , a ^ 0 } . 

4. There exists a non-constant continuous function (D: B0 —> (0, | ) sticJi that 

(a, 6), (a', 6') G B0, ab' = ba' =* <D(a, 6) = <p(a', 6'). 

D 

P r o o f . For (a, 6) G I?0 define 

V?(a,6) = 
\ if (a, 6)0 IJ Ms,„ 

0 < s < | 

inf {s, (a, 6) G M s, s} otherwise. 

Clearly, by 2., (D(a, 6) = (^(a',6') if a6' = a'6. The function </? is non-constant since 

(/}(1,0) = 0 and (D(l, 1) = ^. The proof of continuity of (D is standard. Let s0 G (0, ̂ ) . 

Then 

{(a, 6) G H0,^(a,6) < s0} = ( J M s , s , 
S < S ( ) 

which is an open subset of B0- If s0 € (0, \) then 

{ ( a , 6 ) G B o , v ( a , 6 ) < s 0 } = f | Ms,s = f ) ( M 7 7 n B 0 ) , 
S > S Q S>S( ) 

which is a closed subset of H0- Thus <p is a continuous function. 
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Define a function / : B -+ C by 

_ f 0 ifa = 0, 
/ ( a ' ) _ \a(tp(a,b)) i f a / 0 . 

We show that / is a proper continuous semicharacter. 

5. Let x = (a, b) e B and a G C. Then f(ax) = af(x). 

P r o o f . This is clear if a = 0 or a = 0. If a / 0 and a / 0, then ip(x) = 

<p(ax) = to so that f(ax) = f(aa,ab) = a • a(to) = af(x). D 

6. Let x = (a,b),x' = (a',b') e B be commuting elements. Then f(x + x') = 

f(x) + f(x') and f(xx') = f(x) • / (* ' ) . 

P r o o f . We have ab' = a'b. We distinguish several cases: 
a) If a = 0 and b = 0, then f(x) = 0 = f(xx') so that the statement is clear. 
b) If a = 0 and 6 / 0, then a' = 0 so that / (x) = f(x') = f(x + x') = f(xx') = 0. 

c) If a' = 0, then the statement can be proved analogously. 
d) The remaining case is a ^ 0, a' ^ 0. Then 

<p(a,b) = (D(a',b') = (p(aa',ab') = to, 

so that 

f(xx') = (aa')(t0) = a(t0)a'(to) = f(x) • f(x'). 

Further either a = —a' so that b = — b' and f(x + x') = f(x) + f(x') = 0, or 

a + a' ^ 0 so that (p(a + a', b + b') = to and 

/ ( * + x') = (a + a')(t0) = a(t0) + a'(t0) = f(x) + f(x'). 

Hence / is a semicharacter. D 

7. / is a continuous semicharacter. 

P r o o f . Let x = (0,6). Then f(x) = 0. If x' = (a', b') G B then either a' = 0 so 
that f(x') = 0, or a' / 0 so that | / (x , ) | = |a/((p(x/))| ^ ||a'||. In both cases we have 
\f(x!) — f(x)\ ^ ||x' — x||, hence / is continuous at x = (0,b). 

Let x = (a,b) where a / 0 and let e > 0. Find S > 0 such that \t — ip(x)\ < 
6 -=> |a(i) — a(<p(x))\ < e/2. From the continuity of (D it is possible to find a positive 
number S\ < e/2 such that 

\\x' - x\\ <Si => x' e Bo and \<p(x') - cp(x)\ < S. 
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For x' = (a', b') G 5 , \\x' - x\\ < 6\ we have 

\f(x') - f(x)\ = \a'(<p(x')) - a(<p(x))\ ̂  \a'(<p(x')) - a(<p(x'))\ + \a(v(x')) - a(y(x))\ 

^ \\a' - a|| + e/2 < \\x' - x\\ + e/2 < _. 

Hence / is a continuous semicharacter. D 

It remains to show that / is not a multiplicative linear functional. To this end 
consider x = (1,0) and x' = (z,z). Then x'x = (z,0), y(x) = 0, <p(x') = £ and 
<p(x'x) = 0 so that f(x) = 1, f(x') = | and f(x'x) = 0^ f(x) • f(x'). " D 

Remark 1. The above constructed algebra B has no unit element. If we consider 
its unital extension B\ = B © {Ce} then / : B -> C can be extended to a proper 
continuous semicharacter f\: B\ —> C by f\(x + Xe) = f(x) + X (x e H, A G C). 

Problem. Suppose that / is a uniformly continuous semicharacter on a Banach 
algebra A, i.e., for some constant k we have \f(x)-f(x')\ ^ k- \\x-x'\\ (x,x' G .4). 
Does it follow that / is a multiplicative linear functional? 

Remark 2. If / is a semicharacter on a Banach algebra A such that z -> f(a+bz) 
is a holomorphic function for every a, b G _4, then / is already a multiplicative linear 
functional. Indeed, function (D: z —> f(a + bz) - f(a) — z • /(b) is holomorphic and 
<p(0) = 0 so that 

V i : , _ , _ _ f ) = / ( 6 + _ ) _ M _ / ( 6 ) ( ^ o ) 
z V zl z 

extends to an entire function and lim <pi(z) = 0. Thus ^>\(z) = 0 for every : ^ C . 
_—>• co

in particular, 
0 = <p\(l)=f(a + b)-f(a)-f(b) 

so that / is a linear functional, i.e. a semicharacter. 

Remark 3. A notion analogous to semicharacters is that of a quasilinear func
tional on a Banach algebra A (= a bounded function which is linear on each commu
tative subalgebra of A). This notion, which is motivated by quantum physics, has 
been studied intensively in the context of C*-algebras, see [1]. 

138 



References 

[1] L. J. Bunce, J. D. Wright: The quasi-linearity problem for C*-algebras. Pacific J. Math. 
To appear. 

[2] R. E. Curto: Applications of several complex variables to multiparameter spectral the
ory. Surveys of some recent results in operator theory, Res. Notes in Math., vol. 192. 
J. B. Conway and B. B. Morrel, London, 1982. 

[3] Z. Slodkowski, W. Zelazko: On joint spectra of commuting families of operators. Studia 
Math. 50 (1979), 127-148. 

[4] Z. Slodkowski, W. Zelazko: A note on semicharacters. Banach center publications, Vol. 
8, Spectral Theory, Polish Scientific Publishers, Warszawa 1982. pp. 397-402. 

[5] W. Zelazko: A characterization of multiplicative linear functionals in complex Banach 
algebras. Studia Math. 30 (1968), 83-85. 

[6] W. Zelazko: An axiomatic approach to joint spectra I. Studia Math. 64 (1979), 249-261. 

Authors' address: Institute of Mathematics, Academy of Sciences of the Czech Republic, 
Zitna 25, 115 67 Praha 1, Czech Republic. 

139 


		webmaster@dml.cz
	2020-07-03T10:40:00+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




