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Czechoslovak Mathemat ica l Journal, 46 (121) 1996, P r a h a 

EXTENSION THEOREMS 

(VECTOR MEASURES ON QUANTUM LOGICS) 

ANNA AVALLONE, Potenza, and J A N HAMHALTER,1 P r a h a 

(Received June 2, 1994) 

INTRODUCTION AND PRELIMINARIES 

Vector valued measures and their extensions have been widely studied by many 
authors (see e.g. [1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 19, 20]). The aim of this paper is to 
complete and generalize known results concerning extensions of various types of vec
tor and group-valued measures defined on Boolean algebras to larger orthomodular 
structures. 

Our discussion falls into three parts. The first part is devoted to extensions 
of orthogonal measures. (Measures of this type play important role in the non-
commutative probability theory and foundations of quantum physics—see e.g. [4, 14] 
for systematic treatment.) It has been proved in [12] that, if H is a finite dimensional 
Hilbert space and L is a logic, then the condition that L is H-rich (i.e. L has enough 
H-valued orthogonal measures) is equivalent to the following extension property: 
for any Boolean subalgebra B of L and any orthogonal measure m: B --> H, there 
exists an orthogonal measure m: L -> H extending m. We show that, if H is infinite 
dimensional, then the condition of H-richness is not sufficient for the above exten
sion property In this connection we prove general extension theorem for orthogonal 
measures having values in arbitrary Hilbert space. As a corollary we show that every 
orthogonal measure on a Boolean subalgebra of the projection logic P(M) of a von 
Neumann algebra M extends to an orthogonal measure on P(M) with values in some 
(generally larger) Hilbert space. 

In the second part of this note we study extensions of vector measures defined on 
the centre of a given orthomodular lattice L. In this special case we can get extension 
result without assuming that L has a large set of measures. In particular we prove 
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the following extension theorem: Let stf be a Boolean subalgebra of the centre C(L) 
of an orthomodular lattice L and let X be a Banach space with the Radon-Nikodym 
property. Then every (finitely additive) measure \i: sz/ -> X of bounded variation 
admits bounded extension over L provided that there is a finitely additive measure 
v: L -> [0, oo[ such that // is v^-continuous. Let us remark that a similar result has 
been proved in [19] in the situation when X — P, sz/ is O-complete, L>, is O-additive 
and v is a valuation. 

The concluding part of the paper deals with extensions of vector and group-valued 
measures defined on set-representable logics. It is proved e.g. that every bounded 
finitely additive measure /J: sz/ -> X, where &/ is a Boolean algebra and X is a 
normed space with predual, has a bounded extension jl: $ -> X over any Boolean 
algebra S8 containing srf such that s/ is //-dense in &8. In particular, if A" is a Hilbert 
space and Lt is orthogonal, then the extension jl is orthogonal, too. Moreover, we 
prove that every s-bounded measure on a Boolean algebra s/ with values in some 
Banach space, has finitely additive extension to any concrete logic containing sV as 
subalgebra. These results considerably generalize results of [11] and [12]. 

Here we fix some notations and recall basic definitions. (For the general theory 

of quantum logic we refer to [18], for the theory of operator algebras we refer to 

[15].) A (quantum) logic is a set L endowed with a partial ordering ^ and a unary 

operation ', such that the following conditions are satisfied: 

(1) L has a least and a greatest element 0 and 1, respectively 
(2) a ^ b => b' ^ a' for any a, b G L. 
(3) (a1)' = a for any a G L. 
(4) a V b exists in L whenever a, b G L and a ^ b'. 

(5) a V a' = 1 for any a G L. 

(6) b = a V (b A a') whenever a, 6 G L and a ^ b. 

Elements a,b G L are said to be orthogonal (in symbol a _1_ b) if a ^ b'. A logic 
K is said to be a sublogic of a logic L if K C L and if the ordering, the greatest 

element, the least element, the orthocomplementation operation and the formation 
of suprema of orthogonal elements coincide for K and L. 

If L is a lattice it is called orthomodular lattice. The centre C(L) of an orthomod
ular lattice L is the set of all elements ae L such that x A (a V y) = (x/\a)V(xA y) 

for every x, y G L. 

By a measure on a logic L we mean a finitely additive function (i.e. a function 
which is additive with respect to finite sets of mutually orthogonal elements) with 
values in some topological group G. 

We say that a measure fi: L -> G is completely additive (resp. <r-additive) if, for 
any system (resp. countable system ) of mutually orthogonal elements {a{: i G 1} 
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of L, for which the supremum V a; exists in L, the family {//(a*): i G I} is summable 
iei 

and /L( V aA — ^ /x(O;) in G. State 5 (probability measure) on a logic L is defined 

as a measure with values in the set of positive real numbers such that s(l) = 1. A 
logic L is said to be unital if for every nonzero a £ L there is a state s of L such that 
s(a) ^ 0. 

Let srf be a Boolean algebra, (G, r) a topological group and /z: srf -» G a measure. 

Then the family ^W(O) = {a £ ^ : /x(^ A a) C IV}, where VV runs through a 
0-neighbourhood base of G, is a 0-neighbourhood base of a group topology in &/, 

called the /I-topology. We say that // is s-bounded if fi(an) —J> 0 in r for every disjoint 
sequence (an) in .G/. If G = H, then // is s-bounded if and only if it is bounded. In 
the following, we denote by |/i| the total variation of /x and we set ||/x|| = |/i|(l). If L 

is a logic and H is a Hilbert space, we say that a function JI: L —•> H is orthogonal if 
a Lb implies (/x(a),//(&)) = 0, where (•, •) denotes the inner product in H. We denote 
by R(IJL) the closed subspace of H generated by the range of JJL. 

Important examples of measures are measures defined on set representable logics 
and projection lattices of operator algebras (see e.g. [6] for relevance of these measure 
in the formalism of quantum theory). By a concrete logic (5, A) we mean a system 
5 of subsets of the set A ordered by the set inclusion and satisfying the following 
conditions: 

(1) 0G A. 
(2) If A G A, then 5 \ A G A. 
(3) If .4, B G A and A n B = 0, then A U B G A. 

The orthocomplementation in (5, A) is given by the set complement. 
Throughout the paper let B(H) denote the set of all linear bounded operators on 

a Hilbert space H and let L(H) be the logic of all the projections on H. (Projection 
is defined as a self-adjoint idempotent operator.) A *-subalgebra srf of B(H) (i.e. a 
subspace of B(H) closed with respect to the multiplication and adjoints) is called 
von Neumann algebra if st = (stf1)', where, for <2> C B(H), we set £?' = {F G B(H): 
F5 = 5 F f o r a l l 5 G _?}. 

We say that T G B(H) is a Hilbert-Schmidt operator if £ ||FCa||2 < +oo for 

some (and therefore for any) orthonormal basis {ea: a G / } of H. 

1. EXTENDING ORTHOGONAL MEASURES TO LOGICS 

In this section, we give a counterexample concerning a result of [12] and we prove 
an extension theorem for orthogonal measures with values in arbitrary Hilbert space. 
We then apply this theorem to projection logics. 
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Throughout this section H will denote a Hilbert space and L a logic. The following 

state-space property of L has been introduced in [12]. 

Definition 1.1. We say that L is H-rich if, for any finite sequence of non-
n 

negative numbers {a*: i ^ n} such that ^ cti = I and any set {a;: i ^ n} of 
mutually orthogonal nonzero elements in L, there is an orthogonal measure s: L —> H 

such that ||s(a;)||2 = OLI for each i ^ n. 

For example every concrete logic and the Hilbert-space logic L(H) are H-rich. 
The following result ties H-richness with extension property. 

Theorem 1.2. ([12]) Let H be finite dimensional. Then the following conditions 

are equivalent: 

(1) L is H-rich. 
(2) For any Boolean subalgebra B of L and any orthogonal measure m: B —> H, 

there is an orthogonal measure m: L —> H such that m(b) = m(b) for any 
beB. 

If H is infinite dimensional, the condition (1) is again necessary for (2). 

The following example shows that, in general, (1) is not sufficient for (2). 

Example 1.3. Let H be an infinite dimensional separable Hilbert space. Then 
there exists a Boolean subalgebra B of L(H) and an orthogonal measure m: B —> H 
which has no extension to an orthogonal measure m : L(H) —> H. 

P r o o f . Let {en} be an orthonormal basis of H and B C L(H) be the Boolean 
algebra of all projections which project on closed subspaces of the form sp {e*: i G F}, 
where F is either finite or cofinite subset of N. 

Let s be a two-valued measure on B defined by s(P) = 1 if P G B projects on 
cofinite dimensional space and s(P) = 0 otherwise. Choose a unit vector UGH and 
set m(P) = s(P)v for P G B. Then m: B -> H is an orthogonal measure which 
is not O-additive. But according to [9], every orthogonal measure on L(H) with 
values in a separable Hilbert space has to be O-additive. So ??i has no extension to 
an H-valued orthogonal measure on L(H) • 

Example 1.3 shows that it is not possible, in general, to extend given orthogonal 
measure to an orthogonal measure with values in the same Hilbert space. Never
theless, by allowing enlargement of ranges, we can obtain the following extension 
theorem for every logic with enough orthogonal measures. 

For this let us first observe that every orthogonal measure m: L —> H is bounded. 
Indeed, for every a G L, we have the following inequalities: 

| |m(a) | | 2<| |m(a) | | 2 + ||m(a')||2 = | |m(l)| |2. 
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Theorem 1.4. Let L be a unital logic such that for every state s on L there is 

a Hilbert space H and an orthogonal measure m: L -> H such that s(a) = | |m(a) | | 2 

for every a G L. 

Let B be a Boolean subalgebra of L and m: B —•> H be an orthogonal measure. 

Then there is a Hilbert space K containing H as a Hilbert subspace and an orthogonal 

measure m: L —» K extending m. 

P r o o f . Since every orthogonal measure is bounded, there is no loss of generality 

in assuming that | |m(l) | | = 1. Let s be a state of B defined via equality s(a) = 

\\m(a)\\2 (a G B). By [17], s extends to a state s on L. So that we can find an 

orthogonal measure m on L with values in some Hilbert space F such that | |m(a) | | 2 = 

s(a) for every a G L. 

Define a mapping U: {m(F): P G B} -> {m(P): P G B} by setting 

U(m(P)) = m(P) for F G B. 

We show that U is well defined and extends to a unitary mapping (denoted again by 

U) of sp { m(P): P G B} onto sp { m(P): P G B}. 
n 

Indeed, if J2 &im~(Pi) — m(Q) (where ai G C, Fi,Q G B, 1 ^ % ^ n), then, using 

the equality 

(m(P),m(Q)) = \\m(P A Q)\\2 = s(P A Q) 

= ||m(PAQ)||2 = (m(P),m(Q)) (P,Q <E B), 

we obtain 
n 2 n 2 / n \ 

YJ^MPi)-m(Q) =\J2^MPi)] +||m(Q)||2-2Ref ^a;m(Pf).™(Q)) 
i=i I II i=i I ^ i=i ' 

n 

Yjaim(Pi)-m(Q) 
І=l 

= 0. 

Let K be a Hilbert space such that K D H and dim K ^ dim F. Let us extend U to 

a unitary mapping of F into K (we put U|^,_)± = V, where V is a unitary mapping 

of Rijfi)1- into It(m)-1-). Then the mapping m = U o m is the required extension of 

m. The proof is complete. • 

Let us remark that logics for which every state is representable by an orthogonal 

measure has been studied and characterized in [5, 13]. This class involves e.g. dis

tributive sum logics investigated in [13]. 
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Modifying slightly the proof of Theorem 4.1 we can also get that extension property 
for a logic L expressed in Theorem 1.4 is in fact equivalent to the following condition: 
For every state s on a given Boolean subalgebra B of L there is an orthogonal measure 
m: L -> K such that ||m(O)||2 = s(a) for every a G B. This provides an infinite 
dimensional analogy of Theorem 1.2. 

Corollary 1.5. Let B be a Boolean subalgebra of the projection logic P(M) 
of a von Neumann algebra M. Let m: B -> H be an orthogonal measure. Then 
there exist a Hilbert space K containing H (as a Hilbert subspace) and an orthog
onal measure m: P(M) -> K which extends m. Moreover, if B is complete, m is 
completely additive and H is infinite dimensional, then m can be taken completely 
additive and with values in H provided that M acts on H. 

P r o o f . Again we can assume that the measure s defined by s(P) = | |ra(P)||2 

(P G B) is a state. By standard construction, s can be extended to a positive linear 
functional on sp B and then (Hahn-Banach theorem) to a positive linear functional 
s on M. 

Making use of the G.N.S.-construction (see e.g. [15]), we infer that there exists a 
Hilbert space F and a representation 7r of M into B(F) such that 

s(P) = (TT(P)X,X) for all P G M, 

where a: is a suitable unit vector of F. The mapping m: P G M -> TT(P)X is an 
F-valued orthogonal measure on P(M). So that we obtain an extension s of 5 
represent able via orthogonal measure m in the sense of Theorem 1.4. We can now 
proceed in the same way as in the proof of Theorem 1.4 and get required extension. 

Now let B be complete and m completely additive. Then 5 extends to a nor
mal functional of the von Neumann algebra generated by B and s above can be 
taken normal (Hahn-Banach theorem for the weak-* topology). Hence, the G.N.S. 
representation n of s is normal and m defined above is completely additive. 

According to [7, 8] every completely additive orthogonal measure is unitarily equiv
alent to some orthogonal measure with values in c2(H) 0 c2(H), where c2(H) is the 
Hilbert space of all Hilbert-Schmidt operators acting on H. Since c2(H) © c2(H) is 
an isomorphic copy of H, we can set (upon obvious identification) K = H in the 
construction of the proof of Theorem 1.4. The proof is complete. • 

As Example 1.3 shows, enlargement of the range in the above corollary is, in 

general, necessary 
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2. EXTENDING VECTOR MEASURES FROM THE CENTRE 

In this paragraph we study extensions of Banach-space valued measures defined 

on the centre of an orthomodular lattice. 

Throughout this section let L be an orthomodular lattice and X a Banach space. 

Let C be a Boolean subalgebra of the centre C(L) of L. 

Let v: L —•> [0, +00[ be a measure. We set va(x) = v(x A a) for each a,x G L. 

Moreover, for every Boolean subalgebra s/ of L, we put 

Su(s/) = I ^2/OiiVa, : n eN,a{ e X,a{ e s/l. 
^ i=i ' 

Then Su(s/) is a linear subspace in the space of K-valued functions defined on srf. 

If //: s/ -» X is a measure, we say that \x is v\^-continuous if, for every e > 0, 

there exists d > 0 such that, if v(a) < 5, with a G s/. then ||/i(a)||x < e- In the 

sequel we will use the following notation. If 7 G SU(C), we set \^\ = \*y\c\ and 

INI = |7l(i)-

Remark 2.1. For every c G C(L), vc: L -» [0, -f 00[ is a measure. 

First we remark that 

(*) a, b G L, a±b => (a A x)±(6 A y) for every x,y e L. 

Indeed, a A x ^ a ^ b' ^ // V y' = (b A H)'. 

Now let c G C(L) and a,b G L such that a_Lb. Then, from (*), we obtain 

vc(a V b) = v(c A (a V b)) = v((a A c) V (b A c)) = 

= tv(a A c) + D"(b A c) = .vc(a) + Z'c(6). 

Remark 2.2. If 7 G 5^(0), then there exist m G N, 0i,...,0m G K and 
b\,...,bm G C, with bi V . . . V bm = 1 and bi-L6j for every i ^ j , such that 

m 

y(x) - zC 0ivbi(x) for every x G L. 
i = l 

This statement can be proved easily by standard rewriting simple function on a 

Boolean algebra (in its set representation) as a linear combination of characteristic 

functions of disjoint sets. 

Lemma 2.3. If 7 G SU(C), then \\j(x)\\x ^ \\-y\\ for all x G L. 
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P r o o f . Let 7 = ~~ aiua-, £ SU(C). From the Remark 2.2, we can suppose 
i = l 

Oi V . . . V an = 1 and Oi-LOj for every i 7-̂  j . 

Let C, li and ft, be the Stone algebra, the Stone map and the Stone space of C, 
correspondingly. Moreover, for A G C, let 

D(A) = i / ^ " 1 ^ ) ) and 7(A) = 7 ( /T 1 (A ) ) . 

n 

Set / = ]>~ cYiX/l(ai)- Then / is a C-simple function and {h(at): i ^ n) is a partition 
i = i 

of ft in C. We have, for A G C, 

7 ( - 4 ) - " 7 ( b " 1 ( ^ ) ) = £<*!/(<*< A ft"1^)) 
i = l 

n 

= ^ a ^ / l ( a . ) ( A ) = / /dz>. 
t = i J A 

Then, if c G C, it follows from [3, Lemma 15, page 109], that 

M(c) = |7|(ft(c)) = / ll/Uxdz) 
Jh(c) 

n n 

= ^ | | a i | | x i > ( / l ( a i ) n / i ( c ) ) = ^ | | a i | U ^ ( c ) . 
1 = 1 

Therefore, if x G L, 

IM-Ollx < £ IKlUKai A 1) ÍC J2 I M * K « Í ) = IITII-
i = l 1=1 

D 

Proposition 2.4. Suppose that X has the Radon-Nikodym property. Let sz/ 

be a Boolean algebra, X: srf -r [0, +oo[ a measure and u.: sz/ -* X a X-continuous 

measure of bounded variation. Then there exists a sequence {u,n} C S\(sz/) such that 

/jb(a) — limLtn(a) in X uniformly (with respect to a e sz/) and lim ||Ltn - fim\\ = 0. 
n n,m 

P r o o f . Let sz/ be the Stone algebra of sz/ and h: sz/ —> sz/ the Stone map. We 

define, for A G sz/, 

ft(A) = M / r 1 ^ ) ) and X(A) = X{lrl(A)). 

186 



Thus,/} is a A-continuous K-valued measure of bounded variation. Denote by o(sz/) 

the O-algebra generated by srf, by ba(sz/) and ca,(o(sz/)) respectively the linear space 
of all bounded real-valued measures on srf and the linear space of all real-valued 
O-additive measures on o(sz/), and by bva(.£/,K), bvca(O(^/), X) respectively the 
linear space of all X-valued measures of bounded variation on srf and the linear 
space of all K-valued O-additive measures on o(&/) of bounded variation. Let 

T: b v a ( ^ K ) -> bvca(cr(^), X) 

and 
S: b a ( ^ ) -> ca(O(^~)) 

be the standard isomorphisms (see [2], Theorem 7, page 30). Set /Z = Tfi and 
A = S\. Then Ji is A-continuous. Denote by L\(o(srf), A) the space of all K-valued 
A-integrable functions. By assumption, there exists / G L\(o(srf), A) such that 

-jj(A) = / /dA for every A G o(sz/). 
J A 

From [3] (Theorem III.8.3), there exists a sequence {/n} C S(sz/) such that 

fi(A) — lim / / ndA in X 
n J A 

uniformly with respect to A £ sz/ and 

lim / | | / n - / , n | | d A = 0. 
n,m J 

For each n G N, set 

fin(A) = / / ndA and fin(a) = jxn(h(a)) 
J A 

for each A e sz/ and a G &/. Then /in G S\(sz/) and 

\\mnn(a) = lim / fn dA = fi(h(a)) = /x(a) 
n A(a) 

for every a G / Moreover (see [3, Lemma III. 2 A 5]) 

lim \\/in - / j m | | = lim ||/ln - / im | | = lim / | | /n - / m | | x dA = 0. 
n,m n,m n,m J 

D 
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Theorem 2.5. Suppose that X has the Radon-Nikodym property and let u0: 

C —> X be a v\c-continuous measure of bounded variation. Then there exists a 

bounded measure /.i: L -» X, which extends u,0. 

P r o o f . From the proposition (2.4), there exists a sequence {lIn} Q SU(C) such 
that JJ0(X) = lim iin(x) uniformly for x G C and lim ||/In — //.m|| = 0. Moreover un 

n n,7?i 

are measures on L and, from Lemma 2.3, 

||/Jn(T) - llm{x)\\x ^ ||ltn ~ / i m | | 

for every x G L. 

Set u.(x) = \imp,n(x) (x G L). Then ji: L —•> Ar is a bounded measure and 

/j(x) = /./o(a-) for every x G C The proof is complete. D 

3 . EXTENDING MEASURES TO BOOLEAN ALGEBRAS AND CONCRETE LOGICS 

In this section, we prove some extension theorems for measures on set represent able 

logics. 

In the sequel, we will denote by X and X' a normed linear space and its topological 
dual, respectively. 

We will use the following deep result (see a result of Lipecki in [16] and its refor
mulation in [20]). 

Theorem 3.1 [16, 20]. Let G be a commutative Hausdorff topological group 

and let M C G be a complete set in G. Moreover let s/0 be a Boolean subalgebra 

of a Boolean algebra s/. Then every s-bounded measure u.: s/0 -> M has a finitely 

additive s-bounded extension Ji: s/ —> M such that s/0 is dense in s/ with respect 

to the Ji-topology. 

Moreover we will need the following (known) result. 

Lemma 3.2. Let X be a normed space and s/ a Boolean algebra. Then a 
measure /J: S/ —> X is bounded if and only if it is s-bounded with respect to the 
weak topology of X. 

P r o o f . A measure /.t is bounded (resp. weakly s-bounded) if and only if, for 
every x' G Ar/, the measure x' o /I: s/ —> It is bounded (resp. s-bounded). Then 
the result follows from the equivalence between boundedness and s-boundedness of 
real-valued measures. D 
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L e m m a 3 .3 . Let X be a Hilbert space, s/ a Boolean algebra and sz/0 its Boolean 

subalgcbra. Moreover let LI: S/ —> X be a measure such that s/0 is dense in stf with 

respect to the ^-topology. Then, LI is orthogonal if and only if LI\^ is orthogonal. 

P r o o f . Assume that Lq^. is orthogonal . Take a, b E s/ with a A b = 0. Let 

Ou,frn £ s/0 be such that an —> a and bn -> b with respect to the /i-topology 

Replacing bn by an A bn, we can suppose that an A bn = 0. 

Then, from 0 = (/t(an),/L(bn)) -> (/I(a),//(b)), we ob tain (f-i(a), fi(b)) = 0 and the 

proof is complete. D 

The following result generalizes Theorems 9 and 10 of [11]. 

T h e o r e m 3.4 . Let X be a normed space with predual, s/ a Boolean algebra 

and s/0 a Boolean subalgebra of s/. Then every bounded measure LI: S/0 -> A" has 

a bounded finitely additive extension JI: s/ —> X, such that s/0 is dense in s/ with 

respect to the Jl-topology. In particular, if X is a reflexive Banach space, then ~fi is s-

bounded. Moreover, if X is a Hilbert space and u. is orthogonal, then JI is orthogonal 

too. 

P r o o f . Let E be a predual of X, i.e. X = E'. By assump t ion, there exists a 

ball D C X such that n(s/) C D and D is compact (and therefore complete) with 

respect to the weak-* topology o(E',E) of E'. 

Moreover, LI is s-bounded with respect to the weak topology o(X, X') = o(E', E") 

of X (Lemma 3.2) and therefore fi is s-bounded also with respect to the topology 

o(E',E) ^o(E',E"). 

The result now follows from Theorem 3.1 applied for (G,r) — (X,o(E',E)) and 

M = D. 

If X is a reflexive Banach space, then Ji is s-bounded, because every bounded 

measure on a Boolean algebra with values in a reflexive Banach space is s-bounded 

(see [2, Theorem 2, page 20]). 

The final par t of the result follows from Lemma 3.3. D 

The following result generalizes Theorem 3.5 of [12]. 

T h e o r e m 3 .5 . Let G be a commutative complete Hausdorff topological group, 

L a concrete logic and & a Boolean subalgebra of L. Then every s-bounded measure 

f.i: & —> G has a finitely additive extension JI: L -> G such that Jl(L) C u.(£8). 

Moreover, ifG is a Hilbert space and LI is orthogonal, then JI can be taken orthogonal 

too. 

P r o o f . Let A be a set such that L C P ( A ) , where F(A) denotes the set 

of all subsets of A. By Theorem 3.1, there exists a finitely additive extension Ji: 
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P(A) -» G of /A to P(A) such that jl(P(A)) C /i(^) and ^ is a dense subset of 
P(A) with respect to the /i-topology. Then /Z = /j |L is the required extension. 

Moreover, let G be a Hilbert space and /i: B -> G be an orthogonal measure. 
Since lj is bounded we can immediately apply Theorem 3.4. • 

In some cases we can remove the assumption of s-boundedness in Theorem 3.5. 

Theorem 3.6. Let G be a commutative Hausdorff topological group, L a con
crete logic and 88 a Boolean subalgebra of L. Then every measure Lt: 88 -> G such 
that u.(88) is relatively compact in G has a finitely additive extension Jl: L -> G such 
that JL(L) C JI(88). Moreover, ifG is a Hilbert space and \i is orthogonal, then JI can 
be taken orthogonal too. 

P r o o f . Again let A be such that L C P(A). Without loss of generality (see 
the proof of Theorem 3.5) we can suppose that L = P(lO) and that 88 is a Boolean 
subalgebra of L. 

Let 8? be the set of all partitions of A in 88 (i.e. 8P consists of all finite orthogonal 
subsets of 88 with join A ). Put K = n.(88) and 

8?P - \v: P(A) -r G: v is finitely additive, v(P(A)) C K and v\P = u,\P}, 

(P G 8?). 
We prove that ^ P is non-void for every P e 8?. Indeed, let P G ^ , with 

P = {Ai,...,An}. Choose x{ G A{, and set yi = /JL(A{) ( i ^ n). Let SXi be the 
n 

point measure concentrated at X{. Put V = ^ yiSXi. Then V: P(£l) -> G is finitely 
; = i 

additive. For any M C fl, we have 

~ .ČZ Л/f ^ т. • а Л/ř 7 XieM xx{eM 

Therefore V(M) G \i(SS) C K. Moreover, if M = Aj, then F(M) = /x(Aj). Thus 
V G &P. 

Since K is a compact set, the set M(P(A),K) of all finitely additive Iv-valued 
measures on P(A) considered with the topology of pointwise convergence is com
pact (Tychonoff theorem). Let P i , P 2 , . . . , P n G & and let R G 8? be a common 
refinement of the partitions Pi, P 2 , . . . , P n . Then f| ^ P . 3 ^ ^ 0. Moreover every 
set &v is a closed subset of M(P(Sl),K). Thus, f| ^"p -̂  0 and this intersection 

consists of required extensions. 
If G is a Hilbert space and n is orthogonal, since u, is bounded, \x extends to an 

orthogonal measure on L by Theorem 3.4. ---
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We have shown that every orthogonal measure on a Boolean algebra extends to 

an orthogonal measure on an arbitrary larger concrete logic with values in the same 

Hilbert space. As Example 1.3, shows this result is no longer valid for general 

orthomodular structures. 
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