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1. INTRODUCTION

Maximum principles for elliptic equations, in the linear case, have been studied ex-
tensively for many years, see e.g. [4], [7]. [8], and their importance for the problem of
uniqueness and existence of solutions of boundary value problems is now well under-
stood. In this paper we investigate estimates of esssupg u(x) for a weak subsolution
of nonlinear equations of the form

m 0
(1.1) Z %ai(w,u,Vu) = filz,u, Vu) = fo(z,u, Vu)
i=1 '

in a bounded open set Q2 C R™, where functions f)(x,&,p), f2(x, &, p) satisfy different
hypotheses and different conditions of growth on £ and p, namely:

fi(@,€p) < [F(0) + cale* + ea(Volp) ] ae. w € 9,

for any real numbers &, py,p2, ..., pm and

[f2(2, &) < f' () + &+ (Vulp)?r—V/"] ae z € Q,

for any real numbers pi,p2,....pm and £ € R, while the coefficients of the prin-
cipal part of the operator arc supposed to satisfy the following elliptic degenerate
condition:

(1.2) Za,—(;zuf,p)p,- > v(a)|pl?,

i=1



p being the vector (py,p2, ..., pm), |p| its module, and with v(x) satisfying sufficiently
general hypotheses. The estimate for esssupq, u(z) depending only on the boundary,
initial data and on the structure of the equation implies, in a special case (linear
growth of fa(x, &, p) with respect to £ and p with f*(x) = 0, see remark (4.1)), the
maximum principle for a weak subsolution u(z), that is, the nonnegative maximum
of u(z) is attained on the boundary 9Q. It is perhaps worth mentioning that similar
results, in the classical case, have been obtained in [5] and [3], the latter with regular
coefficients, and, in non-degenerate case, in [7] and [13].

This paper may be regarded as a continuation and completion of the preceding
papers [9] and [2].

2. FUNCTIONAL SPACES, DEFINITIONS AND HYPOTHESES

Let R™ (m > 2) be the Euclidean m-dimensional space having the generical point
T =(z1,...,Tm), let Q be an open and bounded set of R™.

Hypothesis (2.1). Let v(x) be a positive function defined in Q such that

v(x) € L'(9Q), € Lioc 2.

L
v(z)

H'(v,Q) denotes the completion of C!(f2) with respect to

1/2
le]ly = (/ lu|? + v(z)|Vul|? d:lr> .
Q

H}(v,9) is the closure of C§°(f2) in H(v,Q).!

Definition 1. Any function u(z) € H!(v,Q) such that

(2.1) / {Zm

for any ¢ € H(v,9Q), ¢ > 0 almost everywhere z in 2, will be called a subsolution

(z,u, Vu)e + fo(x,u, Vu)«p} <0

of the equation (1.1).

Definition 2. Given a real number h, if u(x) € H'(v,Q), we will say that
u(z) < h on AQ if there exists a sequence {u, } of functions belonging to C*(Q) such
that u,, < h on 99 and
lin;o [[un — ull1 = 0.

n—

! See also [11] for another definition of the space H!(v.€2). We remark that, in the last
case, for having C§° () as a subset of H(v,Q) it is sufficient to suppose v(z) € Lloc(Q)
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See also [9] and [8]. If h is such that u(z) < h on 99, we will say that u(x) is bounded
from above on 9. In this case the symbol sup u stands for the greatest lower bound

N
of the real numbers h such that u(z) < h on 0f2.

Hypothesis (2.2). There exist r and 3 (2 <7 < +00, 0 < § < +00) such that
ulr < Bllully
for any u € H!(v,Q).2
For more details see also [10] and [6].

Hypothesis (2.3). Functions f;(z,&,p) (j = 1,2), ai(z,&,p) (1 = 1,2,...,m)
are Carathéodory’s functions in  x R x R™, i.e. measurable with respect to z for
any (£,p) € R x R™, continuous with respect to (¢, p) for a.e. z in Q.

Hypothesis (2.4). There exists a positive constant fo such that, for a.e. z in
1, we have

fl(x>§’p) - fO{ ? 0

for any real numbers p;, ps,...,pm and for any positive real number £.

Hypothesis (2.5). There exist two nonnegative real numbers c¢; and cg, the

former greater than or equal to fo, a function f(z) of L™/("=1)(f2), and two positive

r—2

real numbers o and u, both less than ==, such that, for a.e. z in 2, we have

@) F@) > fo,
(i) fu(2,6,p) < [F(@) + €+ + calVolp]) +4)

for any real numbers &,py,pa, ..., Pm.°

Hypothesis (2.6). There exists a positive constant ¢ and a function f*(z) €

L9(§2) with g > -5 such that, for = a.e. in Q, we have

|f2(2, &, p)| S EF* (@) + €71+ (Vulp)* D7)

for any real numbers py,ps,...,p,n and for any nonnegative real number .
Hypothesis (2.7). The function fo(z,&,p) is monotone nondecreasing in R+
for a.e. z in Q and for any py, ps,...,pm € R, that is:
f?(xvg’l))gf'l(:va?Lp) 1f0<5<774

2If 1 < s < 400, the symbol |u|s denotes the norm in L°(R).
3 Hypotheses (2.5), (2.6) and (2.8) ensure (2.1).
4 Hypothesis (2.7), e.g., is true for

fo(@,&p) = f7(2) + €+ (Volp) 2T
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Hypothesis (2.8). There cxist a function o} (r) € L*(Q) (i = 1.2,...,m) and
a constant a; > 0 such that, for a.e. x in Q, we have

lai(x, & p)]

NG

for any real numbers &, py,pa. ..., Pon-

< aglai(z) + €] + Vrlpl]

Hypothesis (2.9). Let us assume that (1.2) holds for a.e. x in Q2 and for any

real numbers &, p1,pa, ... P

In Sec. 4 we will prove

Theorem (2.1). Let us assume hypotheses (2.1)-(2.9) hold and let u(z) be a
subsolution of the equation (1.1) bounded from above on 9. Then u(x) is bounded
from above in Q; moreover,

(2.2) esssupu < M.
Q

In Sec. 5 we will extend the result cited above to the case when the hypothesis

(2.7) does not hold, but it will be necessary to suppose f*(r) € L>(2). Then we
will get

Theorem (2.2). Let us assume hypotheses (2.1)-(2.6), (2.8), (2.9) hold with
f*(x) € L*=(R) and let u(x) be a subsolution of equation (1.1) bounded from above
on d92. Then u(x) is bounded from above in Q and (2.2) holds.

Finally, in Sec. 6 we will extend the results cited above to the case when the
assumptions (2.4) and (2.5) are replaced by fi(x, &, p) > 0 for a.e. ¥ in  and for any
real numbers & pi,p2, .-, Pin-

However, it will be necessary to substitute hypothesis (2.1) with another one
slightly more restrictive:

Hypothesis (2.10). Let v(x) be a positive function defined in £ such that

v(r) € LY Q), ﬁ € L"(0),

where 3 < n < 400 (1 <~ < +00) if m >3 (m =2).

5 M stands for a constant dependent on max(0,sup w), 3. r, & measQ, ||y, fo.
o2

Do
D
)




3. PRELIMINARY LEMMAS

Lemma (3.1). Let u(x) € H'(v,Q) be bounded from above on 9Q and k > sup u.
a0

then the function v = u — min(u, k) belongs to H: (v, Q).

See [8], Corollary (2.10).
Lemma (3.2). If the hypothesis (2.10) is satisfied, we get

(3.1) [uloe < LIVY|Vull2  for any w € Hy (v, Q),

2me G

. o o —
where 2 mr+m-—2K "

The proof is based on Sobolev’s imbedding theorem (see e.g. [1]).

Remark (3.3). If the hypothesis (2.10) holds, then |\/§|Vu|]2 constitutes an
cquivalent norm in H} (v, Q). We will denote this norm by ||ull1 0.

4. PROOF OF THEOREM (2.1)

Let us fix k: £ > max(0,supu), then from (2.1) for w = v (see Lemma (3.1)) we
a0
get

m

ov

(4.1) /Q { Zai(.’c,u,Vu)% + fi(z,u, Vu)v + fo(z,u, Vu)v} dz < 0.

i=1
Hypotheses (2.4), (2.7) and (2.8) imply

m

(4.2) /Q Z a;(w, u, Vu)% de > /Q v(x)|Vol? da;
i=1
(4.3) / fo(z,u, Vu)vde = / fa(z,u, Vo)vda > / fa(z,v, Vo)v due:
Q JQu>k) Q

(4.4) Afﬂ:t,u,Vu)vdm}/s

Uu>k)

fouv da 2/

Qu>k)

fo(u — k)vda = fo/ v

Q

¢ We note that 2% is greater than 2; moreover, if 2 satisfies cone property, then the hy-
pothesis (2.2) is true with r = 2%,
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Therefore from (4.1) according to (4.2), (4.3) and (4.4) we get

(4.5) fo/ vide + / v(z)|Vo|* do + / f2(x,v, Vo)vde < 0.
Q Q Q

On the other hand, one has
—/ f2(z,v, Vu)vdz < / | f2(x,v, Vo) |vdz
Q Q

{/ f*(:c)vdr—i—/u" (l.lr+/(\/EIVU|)2(T_1)/TU(1;1'}.
Qu>k) Q Q

Applying now the Holder-Riesz inequality we get

<c

— / fa(z,v, Vu)vda
Q
< {1 @)l lmeas 2(u > K)ol + ol + flolF 7ol }

< {81 (@, meas > B lolly + 1l ol + 627 ols 7 loll?}

< {ﬁ'f (@)l [meas Q2w > K lvlly + /f< / |
J

-2/r
u” dz) lvl|?
(r=2)/(%)
+ﬁ2/r</ u"(l.r) lollf ¢ -
Q(u>k)

Accordingly, (4.5) yields

u>k)

min(1, fo)l[vll1 < éBlf*|,[meas Qu > k)]

. (r-2)/r : (r=2)/(?)
+ 6[62 (/ u" (ll‘) + /32/'.< / u' dl’) ] llell
Q(u>k) JQu>k)

and, moreover,
(4.6)

‘ (r=2)/r _ - (r=2)/(r%)
{ min(1, fo) — 5/32</ u” (1:L‘> - (",'/}2/'( / u” da;) }”"Hl
Qu>k) JQ(u>k)

< 3| f*|g[meas Q(u > )]/
Recalling that

lim measQ(u > k) =0
h—o0
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and that the integral function of |u|" is absolutely continuous, we can certainly choose
k> max (0, sup u) such that for any k£ > £ we have
aQ

_ (r-2)/r (r=2)/(r?)
5{/32 (/ u” d;l?> + 2T (/ u” dz) }
Q(u>k) Q(u>k)

1
< 5 min(l, fO)

We apply this inequality to (4.6), obtaining

2¢B|f”]
min(1, fo)

(4.7) v € ——% [meaSQ(u > k)]Y/*  for any k > k.

Let h, k be real numbers: h > &k > k. Then one has
1/r
(4.8) lv|, = [/ |u — k|" dx > (h — k)[meas Q(u > h))*/™;
u>k)

furthermore, (4.7), (4.8) and hypothesis (2.2) yield

1 2C,U2!f |g

c , ' 1/7' <
(4.9) [meas (u > R)]/" < (h — k) min(1, fo)

[meas Qu > k)]

Noticing that r > A (see hypothesis (2.6)) we get
[meas Q(u > k)]V/* < [meas Q(u > k)][’/"(meas Q)(r=A)/2r

where 3 = % (1 + %)
So from (4.9) we obtain

2532
[meas Q(u > h)]V/" < (n i k) {i;ﬂn(llf ]lg (meas Q) } [meas Q(u > & ]B/T

for any h,k € R with h > k > k.
If we assume @(h) = [meas Q(u > h)]'/" for any h > k, we get

M 3 -
——p(k)?  forany h >k >k,
(h—k)

and from Stampacchia’s lemma (see [12] p. 212) we deduce

w(h) <

p(k+d) =

where d = Zlfli]('{f (meas )53 28/(3=1) [meas Q(u > £))B=D/7. The proof of theo-

rem (2.1) now follows easily.




Remark (4.1) (Maximum principle). We can find the exact value of the

constant M in some cases; if, e.g., fa(x, £, p) has linear growth with respect to £ and

p. and if ¢ < min(2co,2), we deduce by the same argument:

esssup « < max(0,supu) + | f*|,.”
Q o9

5. PROOF OF THEOREM (2.2)

Let us fix k£ and v as in Theorem (2.1); from (4.1), (4.2) and (4.4) we get

(5.1) fo/ vida + / v(x)|Vol? de < - / fole u, Vu)v de.
Q Jo Ja
On the other hand, one has

—/ fo(z,u, Vu)vde < (’/ 1+ @+k) + (V| Vu]) 25Dy da
Q Q

{1+ 27"k Blmeas Q(u > k)] u)ly
+ 27 2B lr 2 ol + 82|l lull?)

Then, similarly to Theorem (2.1), we can immediately deduce that

~ r—2pr—1
2660 + 27k )[meas Q(u > &)1/,

vl < min(1, fo)

28 2 1 r—zl‘.r—l ' i .
Jv]» < &8 Eni:(i,fo) )[meas Q(u > k)]0 for any k > k.

Consequently, if h > k > k, we obtain

26 2 1 2r—2kr—l o
(5.2) [meas Q(u > h)]V/" < ;?ngl ;0)(11 s [meas Q(u > k)]'“-l“)8

T A — 2R/ (A=1) 5 PRNEESVIETST)
v= n]in{(c“——%E))(l_(g/z))}(lll(ahQ) PIBY .

s . 3 . 2262 (1427 =2k — 1)
Observe that we could not apply directly Stampacchia’s lemma because LT

depends on k.
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Next, if & > 0, we get

1 .
meas Q(u > k) < —/ u” dx,
k™ Jq

26,82(1 + 22r-3kr—1)
kmin(1, fo)

- 22 2r—37.r-1 (r=2)/r
< 2¢p ,(11+~2 k )2(T—1)/(7‘—2) </ u” d.’L‘) .
k™1 min(1, fo) Q(u>k)

Now, the first term of the above inequality converges to zero as k goes to 400,

(r—=1)

2(r=1/(r=Dmeas Qu > k)]~

therefore we can fix k; (> l:",) such that

266%(1 + 22773k
min(la fO)

(=1)

2(T_‘)/(T_2)[n1eas Qu> k)] 7 <k

(5.3)

Moreover, one has

263%(1 4 272k 1) < 266%(1 4 22773k 71

(5:4) min(1, fo) h win(1, fo)

if 0 <k < 2k

Combining (5.2) and (5.4) we obtain

L2427k

meas (> W7 € T measQfu > BT

for any h,k € R such that h > &k > k1, k < 2k,.
Assuming in [ky, +0o] that

[meas Q(u > k)7 if by < k< 2k,
o(k) =

0 if &> 2k

we can complete the proof as in Theorem (2.1).°

? We remark that, in this case, d is the first term of (5.3).

267



6. A GENERALISATION OF THEOREMS (2.1) AND (2.2)

We suppose that (2.10) holds. Morcover, let fi(a. & p) be greater than or equal
to zero for a.e. x in 2 and for any real nunibers &, p....,pm.
If u(z) is a subsolution of (1.1) we get

m

3.
(6.1) / { Zai(:lr,u, Vu)é:—’ + fa(z,u, Vu)v} da <0
Ja Ui £

where v = u — min(u, k) and & > max(0, sup ).
29
Observing that v € Hg(v,§1) and that |jv||; ¢ is an equivalent norm in H{ (v, Q)

(see remark (3.3)), one concludes
lollio € — / fa(x,u, Vi)o da
Ja
which, as in Theorems (2.1) and (2.2), implies

esssupu < M.
Q

7. OPEN QUESTION

It is an open question if it is possible Lo obtain similar results in nonlinear degen-
erate parabolic case.
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