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1. INTRODUCTION

The main purpose of the paper is to characterize for some Banach spaces F' (or
E) those Banach spaces E (or F') for which the space of compact operators I{ (E, F')
contains a (complemented) copy of co.

First, we consider spaces F' of finite cotype p, 2 < p < oo. It turns out that
if there is a non-compact map T': [, — F (as it happens for F' = L,(u), Cp—
the Schatten class etc.), then we are able to characterize precisely those E for which
K(E,F) 2 co. If there is even a non-limited map T': I, — F', then the same condition
characterizes even the case when IK'(E, F') contains a complemented copy of ¢g. Since
the characterization is given by the conditions of type “there is a non-compact map
T:E — [, it seems that the result has something in common with the following
type of results:

(1) If either E or F' has some unconditional structure and L(E,F) # K(E, F),
then I (E, F') contains a copy of ¢g (see [IKal, Th. 6], [Fel], [E3, Th. 3], [E4, Cor. 10,
11], [E5, Th. 1, Cor. 3 and Th. 12] and [BDLR, Th. 11]).

Analyzing this connection we prove that if there is a non-limited operator 1':
E — F factorizing through a space with an unconditional basis, then NI (/[ [")
contains even a complemented copy of ¢g.

We also give a version of our results for e-products and spaces of weal*-weak
continuous maps and a sample of applications. There are also some unformulated
consequences of our results for those spaces of vector-valued functions or measures
which can be interpreted as spaces of operators (see [DzS], [DD2], [DD4], [Dr2], [Dr3],
[DrE] and [Me]).

The research of J. Bonet was partially supported by DGICYT Proyecto no. PB91-0538.
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The results are formulated for £, F being Banach spaces. The proofs are presented
in such a form that one can easily observe that the same results are true for E, F being
either Fréchet or complete DF-spaces (all four combinations are admitted), where
instead of compact operators we consider the space M (E, F') of Montel operators (i.e.,
operators mapping bounded sets into relatively compact ones). The last section will
be devoted to that general setting. In particular, we apply our results to F being
non-Montel Ko6the sequence spaces A,(A) or k,(V'), function spaces etc.

We should point out that [Dr3] (and a later note [Dr4]) served as the main source
of inspiration. Drewnowski characterized in his paper those Banach spaces E such
that ca(X, E) contains a copy of ¢g. Since ca(Z, E) could be interpreted as a space
of operators, we analyzed the proof, isolated the main ideas and apply them to our
problem.

There is a quite extensive literature on the problem of containment of ¢y or [, in
classical spaces of operators. The known results (apart from the results of type (1),
see above) could be sorted in three main types:

(2) If F or E' contains a copy of ¢p, then a certain space of operators A(E, F)
contains a complemented copy of ¢o (see [Frl, Th. 2.3], [Ry], [Sa], [E2], [E7, Th. 2,
Cor. 3]). The results of that type are true for “small” spaces like the space of compact
operators I{ (E, F). They are modelled after the remarkable result of Cembranos [Ce]
on containment of complemented copies of ¢g in C(I\, E).

(3) If a certain space of opcrators A(E, F') contains a complemented copy of c¢g,
then either F or E' contains a copy of ¢o ([I{al], [E8, Cor. 2]). The results of
that type hold mostly for “big” spaces like the space of weakly compact operators
W(E,F). The proof is based on results of the following form: if neither F' nor £’
contains a copy of ¢g (or some similar assumption), then each map Jo: ¢cg = A(E, F)
extends to a map J: l, = A(E,F) (see [Kal, Th. ¢], [E4, Th. 5, Cor. 9], [BDLR,
Th. 10, Cor. 12-18]).

(4) If a certain space of operators A(E, F') contains a copy of l, then either F' or
E’ contains a copy of o, as well (see [Kal, Th. 6], [Dr2], [BDLR, Th. 9]). These are
also “small” space type results.

The results of types (2)-(4) above always exhibit a link between the containment
of a Banach space as a (complemented) subspace in A(E, F') and the containment
in the spaces E’ or F. The aim of this article is to consider cases where such a link
does not exist, i.e., the containment in the spaces of operators of a certain Banach
space is not due to the containment of the same Banach space in the spaces E’ or
F. Accordingly a new approach and different methods are needed for the problems
considered here.

The problem of (complemented) copies of ¢ in spaces of operators is also closely
connected with the old question if the space of compact operators can be a non-trivial
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complemented subspace of the space of all continuous operators (see for example
[(BDLR], [BL1], [BL2], [DD1], [DD2], [DD3], [DD4], [E1]-[E8], [Fel], [Fe2], [Kal] and
[Jo1]). In particular, it is known in the Banach setting (see [Fel, p. 201], [Kal, proof
of Th. 6] and [E3, Th. 2]) that if we consider the following conditions:

(a) L(E,F) # K(E, F);

(b) L(E,F) D leo;

(c) L(E,F) 2 co;
(d) K(E,F) 2 co;
(e) K(E,F) is uncomplemented in L(E, F);
then (d) = (¢)e(b) = (a) and (d) = (e) = (a), but, in general, (a) does not imply
(d) (see [E9]).

The authors would like to express their gratitude to Prof. L. Drewnowski for
providing us his unpublished preprints and for his comnments.

2. PRELIMINARIES

Our notation and terminology is standard and we refer to the books [J], [LT] and
[D1].

The e-product EeF of locally convex spaces (lcs in short) E and F' is the operator
space L.(E.,, F) of all weak*-weakly continuous linear maps from E’ into F' which
transform equicontinuous subsets of E’ into relatively compact subsets of F', endowed
with the topology of uniformm convergence on the equicontinuous sets in E’. The
space Le(E7,, F) reduces to the Banach space V- (E’, F') of compact wealk*-wealkly
continuous linear maps with the norm topology in the Banach space setting. By
L(E],, F) we denote the space of all weak*-weakly continuous linear maps from E’
into F. If F and E are complete lcs, then L. (FE!

tor F') and L (E),, F) are also complete
les. The spaces Le(E[,, F) and Le(F,,, E) (as well as L.(E}, F) and L.(F), E),
resp.) are topological isomorphic via the correspondence between h and its adjoint
I'. Let L, (E, F) denote the space L(E, F) endowed with the topology defined by
the semi-norms 7'+ |y'(T'(x))|. v € E,y' € F'.

A subset B of a les E is called limited, if every equicontinuous, o(E’, E)-null
sequence in £ converges uniformly to zero on B. A continuous linear map from a
les E into a les F' is called limited if it transforms bounded sets into limited sets. By
Li(E, F), W(E, F) respectively, we denote the space of all limited, weakly compact
maps from F into F. A les E has the Gelfand-Phillips property, if every limited set
in E is relatively compact.

We say that a Banach space E has the p-Orlicz property if for each unconditionally
convergent series > @, in E we have: Y ||v,]|” < oco. The space E has cotype p,

nEN
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if there is a constant C such that for each finite family of vectors zy,...,x, the
. . n 1/p i n 1/p
following condition holds: ( > “:l:in) < C’(jol IS ()P dt) , where (r,,)
i=1 i=1

are Rademacher functions. It is well known that cotype p implies p-Orlicz property.
the converse is not true for p = 2 even for Banach lattices (see [T1] or [DF, p. 103]).
For all Banach spaces cotype p and p-Orlicz property are equivalent for 2 < p < o
[T2].

It is well known that for 1 < p < oo and a Banach space E the space of sequences

17 (E) = {(.vl:”),tem CE:Va' € E S | (ea)] < oo}

is a Banach space if equipped with the seminorm (see [J, 16.5]):

Ep((wn)nelcj)3: sup (Z,:r!(l:”)lp>l/l'.

Iz’ i<t

This class is closely connected with operators T': [, — E as it is explained in the
following known lemma (see [AD, Prop. B], [Dr3, Lemma 1] or [A, Prop. 2.2]):

Lemma 1. Let 1l < p,q < o0, = + = = 1, then the following assertions are

141
P g

equivalent for each Banach space E:
(a) (zn) € l5(E).

(b) The series Y a,x, converges unconditionally for every sequence (an) € L.
oo

(¢c) The map (an) = Y. an¥n, (an) € l4, defines an operator T: 1, — E.

n=1

We need two other classes of sequences: co(E)—the class of null sequences; [(E) —
the class of limited sequences. At least the first part of the following lemma is also
known (see [Dr3, p. 748] or [Ct]).

Lemma 2. Let 1< p,q < oo, % + % =1 and let E be a Banach space.
(1) The following assertions are equivalent:

(a) K(l,,E) # L(l,, E).

(b) UL,(E)\ co(E) # 0.

(¢) There is an operator 1': l,, = E such that T'(e,)) - 0 as n — oc.
(2) The following assertions are equivalent:

(a) Li(lp, E) # L(l,. E).

(b) 1,(E)\ [(E) # 0.

(c) There is an equicontinuous weak* null sequence (x,),en € E' and an oper-
ator T': I, — E such that @ (T (e,)) =1 for all n.



Proof. Both proofs are very similar so we restrict ourselves only to the part (2).

(a) = (b): Let T: 1, — E be a non-limited operator. Since I, is reflexive, we
will find a normalized, weakly null sequence (u,) in I, such that (Tw,) is non-
limited. Thus we find an equicontinuous weak* null sequence (z!) C E’ such that
20 (Tw,) > 1. By passing to a subsequence if necessary, we may assume that (u,)
is a basic sequence in [, equivalent to the standard basis in [, (see the proof of
[AD, Prop. D}). Since the standard basis in [, belongs to 1,(l,), the sequence (z,),
@y = Tuy, belongs to 4 (E) \ [(E).

(b) = (¢): We define T according to Lemma 1 (¢).

(¢) = (a): Obviously, such 7" is non-limited. a

Since C(I\) contains a copy of [; if and only if I\’ is a non-scattered compact
Hausdorff space [PS], the following result is an improvement of Theorem 3.2 in [A]
(comp. also [OP, Prop. 3]).

Corollary 3. Let E be a Banach space containing a copy of l; and let F' be a
Banach space. If W(E,F) = N(E, F), then L(ly, F) = K(l», F).

Proof. Let T:1l; — [l be the inclusion mapping. Since T is 2-summing,
the Pietsch Domination Theorem says that there exists a regular Borel probability
measure g defined on some compact Hausdorff space such that T factors through
L (). Then, by the injectivity of L (), T extends to a non-compact continuous
lincar map S from E into [». Suppose that L(ly, F) # LK (l3, F'), by Lemma 2, there
is U: 1y = F, U(e,) - 0. Obviously, UoS € W(E.F), if UoS were compact, then
UoS(fn) = U(e,) — 0, where (f,) and (e, ) are unit vectors in [; and [y, respectively;
a contradiction. O

Corollary 4. If E is a Banach space, 1 < p,q < 0o, % + 5 =1, then L(E,l,) #
KN(El,)iff L(l,,E") # K(l,,E").

Proof. Let T: E — I, be a non-compact operator, then its dual map T':
l4 — Ej is non-compact. On the other hand, if L(l,, E') # K(l,, E’), then there is
(7)) € IL(E")\ co(E'). Tt is easily seen that the map T: E — 1,, T(x) = (2, (2))nen

is not compact. O

In order to describe operators into ,, 1 < p < oo, we need the class of weak*
l,-sequences:

1" .(E') = {(;1-:,) CE:VeeE S @) < oo}.

Proposition 5. If E is a Banach space, then:

(a) if T: E =1, is an operator, then (T'(e,)) € I".(E");

(N
=1
[V



(b) if (z7,) € I5.(E') then T: E — I,, T(z) = (x/,(x)) is a continuous operator.

3. THE MAIN RESULTS
We start with the following:

Theorem 6. Let E, F' be Banach spaces and let 1 < p,q < oo, ;7 + % =1.

If L(l4,E) # K(l4,F) and L(l,,F) # K(l,, F), then there exists a topological
embedding J: l, — L.(E,,, F') such that J(co) = J(loo) N L (E.,, F). In particular,
Le(EL,. F) # Le(E}, F).

If, additionally, L(l,,F) # Li(l,,F) or L(l4, E) # Li(l,, E), then we can even
obtain J(co) complemented in L.(E! , F).

co’

Corollary 7. Let E, F be Banach spaces and let 1 < p < co.

If L(E,l,) # K(E,l,) and L(l,, F) # IK(l,,F), then there exists a topological
embedding J: loo — W(E,F) such that J(co) = J(loo) N K(E, F). In particular,
W(E,F) # K(E, F).

If, additionally, L(l,,F) # Li(l,,F) or L(l;, E;) # Li(l,, E}), then we can even
obtain J(co) complemented in KN'(E, F).

Remark. Under the assuiptions of Th. 6 and Cor. 7 we can prove that K'(E, F)
(Le(EL,, F')) is uncomplemented in L(E, F) (Le(E,,, F), vesp.); see [E3, Th. 2], [E4],

co?

comp. [BDLR, Th. 32 and Cor. 33].

Proof of Corollary 7. By [CoRu, Ex. 0.2] (comp. [BDLR, Cor. 7]), we
can identify W(E, F) with L.((E"),,, F) and K(E, F') with L. ((E')¢,, F'). Moreover,

by Cor. 4, L(E,l,) # K (E,l,) implies that L(l,, E") # (I, E’) for q conjugate to
p. This completes the proof by Theorem 6. O

Proof of Theorem 6. By the assumptions (see Lemma 2), there are se-
quences (z,) € (2 (E)\co(E), (zn) € lL(F)\co(F). Of course, (x,) is weakly null but
we may assume that ||z,|| > 1. By the Bessaga-Pelczyiiski Selection Principle (see
[D1, p. 42]), taking a subsequence if necessary, we can find a sequence of functionals
(2!)) biorthogonal to (z,).

Now we can define a linear map T: E' — [, by T'(2') = (2'(25))n. Then T €

L(E},l,) or equivalently T is weak*-weak continuous from E' into l,. Indeed. by

oo
Lemma 1, the series Y &,x, converges unconditionally in E for all (&,) € {;. Since
n=1

for each (&,) € I, = (1))’

> 6ur'la)| =

n=1

for all 2’ € E',

x ( i énzr.n)

n=1
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we conclude that T € L(E],,l,).

Similarly, there is a continuous linear map S: I, = F such that S(e,) = z, (see
Lemma 2 (c)) hence ||S(en)|| > 1 for all n. Thus we have a continuous linear map
SoT: E;, — F with [|S(T(z7,))|l = [[S(ex)|| > 1 for all n. Let £ = (£x) € {*° and let
D¢: 1, — I, be the diagonal map (A,) — (§,A,). Then we can define a continuous

linear map

J:1%® = L(E),,F) by J(§)z' = (SoD¢oT)(a').
Now, J: (*® — L,(E,,F) is continuous. In fact, for y' € F' and 2’ € E’' we have
that
1/p
W7 (Z W) sl forall €= (6n) € 1=,

where M > 0 is some constant Then J has closed graph in [*° x L.(E;,, F) and it
follows that J: [* — L.(E,, F) is continuous.

Moreover, we have that ||J(e,)x),|| = ]IS(en)H > 1 for all n and (2]) C E’ is
cquicontinuous, so J(e,) /4 0 in L. (E’, . Thus there exists an infinite subset

M C N such that J: (M) — Lc(E, ,F) is an isomorphism (see [Drl]). Let us
assume that M = N. Since J(§)z], = £,S(e,) and S(e,) — 0 weakly in F, it is
clea1 that J(§) € L(E.,, F) implies that £ = (£,) € co. Conversely, suppose that

= (&n) € co. Then the diagonal map D¢: 1, —= 1,, (A\n) = (€xAr), is compact and
therefore J(&) € L(E!,, F). Thus we have

J(co) = J(1%) N Le(E¢,, F).

Finally, if we assume that L(l,, F) # Li(l,, F'), then, by Lemma 2, there are a
weak*-null sequence (y;,) C F’ such that y,(S(e,)) = 1 for all n. We define P:
L (E.,,F) = co by P(T) = (y,(T(2},)))n. Then P is well-defined and continuous,
since (21,) C E' is equicontinuous. For every £ = (£,) € co we have that

P(J(€) = (yn(S(&nen)))n = (€a)n =€

This means that J(cp) is complemented in L. (E!,, F'), and the proof is complete.
The case L(lq, E) # Li(ly, E) is very similar, we take as (y!,) a sequence biorthog-
onal to (z,) and as (z/,) a weak*-null sequence in E’ such that z!,(z,,) = 1 for all

n € N. O
Remark. The map J above could be explicitly defined (see the proof of Lemma
2):
J(€)z' = Z &' (T)2n.

nenN
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Theorem 8. Let E ,F be Banach spaces and let 2 < p < 20, % + % =1.
(1) If F has the p-Orlicz property, then

(a) if L:(E,, F') contains a copy of co, then K (l,. E) # L(l,. E);
(b) if L(E, F) contaius a copy of c¢g, then K (F, /,, ) # L(E. ).

(2) If E has the p-Orlicz property and L.(E},. F) contains a copy of co. then

IK(ly, F) # L(ly, F).

(3) If E' has the p-Orlicz property and L,(E,F) contains a copy of cg. then
K(l,, F) # L(l,, F).

Proof. (1)(a): We can assume that F' does not contain a copy of ¢g, since ¢y has
no Orlicz property and p-Orlicz property is inherited by subspaces. Suppose that .J:
co = Le(E),, F) is an embedding. Then we can define a continuous linear map ./,

co = F by Jo (&) = J(€)a',x' € E'. Since ¢y ¢ F we get by Lemma 1 and Lemma

2(b) in [(BDLR] (see also [[Ka2. Th. 2.4] and [Da, Lemma 2.2]) that Z End(ey)d" is
subseries convergent in F for all ' € E' and all £ = (£,,) € [*°. For 2’ 6 E’ the series
>~ J(e,)z'" is unconditionally convergent in F'. Since F' has the p-Orlicz property, it
n=1

follows that 3~ [[.J(e,)'[|” < ~ for all. Since J(c,) /4 0in L.(E}, F), there are an

n=1

equicontinuous sequence (@) in E’ and an equicontinuous secuence (y!,), |jy,|l <1
such that [y;,(J(e,)z),)] > 1 for all n. Let x, = y), 0 J(e,) € E = (E])'. Then

L,L 4 0in E. We have also ||J(e,)2'|| = |y, (J(e,)x")| for all n, and consequently
Z [yl (J(en)a")|? < oo. Hence Z |2 (2n)]P” < oo for all 2’ € E', and the proof is
n=1 n=1

complete by Lemma 2.

(b): We can prove similarly as above, that there is () € I .(E') \ co(E}). As in
Prop. 5, we define an operator T: E — [,. T(x) = (@), (r))neri- By the description
of relatively compact sets in /,,. T is not compact.

(2) and (3): The proof is quite similar — it suffices to use the map JV V() =
y'o.J(&) for y' € F' instead of ... O

Now, we give a samiple of immediate consequences.

Corollary 9. Let E, F he Banach spaces. If F has the p-Orlicz property
(2<p<oo)and L(l,,.F) # K(I,,F), then the following assertions are cquivalent:
a) L(E,F) contains a copy of [*°.

b) L(E,F) contains a copy of cg.

(¢) K (E,F) contains a copy of cg.

d) Thereis an embedding .J: [ — W(E, F) such that J(cq) = J(I®)NLK(E. F).
(¢) L(EL) # K(E.,).

278
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If L(l,, F) # Li(l,, F), then the above conditions are also equivalent to:

(f) The condition (d) holds with J(co) complemented in K'(E, F).
(¢) IK(E,F) contains a complemented copy of cg.

Remark.  The implication (b) = (a) holds for all Banach spaces E, F, see
[Kal, proof of Th. 6 (iii) = (ii)].

Corollary 10. Let E, F be Banach spaces. If E' has the p-Orlicz property
(2 <p<o)and L(l,,E') # (I, E"), then the following asscrtions are equivalent:

(a) L(E,F) contains a copy of [*°.
(b) L(E. F) contains a copy of cg.
(c) I{(E,F) contains a copy of co.
(d) Thereis an embedding .J: [ — W(E, F') such that J(co) = J(I®°)NK(E, F).

() L(lq, F) # K(lq, F).
If L(l,, E") # Li(l,, E"), then the above conditions are also equivalent to:

(f) The condition (d) holds with J(co) complemented in K (E, F).
(g) IN(E,F) contains a complemented copy of cg.

Proof of Corollaries 9 and 10. Obviously, (d) = (c) = (b), (d) =
(a) = (b). By Theorem 6, Cor. 7 and 4, (e) = (d) and, by Theorem 8, (b) = (e).
Moreover, obviously (f) = (g) = (b) and, by Theorem 6 and Cor. 7, (e) = (f). O

Corollary 11. Let E', F be Banach spaces with the 2-Orlicz property. Then
the following assertions are equivalent:
(a) L(E,F) contains a copy of [*°.
(b) L(E,F) contains a copy of c.
(¢) K(E,F) contains a copy of cq.
(d) There is an embedding .J: [°° — L(E, F') such that J(co) = J(I®°)NL(E, F).
)

(e) L(E,l;) # K(E,l3) and L(l5, F) # K(l5, F).

Proof. (b) = (e): Follows from Theorem 8, on the other hand, (¢) = (d)
follows from Theorem 6. The rest is obvious (see the proof of Cor. 9). a

Remarks. (1) Similar results also hold for L.(E’

IR

F) and L (FE!

(2) If F has the Gelfand-Phillips property, in particular, if F is separablc or
reflexive, then L(l,,F) # K(l,,.F) iff L(l,, F) # Li(l,, F) and we can improve the
results above.

F) spaces.

co?

(3) A particular case of the result for E = P and F = P’, where P is the so-called
Pisier space was proved in [Jo2, Prop. 1].
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The dual of each C*-algebra has cotype 2 [TJ]. By Cor. 11, we get (comp. [E3.
Th. 4]):

Corollary 12. Let E be a C*-algebra, F the dual of any C*-algebra, then the
following assertions are equivalent:

(a) L(E,F) 2 loo;

(b) L(E,F) 2 co;

(¢) K(E,F) 2 cp;

(d) L(E,l;) # K(E,l,) and L(l5,F) # K(l5, F

The Schatten class C, is of cotype max(2,p) [TJ]. Thus, by Cor. 9 and recalling
that each reflexive Banach space has the Gelfand-Phillips property, we get:

Corollary 13. Let 2 < p < oo, then for each Banach space E the following
assertions are equivalent:

(a') L(Ev CP) D loo;

(b) L(E,Cp) 2 co;

(c) K(E.Cp) 2 co;

(d) K(E,C,) contains a complemented copy of cy:

(e) L(E,l,) # K(E\L,).

The next result is a particular case of Th. 16 from the next section. Thus, we
present it without proof. The result strengthens [Isal, Th. 6 (ii) = (i)] (comp. [Fel.
Th. 4]).

Corollary 14. If E and F are Banach spaces such that there exists a non-
limited map T: E — F factorizing through a Banach space with an unconditional
basis, then K (E, F) contains a complemented copy of ¢.

Remarks. (1) The result has a very nice form if Li(E, F) = K(E, F), i.e
when F has the Gelfand-Phillips property (comp. a similar result [E4, Th. 19]).

(2) Let us note that in the proof of Cor. 7 we show in fact that there is a non-
compact map (or a non-limited map) J(a): E — F, « = (1,1....), which factorizes
through {,,. Thus Cor. 7 is a consequence of Cor. 14.

By Cor. 9 and Cor. 14 we get:

Corollary 15. Let 1 < p < 0o, ut a purely non-atonic neasure, then for each
Banach space E the folowing assertions are equivalent:

(8.) L(E,L,,(/.lr)) 2 loo;
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(b) L(E, Lp(n)) 2 co;

(c) K(E,Lp(n)) 2 co;

(d) IK(F,L,(i)) contains a complemented copy of co;
(e) L(Ev lmax(‘z,p)) # I\,(E, lmax(?,p))'

If p > 1, then the above conditions are equivalent to: (f) L(E, L,(u)) # K(E, L,(p)).

Proof. For p > 1 the space L,(i) has an unconditional basis and for p > 1
there is a non-limited map T': [,ax(2,p) = Lp(p). Indeed, it is clear for p > 1, for
p = 1 the Rademacher functions are non-limited and they span a copy of I in Ly (u).

O

4. THE CASE OF FRECHET AND DF-SPACES

We will be interested in the so-called admissible pairs of of lcs (E, F'), i.e., one of
the following cases holds:

(1) Both E and F are Fréchet spaces.

(2) Both E and F' are complete DF-spaces.

(3) E'is a Fréchet space and F'is a complete DF-space.
(4) E is a complete DF-space and F is a Fréchet space.

We use further on (without reference) the following facts on admissible pairs. If
G=FEor Ejor (E);, etc. and H = F or F) or (F}), etc. the following conditions
hold (see the beginning of Section 2 in [BDLR]): (i) both G and H are complete
and weakly angelic [Fl; (ii) G is Ro-barreled (i.e., the Banach-Steinhaus Theorem
for sequences holds); (iii) the space L, (G, H) admits a strict web in the sense of De
Wilde (i.e., the Closed Graph Theorem holds for maps from any Banach space into
Ly(G, H), see []]).

The notions of cotype p and of the p-Orlicz property can be extended in an obvious
way to gencral les. If a sequentially complete les E has the p-Orlicz property or
cotype p for p < 2, then it has 1-Orlicz property and cotype 1, equivalently, it is
nuclear (comp. [KRT, Cor. 5, p. 107]). It is casily scen that any projective limit of
Banach spaces with cotype p (or p-Orlicz property) has cotype p (p-Orlicz property,
respectively).

Let us recall that M (E, F') denotes the space of Montel operators (i.e., those
mapping bounded sets into relatively compact ones). Now, we give a promised
general form of Cor. 14.

Theorem 16. Let (E, F') be an admissible pair of non-Montel Ics. Assume that
there is amap T € L(E, F)\ Li(E, F') which factorizes through a Ro-barrelled space
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with an unconditional basis (for example, through a Fréchet or complete DF-space
with an unconditional basis). Then My(E, F) contains a complemented copy of cg.

First we need an auxiliary lemma due to Drewnowski [Dr5]. It generalizes a
Banach space result due to Emmanuele [E2, Th. 1] and Schlumprecht [S]. The proof
is similar.

Lemma 17. Let (x) be a sequence in a lcs E such that there is an embedding
J:cog = E with J(ey) = xy, for all k € N. Assume that there is an equicontinuous,

weak*-null sequence (2!)) in E' which is not uniformly convergent to zero on (r}.).

n

Then a subsequence of (z) spans a complemented copy of co in E.

Lemma 18. Let E be a Banach space and F' a Ics. Suppose that the following
properties are satisfied for S € L(E, F):
(i) There is an equicontinuous weak*-null sequence (y!,) C F' such that for all
neN

sup |y, (S(z))| = o for some g > 0.
z€EBE

(ii) There is a sequence (S,,) in {(E, F') such that S, (xz) — S(z) in F for every
x € E, when m — o0.

Then there exist an € > 0 and strictly increasing subsequences (m;) and (k;) in N
such that for all j € N

sup IZ/;\ti((Snlz_/ - 51712_,'-1)('17))' 2 €.
z€EBE

Proof. We first show that there exists an € > 0 such that for all mo € N there

are m > n > mg with

(1) sup sup [yh((Sm — Su)(0))] > <.
z€EBE k>2mg

On the contrary, let us assume that for all € > 0 there is my € N such that for all
m > n > mg it follows that

[y} ((Smn — Sn)(2))| <€ forall k>mo andall z € Bg.

Let € = €9/3. By assumption there exists mo € N such that for every m > mg we
have that |y, ((Sm — Sm,)(@))| < €0/3 for all & > mg and all 2 € Bg. Now we fix
k > mg and © € Bg and let 1 — co. Hence |y, ((S,, — S)())] < €0/3. Thus we
obtain that |y} (S(z))| < €0/3 + |y;(Sm,(x))] for all & > my and all z € Bg. Since
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Sme € K(E, F), there is a ko € N such that |y}, (Sm,(2))| < €0/3 for all € Bg and
all & > ko. Now it follows for & > max(ko,mo) and a € Bg that [y, (S(z))| < 2e0/3,
which is a contradiction to (7). Thus we have shown (1).

The result follows easily by induction. O

Proof of Theorem 16. First we observe that if E, F' are complete non-
Schwartz DF or non-Montel Fréchet spaces, F' D co, then Le(EL,, F) contains a com-
plemented copy of co. In the setting of Banach spaces this result has been obtained
by Ryan [Ry]. For the sake of completeness we briefly recall the main ingredients of
the proof.

Since F is non-Montel (or non-Schwartz, resp.) there is an equicontinuos, weal*-
null sequence (z!) in E’ and a bounded sequence (z,) in E such that z/,(z,) = 1
for all n € N [BL2, Th. 9 and Cor. 14] (comp. [L] and [LS]). Let (y,) be a copy
in F of the unit basis (e,) in cg. Then there is an equicontinuous sequence (y!,)
in F’ such that ¥, (yn) = 0mn. Put 2, = 2, @y, € E® F. Now, Freniche [Frl,

Th. 2.3] showed that there is an embedding J: ¢co = E&.F C Le(E.,, F) given by

co?

J(&) = 5 &uzn. For each n € N define u,, € L(EL,, F)' by u,(T) = (y.,,T(2)).

n=1

Notice that ' = (F!,))" and that the dual map T': F/, — E is continuous. The
sequence (u,) C Le(E.,, F)" is equicontinuous, and for each T € L(E. , F),

lun(T)| = (T"(y,),25,)| = 0, as n — oo.
Thus w,, — 0 weak* in L.(E’,, F')'. Since J(e,) = z, and

I“Tl(:n)l = *4‘7:;,(41771)3/;1(3/71)| =1

for all n € N, it follows from Lemma 17 that L.(E.,, F') contains a complemented
copy of ¢gp.

Since the Fréchet space E is Montel if and only if E; is Schwartz [J, 11.6.1], we
obtain from the above result that if F D co, then My(E, F) = L.((E}).

co)

F) contains
a complemented copy of co.

Now, let us assume that F' does not contain a copy of ¢g. Let T = f o g be
the factorization through a Rg-barrelled space G with unconditional basis (u,) and
let (u),) denote the associated sequence of coefficient functionals. Hence there is
a sequence of continuous linear projections P,,: G — G of finite rank, defined by

m
P, (u) = 3 u,(w)u,. For every u € G we have v = lim P,,(u) and for each 0-
n=1 m

neighbourhood U there is a 0-neighbourhood V' such that for all M C N and all

o)
Z “'nf”u”li g H Z QU ||V (Cf [W1]~
NCH n=1

appropriate scalar sequences (a,,) we have
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Var. 1.21). Clearly T;,, = foP,, 09 € M(E, F) for every m € N. Now T, (x) = T(x)
in F for all z € E. Since T is not limited, there are a weak*-null sequence (y’) C F’,

an €9 > 0 and a Banach disk By in E such that sup |y/,(T(x))| = o for all n € N.
€ B,

Let S=Toje L(H,F)and S,, =T, 0j € N(H,F), where H = Epg, is a Banach

space and j: H — E is the continuous injection. Since sup [y, (S(z))| = £o for all
x€ By
n € N and S,,(z) = S(z) in F for every « € H, when m — oo we can apply Lemma

18 to obtain € > 0 and strictly increasing subsequences (m;) and (ng) in N such that
for all k € N

(2) Sélp IJn, ((Sma = Smai_,)(@))] 2 €.
Put Qx = Ty — Ty, € M(E, F). Exactly as in [BL1, proof of Prop. 14], we

can prove that for # € E and £ = () € lo the set { 3 &Qrx: A C N finite} is
keEA
bounded in F', which, by [MR, Th. 5], is equivalent to

Z (£ Q)| < 0

for each y’ € F'. Now, since F' does not contain a copy of cg, Theorem 4.5 in [I{a2]

gives that > &.Qyx is convergent in F for all x € E and all £ = (&) € {*°. Thus we
k=1
can define a linear map

R:1® = L(E,F),E (L - Z&ka)
k=1

Since E is Ng-barrelled, R(¢) € L(E,F). Since R: [ — L, (E,F) is continuous,
the graph of R is closed in {*° x Ly(E, F'). The space L,(E, F') is a webbed space
and we conclude that R: [® — L,(E, F) is continuous (cf. [J, Theorem 5.4.1]).

Since (y;,, ) C F' is equicontinuous, Qi #4 0 in M,(E,F) by (2). Thus R(ex) =
Qr 7 0, when k — oo. Hence there exists an infinite subset M C N such that R:
1°°(M) = Ly(E, F) is an isomorphism [Drl]. Assume that M = N. It is easily seen
that R: ¢o(M) — M,(E, F). Moreover, by (2), there is a sequence (zx) C By such
that [y;, (Qr(zk))| 2 e/2forall k € N. For T € M(E. F),

[y, @ )(T)] = KT(@k),yn, ) = 0, when k — oo.

Thus the sequence (y;, @ a) converges weak™ to zero in M, (E, F))'. Now we can
apply Lemma 17, and it follows that co(L) is complemented in My (E, F) for some
infinite subset L of M. This completes the proof. O
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The authors have checked that if we replace the spaces of compact operators and
of weakly compact operators by spaces of Montel operators (i.e., those mapping
bounded sets into relatively compact sets) and of reflexive operators (i.e., those
mapping bounded sets into relatively weakly compact sets) respectively, then the
whole set of results from Section 3 (1-15) remain true for admissible pairs (E, F').
Since the proofs require slight modifications, we omit details and we give only some
applications.

In particular, the proof of Th. 8 also works for p < 2. As we mentioned already,
every lcs with the p-Orlicz property, p < 2, is nuclear. Accordingly, the proof of
Th. 8 shows the following result:

Corollary 19. If the pair (E, F) is admissible and F' is nuclear then the space
L:(E,,F) or L(E, F) contains co if and only if E 2 co or E D l; complemented,
respectively.

L

Let us note that, by (1) from the introduction, if F' has an unconditional basis,
then either M(E,F) # L(E, F) and, then My(E,F) 2 ¢o, or M(E,F) = L(E,F).
Moreover, if M(E,F) = L(E, F) and F contains no copy of ¢g, then by [Kal, proof
of Th. 6 (iii) = (ii)] (comp. [BDLR, Cor. 12]), M,(E,F) 2 ls and, by [BDLR,
Th. 9] (see also [Kal, Th. 4]), either E’ or F contains a copy of lo,. Thus in our case
My(E, F) D ¢ iff either E' or F contains cg or M(E,F) # L(E, F).

If we try to repeat the above considerations for complemented copies of ¢y we are
in trouble. Namely, if E' or F contains a copy of c¢g and the other space is non-
Montel, then, by [Ry] (see also the first part of the proof of Theorem 16), M,(E, F')
contains a complemented copy of ¢p. The remaining case is unclear:

Problem. [Dr5] Let E' and F contains no complemented copy of ¢y and let E'
or F' be a Montel space. Is it possible that M,(E, F) contains a complemented copy
of Co ?

Remark.  Since, by [Ra, p. 98], C(I{) contains a complemented copy of ¢
iff it has not the Grothendieck property, the problem is solved for E Montel and
F = C(K) by [Fr2]. More general solutions has been found very recently in [DL].

We denote by A,(A) the K6the echelon space of order p, 1 < p < oo (see [B]). We
get:

Corollary 20. Let E and F be non-Montel Fréchet spaces. Under one of the
following conditions:

(a) E=A(4),
(b) F=X(4),
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(¢) E and F' are hilbertizable,
(d) E=X(A), F=X(B). 1<p<qg<oo,

we have that M,(E, F') contaius a complemented copy of cg.

Proof. First we prove (a). The space E contains a complemented copy of [;.
It follows that if every T': £ — F belongs to Li(E, F'), then every bounded sequence
(vn) in F is limited in . But since F' is non-Montel, there is a sequence (x/)) in
F' which converges to zero in o(F', F) but is not #(F’', F)-null [BL2]. This is a
contradiction, and consequently there exists a 7' € L(E, F) \ Li(E, F') which factors
through ;. We apply Theorem 16.

Now, we prove (b), (¢) and (d). Since every reflexive Banach space is a Gelfand-
Phillips space, it is clear that all hilbertizable Fréchet spaces are Gelfand-Phillips.
Further, it is also well-known that separable Fréchet spaces are Gelfand-Phillips.
Hence M(E, F) = Li(E, F). From the proof of Theorem 3 (a) in [BL1] we have in all
three cases that there exists T € L(E, F')\ M (E, F') which factors through a Banach
space with an unconditional bases. This completes the proof by Theorem 16. O

In the paper [Rh] Reiher considered Fréchet weighted Kothe function spaces (see
also [Dz]). It is proved that such a space L,(A) over purely non-atomic space always
contains a Banach subspace of the form L,. Now, if we take L, = L,(0.1) we get
easily Cor. 15 for weighted L, spaces instead of L.

Corollary 21. Let 2 < p < oo and E be Fréchet or complete DF-space. The

following conditions are equivalent:
(8) L(E,Ap(A)) 2 loos

) L(E,Ap(4)) 2 co;
(¢) M(E,\,(A)) 2 co;

) M(E,\,(A)) contains a complemented copy of ¢y;

) either E} D lo or there is a non-Montel map T': E — [, and A,(A) contains
a copy of l,,.

Proof. (e)= (d) and (a) follows from the Fréchet or DF version of Cor. 9.

(b) = (e): If A, is non-Montel, then A, D [, and, by Cor. 9, M (E,l,) # L(E.1,). 1f
Ap(A) is a Montel space, then L(E, X,(A)) = M(E,\,(A)) 2 ¢o. Now, either E; D«
or L(E,\,(A)) D ls (sec [BDLR, Cor. 12]). By [BDLR, Th. 9. if M (E, A, (A)) Dl
then Ej D ls. Similarly, by [BDLR, Th. 8], if E; D «. then Ej D l. O

b =

The results similar to Cor. 20 and 21 also hold for coechelon Koéthe sequence

DF-spaces.
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