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Czechoslovak Mathemat ica l Journal, 46 (121) 1996, P r aha 

C O T Y P E AND C O M P L E M E N T E D COPIES OF c0 

IN SPACES OF OPERATORS 

J. BONET, Valencia, P . DOMANSKI, Poznaii, and M. LlNDSTROM, Abo 

(Received June 13, 1994) 

1. INTRODUCTION 

The main purpose of the paper is to characterize for some Banach spaces F (or 

E) those Banach spaces E (or F) for which the space of compact operators K(E, F) 

contains a (complemented) copy of Go. 

First, we consider spaces F of finite cotype p, 2 ^ p < oo. It turns out tha t 

if there is a non-compact map T: lp —> F (as it happens for F = LP(JJL), CP— 

the Schatten class etc.), then we are able to characterize precisely those E for which 

K(E, F) D co. If there is even a non-limited map T: lp —r F, then the same condition 

characterizes even the case when K(E, F) contains a complemented copy of en. Since 

the characterization is given by the conditions of type "there is a non-compact map 

T: E -» lp," it seems tha t the result has something in common with the following 

type of results: 

(1) If either E or F has some unconditional structure and L(E,F) ^ K(E,F), 

then K(E, F) contains a copy of c0 (see [Kal , Th. 6], [Fel], [E3, Th. 3], [E4, Cor. 10, 

11], [E5, Th. 1, Cor. 3 and Th. 12] and [BDLR, Th. 11]). 

Analyzing this connection we prove that if there is a non-limited operator T: 

E —)• F factorizing through a. space with an unconditional basis, then K(E. F) 

contains even a complemented copy of CQ. 

We also give a version of our results for ^-products and spaces of weak*-weak 

continuous maps and a sample of applications. There are also some unformulated 

consequences of our results for those spaces of vector-valued functions or measures 

which can be interpreted as spaces of operators (see [DzS], [DD2], [DD4], [Dr2], [Dr3], 

[DrE] and [Me]). 

The research of J. Bone t was partial ly suppor ted by D G I C Y T Proyecto no. PB91-0538. 
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The results are formulated for E, F being Banach spaces. The proofs are presented 

in such a form tha t one can easily observe tha t the same results are true for E, F being 

either Frechet or complete DF-spaces (all four combinations are admit ted) , where 

instead of compact operators we consider the space M(E, F) of Montel operators (i.e., 

operators mapping bounded sets into relatively compact ones). The last section will 

be devoted to tha t general setting . In particular, we apply our results to F being 

non-Montel Kothe sequence spaces XP(A) or kp(V), function spaces e t c 

We should point out that [Dr3] (and a later note [Dr4]) served as the main source 

of inspiration. Drewnowski characterized in his paper those Banach spaces E such 

tha t ca(E,E) contains a copy of co- Since ca(Z,E) could be interpreted as a space 

of operators, we analyzed the proof, isolated the main ideas and apply them to our 

problem. 

There is a quite extensive literature on the problem of containment of Co or loo in 

classical spaces of operators. The known results (apart from the results of type (1), 

see above) could be sorted in three main types: 

(2) If F or E' contains a copy of CQ, then a certain space of operators A(E,F) 

contains a complemented copy of Oo (see [FiT, Th. 2.3], [Ry], [Sa], [E2], [E7, Th. 2, 

Cor. 3]). The results of that type are true for "small" spaces like the space of compact 

operators K(E, F). They are modelled after the remarkable result of Cembranos [Ce] 

on containment of complemented copies of Oo in C(K, E). 

(3) If a certain space of operators A(E,F) contains a complemented copy of c0, 

then either F or E' contains a copy of c0 ([Kal], [E8, Cor. 2]). The results of 

tha t type hold mostly for "big" spaces like the space of weakly compact operators 

W(E,F). The proof is based on results of the following form: if neither F nor E' 

contains a copy of Co (or some similar assumption), then each map Jo : Go —> A(E,F) 

extends to a map J: l^ -> A(E,F) (see [Kal, Th. 6], [E4, Th. 5, Cor. 9], [BDLR, 

Th. 10, Cor. 12-18]). 

(4) If a certain space of operators A(E, F) contains a copy of loo, then either F or 

E' contains a copy of loo as well (see [Kal , Th. 6], [Dr2], [BDLR, Th. 9]). These are 

also "small" space type results. 

The results of types (2)-(4) above always exhibit a link between the containment 

of a Banach space as a (complemented) subspace in A(E,F) and the containment 

in the spaces E' or F. The aim of this article is to consider cases where such a link 

does not exist, i.e., the containment in the spaces of operators of a certain Banach 

space is not due to the containment of the same Banach space in the spaces E' or 

F. Accordingly a new approach and different methods are needed for the problems 

considered here. 

The problem of (complemented) copies of Go in spaces of operators is also closely 

connected with the old question if the space of compact operators can be a non-trivial 

272 



complemented subspace of the space of all continuous operators (see for example 
[BDLR], [BL1], [BL2], [DD1], [DD2], [DD3], [DD4], [E1]-[E8], [Fel], [Fe2], [Kal] and 
[Jol]). In particular, it is known in the Banach setting (see [Fel, p. 201], [Kal, proof 
of Th. 6] and [E3, Th. 2]) that if we consider the following conditions: 

(a) L(E,F)^K(E,F); 
(b) L(E,F)Dl00; 
(c) L(E,F)Dc0; 

(d) K(E,F)Dc0; 

(e) K(E,F) is uncomplemented in L(E,F); 

then (d) => (c)<=>(h) => (a) and (d) => (e) => (a), but, in general, (a) does not imply 
(d) (see [E9]). 

The authors would like to express their gratitude to Prof. L. Drewnowski for 
providing us his unpublished preprints and for his comments. 

2. PRELIMINARIES 

Our notation and terminology is standard and we refer to the books [J], [LT] and 
[Dl], 

The ^-product EeF of locally convex spaces (les in short) E and F is the operator 
space LE(E'co,F) of all weak*-weakly continuous linear maps from E' into F which 
transform equicontinuous subsets of E' into relatively compact subsets of F, endowed 
with the topology of uniform convergence on the equicontinuous sets in E'. The 
space L£(E'co,F) reduces to the Banach space KW*(E',F) of compact weak*-weakly 
continuous linear maps with the norm topology in the Banach space setting. By 
L(E'fL,F) we denote the space of all weak*-weakly continuous linear maps from E' 
into F. If F and E are complete lcs, then Le(E'co, F) and L£(E'fL,F) are also complete 
lcs. The spaces L£(E'co,F) and L£(F'co,E) (as well as L£(E[L,F) and L£(F^L,E), 
resp.) are topological isomorphic via the correspondence between h and its adjoint 
h'. Let LW(E,F) denote the space L(E,F) endowed with the topology defined by 
the semi-norms T H-> \y'(T(x))\, x e E,y' 6 F'. 

A subset B of a lcs E is called limited, if every equicontinuous, a(E', E)-mi\\ 
sequence in E' converges uniformly to zero on B. A continuous linear map from a 
lcs E into a lcs F is called limited if it transforms bounded sets into limited sets. By 
Li(E,F), W(E,F) respectively, we denote the space of all limited, weakly compact 
maps from E into F. A lcs E lias the G elf and-Phillips property, if every limited set 
in E is relatively compact. 

We say that a Banach space E has the p-Orlicz property if for each unconditionally 
convergent series ^xn in E we have: Yl \\xn\\p < oo. The space E has cotype p, 

/ iGN 
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if there is a constant C such that for each finite family of vectors x\,...,xn the 

following condition holds: ( £ \\xi\\v) ? ^ c( JQ
l || jr n(t)xi\\Pdt) P, where (/•„) 

M = l ' ^ 7 = 1 I 

are Rademacher functions. It is well known that cotype p implies p-Orlicz property. 

the converse is not true for p = 2 even for Banach lattices (see [Tl] or [DF, p. 103]). 
For all Banach spaces cotype p and p-Orlicz property are equivalent for 2 < p < oo 
[T2]. 

It is well known that for 1 ^ p < oo and a Banach space E the space of sequences 

11(E) := {(xn)neN CE:Vx' EE' £ |.«-'(.r„)|" < 00} 

is a Banach space if equipped with the seminorm (see [J, 16.5]): 

ep((z„)n6N):= sup ( ^ | . r ' ( : r „ ) | p ) 1 MP 

This class is closely connected with operators T: lq -> E as it is explained in the 
following known lemma (see [AD, Prop. B], [Dr3, Lemma 1] or [A, Prop. 2.2]): 

L e m m a 1. Let I < p,q < oo, - + - = 1, then the following assertions are 

equivalent for each Banach space E: 

(a) (>n) 6 11(E). 
(b) The series Ylan%n converges unconditionally for every sequence (an) £ lq. 

oo 

(c) The map (an) -> J2 anxn, (an) £ lq, defines an operator T: lq —> E. 
? i = l 

We need two other classes of sequences: CQ(E)—the class of null sequences; 1(E)— 

the class of limited sequences. At least the first part of the following lemma is also 

known (see [Dr3, p. 748] or [Ct]). 

Lemma 2. Let 1 < p,q < oo, - + - = 1 and let E be a Banach space - + -
(1) The following assertions are equivalent: 

(a) K(lp,E)jtL(lp,E). 
(b) 11(E) \c0(E)^lJ>. 
(c) There is an operator T: lp —• E such that T(en) -» 0 as n -> oo. 

(2) The following assertions are equivalent: 

(a) Li(lp,E)^L(lp,E). 
(b) 11(E) \ 1(E) jt 0. 
(c) There is an equicontinuous weak* null sequence (x'n)ne^ C E' and an oper­

ator T: lp-> E such that x'n(T(en)) = 1 for all n. 
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P r o o f . Both proofs are very similar so we restrict ourselves only to the par t (2). 

(a) =t> (b): Let T : lp -» E be a non-limited operator . Since lp is reflexive, we 

will find a normalized, weakly null sequence (un) in lp such that (Tun) is non-

limited. Thus we find an equicontinuous weak* null sequence (x'n) C E' such tha t 

x'n(Tun) > 1. By passing to a subsequence if necessary we may assume tha t (un) 

is a basic sequence in lp equivalent to the s tandard basis in lp (see the proof of 

[AD, Prop. D]). Since the s tandard basis in lv belongs to lq
w(lP), the sequence (xn), 

xn = Tun, belongs to 11(E) \ 1(E). 

(b) => (c): We define T according to Lemma 1 (c). 

(c) => (a): Obviously, such T is non-limited. D 

Since C(K) contains a copy of l\ if and only if A' is a non-scattered compact 

Hausdorff space [PS], the following result is an improvement of Theorem 3.2 in [A] 

(comp. also [OP, Prop. 3]). 

Corol lary 3 . Let E be a Banach space containing a copy of l\ and let F be a 

Banach space. IfW(E,F) = K(E,F), then L(l2,F) = K(l2,F). 

P r o o f . Let T : l\ —> l2 be the inclusion mapping. Since T is 2-summing, 

the Pietsch Domination Theorem says that there exists a regular Borel probability 

measure u defined on some compact Hausdorff space such tha t T factors through 

L°°(/t). Then, by the injectivity of L°°(u), T extends to a non-compact continuous 

linear map S from E into l2. Suppose that L(l2,F) ^ K(l2,F), by Lemma 2, there 

is U: l2 -> F, U(en) ^ 0. Obviously, UoS G W(E,F), if UoS were compact, then 

UoS(fn) = U(en) —> 0, where (fn) and (en) are unit vectors in l\ and l2, respectively; 

a contradiction. D 

Coro l lary 4 . If E is a Banach space, 1 < p, q < co, -} + - = 1, then L(E,lp) / 

K(E,lp) iffL(lq,E') ^K(lq,E'). 

P r o o f . Let T : E -> lp be a non-compact operator, then its dual map T': 

I(J —> E'b is non-compact. On the other hand, if L(lq,E') / K(lq,E'), then there is 

(.*•'„) £ ll(E')\c0(E'). It is easily seen that the map T : E -> lp, T(x) = « ( a ; ) ) n G N 

is not compact. D 

In order to describe operators into lp, 1 ^ p < oo, we need the class of weak* 

/7,-sequences: 

v;AE') = {(.<) c £i: v.r e E J2 K(;(:)l" < TO}' 

P r o p o s i t i o n 5. If E is a Banach space, then: 

(a) ifT: E -> Z7, i.s ajj opeivitoi", /iLcu (T r (c a ) ) G lp
w*(E'); 

9.7 r, 



(b) if(x'n) e lw*(E') then T: E -> lpj T(x) = (x'n(x)) is a continuous operator. 

3. T H E MAIN RESULTS 

We s tar t with the following: 

T h e o r e m 6. Let E, F be Banach spaces and let 1 < p, q < oo, - -f - = 1. 

If L(lq,E) 7- K(lq,E) and L(lp,F) / K(lp,F), then there exists a topological 

embedding J: l^ -> L£(E'U,F) such that J(c0) = J(/oo) H L£(E'co,F). In particular, 

L£(E'co,F)^L£(E'n.,F). 

If, additionally, L(lp,F) ^ Li(lp,F) or L(lq,E) ^ Li(lq,E), then we can even 

obtain J(c0) complemented in Le(E'co,F). 

Corol lary 7. Let E, F be Banach spaces and let 1 < p < oo. 

If L(E,lp) ^ K(E,lp) and L(lp,F) / K(lp,F), then there exists a topological 

embedding J: l^ -> W(E,F) such that J(c0) = J(/oo) H K(E,F). In particular, 

W(E,F)^K(E,F). 

If, additionally, L(lp,F) ^ Li(lp,F) or L(lq,E'b) / Li(lq,E'b), then we can even 

obtain J(c0) complemented in K(E,F). 

R e m a r k . Under the assumptions of Th. G and Cor. 7 we can prove that K(E, F) 

(L£(E'co,F)) is uncomplemented in L(E,F) (L£(E[L,F), resp.); see [E3, Th . 2], [E4], 

comp. [BDLR, Th. 32 and Cor. 33]. 

P r o o f of C o r o l l a r y 7. By [CoRu, Ex. 0.2] (comp. [BDLR, Cor. 7]), we 

can identify W(E,F) with L£((E%,F) and K(E,F) with L£((E')'co,F). Moreover, 

by Cor. 4, L(E,lp) ^ K(E,lp) implies that L(lq,E') ^ K(lq,E') for q conjugate to 

p. This completes the proof by Theorem 6. D 

P r o o f o f T h e o r e m G. By the assumptions (see Lemma 2), there are se­

quences (xn) <E lw(E)\c0(E), (zn) <E lq
w(F)\c0(F). Of course, (:cn) is weakly null bu t 

we may assume that | |:rn | | ^ 1. By the Bessaga-Pelczyiiski Selection Principle (see 

[Dl, p. 42]), taking a subsequence if necessary, we can find a sequence of functionals 

(x'n) biorthogonal to (xn). 

Now we can define a linear map T: E' —•> lp by T(x') = (x'(xn))n. Then T € 

L(E' ,lp) or equivalently T is weak*-weak continuous from E' into lp. Indeed, by 
oo 

Lemma 1, the series ^ £,nxn converges unconditionally in E for all (£n) £ lq. Since 
7 1 = 1 

for each (fn) G lq = (lp)' 

OO / OO \ 

Y^tnx'frn) = x'[J2tnx») &>rall xf e E', 
n=\ ^ 7 i = l ' 
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we conclude that T G L(E' Jp). 

Similarly, there is a continuous linear map S: lp —•> F such that S(en) = zn (see 
Lemma 2 (c)) hence | |5(en)| | ^ 1 for all n. Thus we have a continuous linear map 
S o T : E\h -> F with | | 5 ( T « ) ) | | = | |5(en)| | ^ 1 for all n. Let £ = (fn) € /°° and let 
D^: lv —> lp be the diagonal map (An) H-> (£nAn). Then we can define a continuous 
linear map 

J: l°° -> L£(E'n,F) by J(0*' - ( S o ^ o r ) ( 4 

Now, J: l°° —> LU>(E'U,F) is continuous. In fact, for H' G F' and re' G E' we have 

that 

/ OO v i / p 

|yV(0*')l ^ M • E l ^ ^ n j r • sup Knl for all £ = (fn) G r , 

where M > 0 is some constant. Then J has closed graph in Z°° x L€(E'fl,F) and it 
follows that J: l°° -> L£(E'a,F) is continuous. 

Moreover, we have that ||J(en)a;n|| = | |£(en)| | ^ 1 for all n and (x*n) C E' is 
equicontinuous, so J(en) -ft 0 in Le(E' ,F). Thus there exists an infinite subset 
M CN such that J: l°°(M) -» L£(E'^,F) is an isomorphism (see [Drl]). Let us 
assume that M = N. Since J(Qx'n — fnS(en) and S(en) -» 0 weakly in F, it is 
clear that J(£) G L(E'co,F) implies that £ = (£n) G Co. Conversely, suppose that 
£ — (£n) £ Co- Then the diagonal map D^: lp —.> lp, (An) »-> (£nAn), is compact and 
therefore J(£) G L(E'co,F). Thus we have 

J(co) = J(/°°)nLe(F:o,F). 

Finally, if we assume that L(lp,F) 7̂  Li(/P,F), then, by Lemma 2, there are a 

weak*-null sequence (y'n) C F" such that y'n(S(en)) = 1 for all n. We define P : 

L£(E'co,F) -> c0 by P(T) = ( y n ( T « ) ) ) n . Then P is well-defined and continuous, 

since (x'n) C E' is equicontinuous. For every £ = (£n) G Co we have that 

P(J(0) = (!/;(5(^e„)))n = &.)„ = e 

This means that J(cn) is complemented in L£(E'co,F), and the proof is complete. 
The case L(lq,E) 7-- Li(lg,F) is very similar, we take as (yn) a sequence biorthog-

onal to (zn) and as (x'n) a weak*-null sequence in E' such that x'n(xn) — 1 for all 
n eM. D 

Remark . The map J above could be explicitly defined (see the proof of Lemma 

2): 

J(0x'= £&,*'(*„)*„. 
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T h e o r e m 8. Let E ,F he Banach spaces and let 2 ^. p < oo, - + - = I. 

(1) If F has the p-Orlicz property, then 

(a) if LE(E'U,F) contains a copy of c0, then K(lq.E) ft L(lq,E); 

(b) if L(E,F) contains a copy ofc0, then K(EJ,p) ^ L(E,lp). 

(2) If E has the p-Orlicz property and Le(E' ,F) contains a copy of c0, then 

K(lq,F)ftL(lq,F). 

(3) If E' has the p-Orlicz property and L\}(E,F) contains a copy of c0. then 

K(lq,F)^L(lq,F). 

P r o o f . ( l ) (a ) : We can assume that F does not contain a copy of c0, since c0 has 

no Orlicz property and yj-Orlicz property is inherited by subspaces. Suppose tha t J : 

c0 —> L£(E' ,F) is an embedding. Then we can define a continuous linear map Jx> : 

c0 -» F by Jx'(£) = J(£)x',x' G E'. Since c$ (jL F we get by Lemma 1 and Lemma 
oo 

2(b) in [BDLR] (see also [Ka2, Th. 2.4] and [Da, Lemma 2.2]) that £ £nJ(en)i
J is 

7 1 = 1 

subseries convergent in F for all x' G E' and all £ -= (£„.) G /°°. For T' G £" the series 
oo 
Y^ J(en)x' is unconditionally convergent in F. Since F has the p-Orlicz property, it 

7 1 = 1 

oo 

follows that ]T HJ^J - r 'H ' ' < oo for all. Since J(cn) ft 0 in L£(E' ,F), there are an 
7 1 = 1 

equicontinuous sequence (x'n) in E' and an equicontinuous sequence (y'n), \\yr
n\\ ^ V 

such tha t \y'n(J(en)x'n)\ ^ 1 for all n. Let xn = y'n o J ( e u ) G F = ( J ^ ) ' . Then 

xn ft 0 in E. We have also || J(e, l);r / | | ^ | i /^(J(e n) . r ' ) | for all n, and consequently 
oo oo 

E K ( J ( e n ) : r / ) | p < oo. Hence £ |T ' (T , i) |p < oo for all x' G £ ' , and the proof is 
71 = 1 7 1 . = 1 

complete by Lemma 2. 

(b): We can prove similarly as above, that there is (x'n) G lp
w*(E') \c0(E'b). As in 

Prop. 5, we define an operator T: E -» /p, T(T) = (•>''„ C O W M • By the description 

of relatively compac t sets in /,,. T is not compact . 

(2) and (3): The proof is quite similar — it suffices to use the map Jy , Jy (£) = 

? / o J ( 0 for y' G i7 ' instead of J,,,. • 

Now, we give a sample of immediate consequences. 

Corol lary 9. Let E, F he Banach spaces. If F has the p-Orlicz property 

(2 ^ p < oo) and L(lp,F) ft K(1}),F), then the following assertions are equivalent: 

(a) L(E, F) contains a copy of l°°. 

(b) L(E,F) contains a copy ofc0. 

(c) I^(E,F) contains a copy of c0. 

(d) There is an embedding J: Z°° -> W(E,F) such that J(c0) = J(l°°)nK(E.F). 

(e) L(E,lp)±K(E,lp). 
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If L(lp,F) ^ Li(lv,F), then the above conditions are also equivalent to: 

(f) The condition (d) holds with J(c0) complemented in K(E,F). 

(g) K(E,F) contains a complemented copy of c0. 

R e m a r k . The implication (b) => (a) holds for all Banach spaces E, F, see 

[Kal , proof of Th. 6 (hi) => (ii)]. 

Corol lary 10. Let E, F be Banach spaces. If E' has the p-Orlicz property 

(2 ^ p < co) and L(lv,E') =̂  K(lv,E'), then the following assertions are equivalent: 

(a) L(E,F) contains a copy of l°°. 

(b) L(E,F) contains a copy of c0. 

(c) K(E,F) contains a copy of c0. 

(d) There is an embedding J: l°° -> W(E, F) such that J(c0) = J(l°°)nK(E, F). 

(e) L(lq,F)^K(lq,F). 

If L(lp,E') =̂  Li(lv,E'), then the above conditions are also equivalent to: 

(f) The condition (d) holds with J(c0) complemented in K(E,F). 

(g) K(E,F) contains a complemented copy of c0. 

P r o o f of C o r o l l a r i e s 9 a n d 1 0 . Obviously, (d) => (c) => (b), (d) => 

(a) => (b). By Theorem 6, Cor. 7 and 4, (e) => (d) and, by Theorem 8, (b) => (e). 

Moreover, obviously (f) => (g) => (b) and, by Theorem 6 and Cor. 7, (e) => (f). D 

Coro l lary 1 1 . Let E', F be Banach spaces with the 2-Orlicz property. Then 

the following assertions are equivalent: 

(a) L(E,F) contains a copy of l°°. 

(b) L(E,F) contains a copy of c0. 

(c) K(E, F) contains a copy of c0. 

(d) There is an embedding J: l°° -> L(E, F) such that J(c0) = J(l°°)C]L(E, F). 

(e) L(E,l2) ? K(E,l2) and L(l2,F) ? K(l2,F). 

P r o o f . (b) => (e): Follows from Theorem 8, on the other hand, (o) => (/I) 

follows from Theorem 6. The rest is obvious (see the proof of Cor. 9). D 

R e m a r k s . (1) Similar results also hold for L£(E'fi,F) and L£(E'co,F) spaces. 

(2) If F has the Gelfand-Phillips property, in particular, if F is separable or 

reflexive, then L(lv,F) / K(lv,F) iff L(lv,F) / L i ( l p ,F ) and we can improve the 

results above. 

(3) A particular case of the result for E = P and F = P', where P is the so-called 

Pisier space was proved in [Jo2, Prop. 1]. 

279 



The dual of each C*-algebra has cotype 2 [TJ]. By Cor. 11, we get (comp. [E3, 
Th. 4]): 

Corollary 12. Let E be a C*-algebra, F the dual of any C*-algebra, then the 
following assertions are equivalent: 

(a) L(E,F)Dloo; 

(b) L(E,F)DCo; 

(c) K(E,F)DCo; 
(d) L(E,l2) -* K(E,l2) and L(l2,F) ? K(l2,F). 

The Schatten class Cp is of cotype max(2,p) [TJ]. Thus, by Cor. 9 and recalling 
that each reflexive Banach space has the Gelfand-Phillips property, we get: 

Corollary 13. Let 2 ^ p < oo, then for each Banach space E the following 

assertions are equivalent: 

(a) L(E,Cp)Dloc; 

(b) L(E,CP) Deo; 

(c) K(E,Cp)Dc0; 
(d) K(E,CP) contains a complemented copy of c0; 
(e) L(E,lp)^K(E,l„). 

The next result is a particular case of Th. 16 from the next section. Thus, we 
present it without proof. The result strengthens [Kal, Th. 6 (ii) => (i)] (comp. [Fel, 
Th. 4]). 

Corollary 14. If E and F are Banach spaces such that there exists a non-
limited map T: E —> F factorizing through a Banach space with an unconditional 
basis, then K(E,F) contains a complemented copy of c{). 

Remarks . (1) The result has a very nice form if Li(F,F) = K(E, F), i.e.. 
when F has the Gelfand-Phillips property (comp. a similar result [E4, Th. 19]). 

(2) Let us note that in the proof of Cor. 7 we show in fact that there is a non-
compact map (or a non-limited map) J(cr): E -> F, c\' = (1,1. . . . ) , which factorizes 
through lp. Thus Cor. 7 is a consequence of Cor. 14. 

By Cor. 9 and Cor. 14 we get: 

Corollary 15. Let 1 ^ p < oo, LI a purely non-atomic measure, then for each 

Banach space E the folowing assertions are equivalent: 

(a) L(E,LP(LI,)) D/OO; 
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(b) L(E,Lp(u)) Dc0; 

(c) K(E,LP(LI)) 2 c 0 ; 

(d) K(E,Lp(/.i)) contains a complemented copy of CO; 

(e) L(F,/max(2,p)) # I^(I^max(2,p))-

Ifp > 1, then the above conditions are equivalent to: (f) L(E,Lp(fi)) ^ K(E,Lp(ii)). 

P r o o f . For p > 1 the space Lp(lI) has an unconditional basis and for p ^ 1 

there is a non-limited map T: /max(2,p) -> Lv(p). Indeed, it is clear for p > 1, for 

p = 1 the Rademacher functions are non-limited and they span a copy of 1-2 in Li(lt). 

D 

4. T H E CASE O F F R E C H E T AND D F - S P A C E S 

We will be interested in the so-called admissible pairs of of lcs (E,F), i.e., one of 

the following cases holds: 

(1) Both E and F are Frechet spaces. 

(2) Both E and F are complete DF-spaces. 

(3) E is a Frechet space and F is a complete DF-space. 

(4) E is a complete DF-space and F is a Frechet space. 

We use further on (without reference) the following facts on admissible pairs. If 

G = E or E'b or (E'b)'b e t c and H = F or FjJ or (F'b)'b e t c the following conditions 

hold (see the beginning of Section 2 in [BDLR]): (i) both G and H are complete 

and weakly angelic [Fl]; (ii) G is No-barreled (i.e., the Banach-Steinhaus Theorem 

for sequences holds); (iii) the space Lb(G,H) admits a strict web in the sense of De 

Wilde (i.e., the Closed Graph Theorem holds for maps from any Banach space into 

L , , (G ,H ) , s ee [ J ] ) . 

The notions of cotype p and of the p-Orlicz property can be extended in an obvious 

way to general lcs. If a sequentially complete lcs E has the p-Orlicz property or 

cotype p for p < 2, then it has 1-Orlicz property and cotype 1, equivalently, it is 

nuclear (comp. [KRT, Cor. 5, p. 107]). It is easily seen tha t any projective limit of 

Banach spaces with cotype p (or t>-Orlicz property) has cotype p (p-Orlicz property , 

respectively). 

Let us recall tha t M(E,F) denotes the space of Montel operators (i.e., those 

mapping bounded sets into relatively compact ones). Now, we give a promised 

general form of Cor. 14. 

T h e o r e m 16 . Let (E,F) be an admissible pair of non-Montel lcs. Assume that 

there is a map T G L(E, F) \ Li(E, F) which factorizes through a Nn-baTTeL/ed space 
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with an unconditional basis (for example, through a Frechet or complete DF-space 

with an unconditional basis). Then Mb(E,F) contains a complemented copy of c0. 

First we need an auxiliary lemma due to Drewnowski [Dr5]. It generalizes a 
Banach space result due to Emmanuele [E2, Th. 1] and Schlumprecht [S]. The proof 
is similar. 

Lemma 17. Let (xk) be a sequence in a lcs E such that there is an embedding 

J: c0 —•> E with J(ek) — xk for all k E M. Assume that there is an equicontinuous, 

weak*-null sequence (x'n) in E' which is not uniformly convergent to zero on (xk). 

Then a subsequence of (xk) spans a complemented copy of c0 in E. 

Lemma 18. Let E be a Banach space and F a lcs. Suppose that the following 
properties are satisfied for S e L(E,F): 

(i) There is an equicontinuous weak*-null sequence (y'n) C F' such that for all 

n eN 
sup \y'n(S(x))\ ^ e0 for some e0 > 0. 

x£BE 

(ii) There is a sequence (S,n) in K(E, F) such that Sm(x) —> S(x) in F for every 
x G E, when m -» oo. 

Then there exist an e > 0 and strictly increasing subsequences (raj) and (kj) in N 

such that for all j G N 

S U P hJL-((sm2,- - s W x X * ) ) , ^e. 
x£BE 

P r o o f . We first show that there exists an e > 0 such that for all ??i0 G N there 
are m > n ^ m0 with 

(1) sup sup \y'k((Sm - Sn)(x))\ ^ e. 
XEBE k>i7iQ 

On the contrary, let us assume that for all e > 0 there is ra0 G N such that for all 

m > n ^ m0 it follows that 

\y'k((Sm - Sn)(x))\ < e for all k ^ ???0 and all x G BE. 

Let e — e 0 /3 . By assumption there exists m0 G N such that for every m > m0 we 
have that \y'k((Sm - Sm{))(x))\ < £0/3 for all k ^ m0 and all x G BE. Now we fix 
k ^ ??i0 and x G BE and let m -> oo. Hence \y'k({Smit - S){x))\ ^ £0/3. Thus we 
obtain that \y'k(S(x))\ ^ ^0 /3 + \y'k(Sm()(x))\ for all A; ̂  m0 and all x G BE. Since 
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Sni() G K(E,F), there is a, k0 e N such tha t \y'k(Smi)(x))\ < E0/3 for all x e BE and 

all k ^ ko- Now it follows for A; > max(k0,??7,0) and x G BE tha t \y'k(S(x))\ ^ 2 e 0 / 3 , 

which is a contradiction to (i). Thus we have shown (1). 

Tlie result follows easily by induction. • 

P r o o f of T h e o r e m 1 6 . First we observe tha t if E, F are complete non-

Schwartz DF or non-Montel Frechet spaces, F 3 c0 , then L£(E'co,F) contains a com­

plemented copy of Co. In the setting of Banach spaces this result has been obtained 

by Ryan [Ry]. For the sake of completeness we briefly recall the main ingredients of 

the proof. 

Since E is non-Montel (or non-Schwartz, resp.) there is an equicontinuos, weak*-

null sequence (x'n) in E' and a bounded sequence (xn) in E such tha t x'n(xn) = 1 

for all ?i G N [BL2, Th. 9 and Cor. 14] (comp. [L] and [LS]). Let (yn) be a copy 

in F of the unit basis (en) in c0. Then there is an equicontinuous sequence (y'n) 

in F' such tha t ym(yn) = Smn. Pu t zn = xn cg> yn G E 0 F. Now, Freniche [Frl, 

Th. 2.3] showed tha t there is an embedding J: c0 -» E®£F C L£(E'co,F) given by 
oo 

• ! (0 = E 4»z»- For each n £ ^ define un G Le(E'co,F)' by un(T) = (y'n,T(x'n)). 
7 1 = 1 

Notice tha t F = (F'co)' and that the dual map T': F'co -> E is continuous. The 

sequence (un) C L£(E'co,F)' is equicontinuous, and for each T G L(E'co,F), 

\un(T)\ = \(T'(y'n),x'n)\^0, as n -> oo. 

Thus un —)• 0 weak* in Le(E'co,F)'. Since 7(e„) = 3„ and 

|«„(c„) | = K(xn)y'n(yn)\ = 1 

for all n G f̂ J, it follows from Lemma 17 tha t L£(E'co,F) contains a complemented 

copy of c0. 

Since the Frechet space E is Montel if and only if E'b is Schwartz [J, 11.6.1], we 

obtain from the above result tha t if F D c0 . then Mb(E, F) = L£((E'b)'co, F) contains 

a complemented copy O/c0. 

Now, let us assume tha t F does not contain a copy of c0 . Let T = fog be 

the factorization through a tt0-barrelled space G with unconditional basis (un) and 

let (u'n) denote the associated sequence of coefficient functionals. Hence there is 

a sequence of continuous linear projections P,n : G —> G of finite rank, defined by 
m 

P>n(u) — J2 u'n(
u)un- For every u G G we have u = lim Pm(u) and for each 0-

7 1 = 1 m 

neighbourhood U there is a 0-neighbourhood V such tha t for all M C N and all 
oo 

appropriate scalar sequences (<\n) we have || ^ Q'nun\\u ^ II Z) anun\\v (cf. [Wl], 
A/CN / i = l 
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Var. 1.21). Clearly Tm = foPm og G M(E, F) for every m G N. Now Tm(x) -> T(x) 

in F for all x G E. Since T is not limited, there are a weak*-null sequence (y'n) C F', 

an e0 > 0 and a Banach disk B0 in E such that sup \y'n(T(x))\ ^ e0 for all 77 G f̂ J. 
x € B o 

Let 5 = T o j e F(H, F) and Sm = Tm o j G Iv (H, F), where H = FB() is a Banach 
space and j : H —> E is the continuous injection. Since sup |g^(5(x))| ^ £0 for all 

xeB{) 

n € N and Sm(x) -> 5(.T) in F for every x G H, when //? ->ocwe can apply Lemma 
18 to obtain e > 0 and strictly increasing subsequences (//?/,) and (77̂ ) in N such that 
for all k G N 

(2) sup | y ; i , ( (5 m 2 f c -5 m 2 , _ 1 ) ( i r ) ) | ^ e . 
xGBi) 

Put Q* = Tm2A - Tm2A_1 G M(E,F). Exactly as in [BL1, proof of Prop. 14], we 
can prove that for x G E and £ = (&) G /oo the set { ]T ZkQkX: A C N finite} is 

keA 
bounded in F, which, by [MR, Th. 5], is equivalent to 

0 0 

)>2\y'(ZkQkx)\<oo 
k=i 

for each y' G F''. Now, since F does not contain a copy of c0, Theorem 4.5 in [Ka2] 
0 0 

gives that Yl €kQk% is convergent in F for all x G E and all £ = (£fc) G Z°°. Thus we 
fc=i 

can define a linear map 

It: Z°° -> L(E,F),£^ [a: ^ ^ £ , Q , A 
^ / o = l ' 

Since F is No-barrelled, It(0 G L(E,F). Since H: l°° -> LW(E,F) is continuous, 
the graph of It is closed in l°° x Lb(E,F). The space Lb(E,F) is a webbed space 
and we conclude that H: /°° -> Lb(E,F) is continuous (cf. [J, Theorem 5.4.1]). 

Since (y'nk) C F' is equicontinuous, Qk /> 0 in Mh(E,F) by (2). Thus It(e/J = 
Qk /> 0, when k -> 00. Hence there exists an infinite subset M C N such that H: 
l°°(M) -> Lh(E,F) is an isomorphism [DiT]. Assume that AI = N. It is easily seen 
that R: c0(M) -> Mb(E,F). Moreover, by (2), there is a sequence (xk) C Ho such 
that \yf

n,(Qk(xk))\ ^ e/2 for all k G N. For T G AI(F, F), 

\(y'nh Gxk)(T)\ = | ( T ( ^ ) , ^ A ) | -> 0, when A: -> 00. 

Thus the sequence (y' ® :I*A ) converges weak* to zero in Mu(E,F)'. Now we can 
apply Lemma 17, and it follows that c0(L) is complemented in Mb(E,F) for some 
infinite subset L of M. This completes the proof. • 
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The authors have checked that if we replace the spaces of compact operators and 
of weakly compact operators by spaces of Montel operators (i.e., those mapping 
bounded sets into relatively compact sets) and of reflexive operators (i.e., those 
mapping bounded sets into relatively weakly compact sets) respectively, then the 
whole set of results from Section 3 (1-15) remain true for admissible pairs (E,F). 
Since the proofs require slight modifications, we omit details and we give only some 
applications. 

In particular, the proof of Th. 8 also works for p < 2. As we mentioned already, 
every lcs with the p-Orlicz property, p < 2, is nuclear. Accordingly, the proof of 
Th. 8 shows the following result: 

Corollary 19. If the pair (E, F) is admissible and F is nuclear then the space 
L£(E'^L,F) or L(E,F) contains c0 if and only if E D c0 or E D lx complemented, 
respectively. 

Let us note that, by (1) from the introduction, if F has an unconditional basis, 
then either M(E,F) ^ L(E,F) and, then Mb(E,F) D c0, or M(E,F) = L(E,F). 
Moreover, if M(E, F) = L(E, F) and F contains no copy of c0, then by [Kal, proof 
of Th. 6 (iii) =r> (ii)] (comp. [BDLR, Cor. 12]), Mb(E,F) D l^ and, by [BDLR, 
Th. 9] (see also [Kal, Th. 4]), either E' or F contains a copy of l^. Thus in our case 
Mb(E, F) D c0 iff either E' or F contains c0 or M(E, F) / L(E, F). 

If we try to repeat the above considerations for complemented copies of c0 we are 
in trouble. Namely, if E' or F contains a copy of c0 and the other space is non-
Montel, then, by [Ry] (see also the first part of the proof of Theorem 16), Mb(E, F) 

contains a complemented copy of c0. The remaining case is unclear: 

Problem. [Dr5] Let E' and F contains no complemented copy of c0 and let E' 
or F be a Montel space. Is it possible that Mb(E, F) contains a complemented copy 
of c0 ? 

Remark . Since, by [Ra, p. 98], C(K) contains a complemented copy of c0 

iff it has not the Grothendieck property the problem is solved for E Montel and 
F = C(K) by [Fr2]. More general solutions has been found very recently in [DL]. 

We denote by Ap(^4) the Kothe echelon space of order p, 1 ^ p < oo (see [B]). We 
get: 

Corollary 20. Let E and F be non-Montel Frechet spaces. Under one of the 
following conditions: 

(a) E = X1(A), 

(b) F = X0(A), 
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(c) E and F are hilbertizable, 

(d) E = XP(A), F = \q(B), l^p^q<oo, 

we have that Mb(E,F) contains a complemented copy of c0. 

P r o o f . First we prove (a). The space E contains a complemented copy of li. 

It follows tha t if every T: E -» F belongs to Li(F, F), then every bounded sequence 

(x7l) in F is limited in F. But since F is non-Montel, there is a sequence (x'n) in 

F' which converges to zero in a(F',F) but is not 6(F', F)-null [BL2]. This is a 

contradiction, and consequently there exists a T G L(E,F) \ Li(E,F) which factors 

through li. We apply Theorem 16. 

Now, we prove (b), (c) and (d). Since every reflexive Banach space is a Gelfand-

Phillips space, it is clear that all hilbertizable Frechet spaces are Gelfand-Phillips. 

Further, it is also well-known that separable Frechet spaces are Gelfand-Phillips. 

Hence M(E, F) = Li(F , F). From the proof of Theorem 3 (a) in [BL1] we have in all 

three cases tha t there exists T e L(E, F) \ M(E, F) which factors through a Banach 

space with an unconditional bases. This completes the proof by Theorem 16. • 

In the paper [Rh] Reiher considered Frechet weighted Kothe function spaces (see 

also [Dz]). It is proved that such a space LQ(A) over purely non-atomic space always 

contains a Banach subspace of the form LQ. Now, if we take LQ -= Fp(0,1) we get 

easily Cor. 15 for weighted Lp spaces instead of Lp. 

Coro l lary 2 1 . Let 2 <, p < oo and E be Frechet or complete DF-space. The 

following conditions are equivalent: 

(a) L(E,Xp(A))Dl00; 

(b) L(E,Xp(A))Dc0; 

(c) M(E,Xp(A))Dc0; 

(d) M(E,XP(A)) contains a complemented copy of c0; 

(e) either E'h D l^ or there is a non-Montel map T: E -> lp and Xp(A) contains 

a copy of lp. 

P r o o f , (e) => (d) and (a) follows from the Frechet or DF version of Cor. 9. 

(b) => (e): If Xp is non-Montel, then Xp D lp and, by Cor. 9, M(E, lp) / L(E, /,,). If 

XP(A) is a Montel space, then L(E, XP(A)) = M(E, XP{A)) D r0 . Now, either E'h D r0 

ovL(E,Xp(A)) Dloo (see[BDLR,Cor . 12]). By [BDLR, Tli. 9], if M(E, XP(A)) D l^. 

then E'b D l^. Similarly, by [BDLR, Th. 8], if E'h D c(), then E^Dl^. D 

The results similar to Cor. 20 and 21 also hold for coechelon Kothe sequence 

DF-spaces. 
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