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Czechoslovak Mathemat ica l Journal , 46 (121) 1996, P r a h a 

R E T R A C T IRREDUCIBILITY OF 

C O N N E C T E D MONOUNARY ALGEBRAS I 

DANICA JAKUBÍKOVÁ-STUDENOVSKÁ, Košice 

(Received July 11, 1994) 

For some types of ma thema t ica l structures the relations between re trac ts and 

direct produc t decompositions have been studied (cf., e.g., [1] for the case of ordered 

sets, [2] and [5] for the case of graphs and [7] for the case of metric spaces). In 

the present paper we deal with a question concerning these relations for the case of 

connected monounary algebras. 

Let (.4, / ) be a monounary algebra. As usual, a nonemp ty subset M of A is said 

to be a re trac t of (A, f) if there is a mapping h of A onto M such that h is an 

endomorphism of (A, f) and h(x) = x for each x G M . The mapping h is then called 

a re trac t ion endomorphism corresponding to the re trac t M . Fur ther, let R( A, f J be 

the system of all monounary algebras (B,g) such that (B,g) is isomorphic to (M, / ) 

for some re trac t M of (A, / ) . 

In Section 1 (Theorem 1.3) we characterize re trac ts of a monounary algebra (^4, / ) 

by means of properties of degrees of elements of A. 

In the remaining sections we deal with the notion of re trac t irreducibility of a 

connected monounary algebra. It is defined as follows. A connected monounary 

algebra &/ will be said to be re trac t irreducible if, whenever &/ G R ( f j s/i) for 

some connected monounary algebras ^ , then there exists j G I such that &/ G R^/j. 

If this condition is no t satisfied, then ,o/ will be called re trac t reducible. 

The following result will be proved: 

( R ) . Let &/ — (A, f) be a connected monounary algebra possessing a one element 

cycle {c}. Then the following conditions are equivalent: 

(i) &/ is retract irreducible; 

(ii) if a and b are elements of A such that f(a) = f(b), then either a = b or 

c G {a,b}. 

The case when £/ has no one-element cycle will be dealt within Par t II. 
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In some proofs we essentially apply the results and methods of M. Novotny [8], 
[9] concerning homorphisms of monounary algebras. Homomorphisms of monounary 
algebras were investigated also in [3], [4], [6]. 

1. RETRACTS 

Let (A, f) be a monounary algebra. The aim of this section is to describe all 
retracts of (A, / ) . 

Let us remark that if M is a retract of (A, / ) , then (M, f) is a subalgebra of (A, / ) . 
The notion of degree sf(x) of an element x e A was introduced in [8] (cf. also [6] 

and [4]) as follows. Let us denote by A<°°) the set of all elements x E A such that 
there exists a sequence {£n}7ieNu{o} °f elements belonging to A with the property 
x0 = x and f(xn) = xn_i for each n G N. Further, we put A^ = {x G A: 
f~1(x) = 0}. Now we define a set _4<A) C A for each ordinal A by induction. Assume 
that we have defined A^ for each ordinal a < A. Then we put 

AW = {xeA-\J A^ : /-1 (x) C |J A™ }. 
a<A a<A 

The sets A^x^ are pair wise disjoint. For each x € A, either x G A^°°^ or there is an 
ordinal A with x G A^. In the former case we put Sf(x) = oo, in the latter we set 
Sf(x) = A. We put A < oo for each ordinal A. 

The following assertions are consequences of the definition of Sf(x) (cf. also [9]) 
and we will use them without further reference: 

1) If Sf(x) 7- oo, then Sf(f(x)) > Sf(x). 
2) If ft is a homomorphism of (A, f) into (B,f), then Sf(h(x)) ^ Sf(x) for each 

x G A. 

3) Let {(Ai,f): i G I} be a system of monounary algebras. If y,z G n ^ 
iei 

Sf(y(i)) ^ Sf(z(i)) for each i G / , then Sf(y) ^ Sf(z). 

1.1. Lemma. Let (A, f) be a monounary algebra and let M be a retract of 
(A,f). Ify G f~l(M), then there is z G M with f(y) = f(z), sf(y) ^ sf(z). 

P r o o f . Let x G M,y G f~~l (x). The set M is a retract; let ft be the correspond
ing retraction endomorphism. Then h(x) = x. Put h(y) = z. We obtain 

f(z) = f(h(y)) = h(f(y)) = ft(.r) = x. 

Further, z = h(y) G M and sf(y) ^ sf(Ji(y)) = sf(z). • 
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1.2.1. Lemma. Let (A , / ) be a connected monounary algebra and let (M, / ) 
be a subalgebra of (A,f). Suppose that if y G / _ 1 ( M ) , then there is z G M with 
f(y) -z f(z) and Sf(y) ^ Sf(z). For n e N we denote by Yn the set of all y G A such 
that y G f~n(M) - M and y $ f~m(M) for any m e N, m < n. Let Y = |J Yn. 

There exists a mapping <p: Y —> M such that, whenever n G N, u G Yn, then 

(i) / n (y) - fn(<p(y)), 
(ii) 5/(y) ^ 5/(v?(y)), 

(hi) *>(/*(2/)) = / f c My)) for each k G N, fc < n. 

P r o o f . If n = 1, y G f~l(M) - M, then there is z G M with / (u) = / (z ) , 

5/(2/) ^ s/C*); w e c a n P u t <p(y) = z-

Let n G N, n > 1, 2/ G yn . Then 

(1) y G f~n(M) - M, y (£ f~m(M) for each m G N , m < n, 

which implies 

(2) f(y) € / - ( n _ 1 ) ( M ) - M, /(2/) £ / ~ m ( M ) for each m G N, m<n-\, 

(3) / ( y ) e y n - i . 

Analogously, 

(4) / 2 W e F n - 2 , . . . , r ' W ^ , . 

Suppose that if m G f̂ J, m < ?i, t G ym , then <D(t) G M is defined and 

(a) fm(t) = fmMt)), 
(b) sf(t) <, S/MO). 
(c) <p(fk(t)) = fk(f(t)) for each fc € N, fc < m. 

Take y' = /(t/). By the induction hypothesis and (3), 

(5) r-1(y') = r-1(<p(y')), 
(6) sf(y') < s/(<p(y')), 

(7) ¥>(/*(!/')) = fk(f(v')) for each k € N , K n - l . 

Put <p(y') - z'. Let 
5 = { : i : e / - 1 ( z ' ) :5 / ( t / )< S / ( a : )} . 

If 5/(H) = co, then Sf(y') — oo and (6) yields that Sf(z') = oo. Then there is 
x G f~l(z') with 5 / ( T ) = oo, i.e., x G 5. Let Sf(y) < oo and suppose that 5 = 0. 
We obtain one of the following relations: 

(8.1) 5/(2/') > 5/(H) £ sup{5/(x): x G Z" V ) } = */(*'), 

(8.2) 5/(2/') > 5/(2/) > max{sf(x): x G Z " V ) } = sf(z') - 1, 
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a contradiction to (6). Thus 

(9) S^0. 

Further, S D M ^ 0, since if x G S - M, then z' G AJ implies that x G f~l(M) and 
there is (by the assumption) t G M with 

f(x) = f(t) and s7(T) ^ 5 /(*). 

Hence SnM ^ 0; take T G S n A/ and put (D(g) = T. Tlien (5) implies 

w fn(y) = r-l(f(y)) = /n_V) = r~V) = r-nm) = r w = 
fn(<p(y))- Since x G 5, we have 

(ii) s/(y) ^ 5/(x). 
According to (7), 
(hi) *>(/*(*)) = <P(fk'-l(y')) = fk~l(<p(y')) = Z " " 1 ^ ) = /*(*) = /*tefo)) for 

each k G N, k < n. • 

1.2.2. Lemma. Let the assumption of 1.2.1 be valid. Tiien A/ is a retract of 

(A J). 

P r o o f . Let a G _4. Since (A/, / ) is a subalgebra of (A, / ) , we obtain that either 
a G M or there is ?i G N such that 

a G f~n(M) - M and a g f~m(M) for any m G N,m < n, 

i.e., a G y?l. Put 

f a if a G M, 
/.(a) = 

[(D(a) if a G Yn, n G N. 

According to 1.2.1, h is a mapping of A onto M. If O G A/, then obviously Ii(f(a)) = 
f(h(a)). Let a G y . Then f(a) G M. By 1.2A(i), / (a) = /(<^(a)) and we obtain 

h(f(a)) = f(a) = f(cp(a)) = f(h(a)). 

If a G yn , ?i > 1, then /(a) G y,,_i and 1.2.1(ih) yields 

h(f(a)) = <p(f(a)) = f(<p(a)) = f(h(a)). 

Therefore M is a retract of (A. / ) . • 
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1.2. Corollary. Let (A, / ) be a connected monounary algebra and let (M,f) 
be a subalgebra of (A, / ) . Then M is a retract of (A, f) if and only if the following 
condition is satisfied: 

(1) ify G f~l(M), then there is z G Mwith f(y) = f(z) and sf(y) ^ sf(z). 

P r o o f . The assertion is obtained by virtue of IT and 1.2.2. • 

1.3. Theorem. Let (A, f) be a monounary algebra and let (M,f) be a subal
gebra of (A, / ) . Then M is a retract of (A, f) if and only if the following conditions 
are satisfied: 

(a) Ify G f~l(M), then there is z G M such that f(tj) = f(z) and sf(y) ^ sf(z). 
(b) For any connected component K of (A, f) with A n M = 0, the following 

conditions are satisfied. 
(bl) If K contains a cycle with d elements, then there is a connected 

component K' of (A, f) with K' n M / 8 and there is n G f̂J such 
that n/d and K' has a cycle with n elements. 

(b2) If A contains no cycle and x0 is a fixed element of A, then there is 
yo £ M such that sf(f

k(x0)) ^ sf(f
k(ij0)) for each k G N U {0}. 

P r o o f . Let M be a retract of (A,f). By IT, the condition (a) is fulfilled. 
Suppose that h is the corresponding retraction endomorphism. Let A be a connected 
component of (A, f) such that K n M = 0. If K contains a cycle with d elements, 
then there is a connected component K' of (A, f) such that h(K) C K', K' contains 
a cycle with n elements, n/d. Obviously, h(K) C M, thus K' n M ^ 0. If A' 
contains no cycle and XQ G A', go = h(xo), then go £ M and from the fact that h is 
an endomorphism of (A, f) we get 

sf(f
k(xo)) ^ sf(f

k(yo)) for each fc G N U {0}. 

Conversely, suppose that the conditions (a),(b) are satisfied. We will construct 
a retraction endomorphism h of (^4,/) corresponding to M. Consider a connected 
component K of (A,f). We have to define a homomorphism of (A , / ) onto (M, / ) . 

A) Let K n M / 0. Put M' = K n M. Then we proceed as in 1.2.2, only with M' 
instead of M and (K, f) instead of (A, / ) . The obtained mapping h: K -> M' i.s an 
endomorphism, h(a) = a for each a G M'. 

B) Let A n M = 0. If K contains a cycle, then (bl) and [8], Thm. 2.14 imply 
that there is a connected component K' of (A, f) with K' f l M ^ i and there is a 
homomorphism o of (K,f) into (K',f). If K contains no cycle, then the existence 
of such K' and g follows from (b2) and [8], Thm. 2.14. 

We have K' DM ^ 0, thus (by A) there exists a homomorphism h: K' -+ K'nM. 
Then g o h is a homomorphism of (K, f) onto (A' n M, / ) . 

Therefore M is a retract of irreducibility as introduced above. D 
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2. RETRACT IRREDUCIBLE (A , / ) 

We apply the notion of retract irreducibility as introduced above. 

Assumption. In what follows in the present Part I suppose that (A, f) is a 
connected monounary algebra possessing a cycle {c}. 

2.0. Lemma. Let (A, f) consist of a one-element cycle. Then (A, f) is retract 
irreducible. 

P r o o f . Suppose that (A,f) G R( Y[(Bi,f)), where (£*,/) is a connected 

monounary algebra for each i G I. Then (A, / ) is isomorphic to a subalgebra of 
II (Bi, / ) , thus there is 6 £ U Bi s u c h t h a t f(b) = b- This implies that f(b(i)) = b(i) 
iei iei 
for each i G I and then {b(i)} is a retract of (£?;, / ) . Therefore (A, f) G R(B{, f) and 
(A, / ) is retract irreducible. D 

2.1. Lemma. Let (E, f) be a connected monounary algebra and let (M, / ) be a 
subalgebra of(E, f) such that cardM = n > 1, M = { e i 7 . . . , e n } . f(en) = en_i, . . . , 
f(e2) = ei = / (e i ) . TfteH M is a retract of(EJ) if and only if f~{n~l)(e2) = 0. 

P r o o f . Let M be a retract of (E,f) and suppose that x G /~^n_1^(e2)- Let 
ft be a corresponding retraction endomorphism and let h(x) = ej, j G { l , . . . , ' / i } . 
Then 

e2 = ft(e2)=ft(r-1(x))=/"-1(ft(:r)) 
= F'Hej) = fn-5U5'l{e5)) = fn~J(eY) = eu 

which is a contradiction. 
Conversely, suppose that / _ ( ; i _ 1 H e 2) = 0- If # G F, then either 

(1.1) fk(x) ^ e2 for each keNU {0}, 

(1.2) / ^ ( .T) = e2 for some k eMU {()}. 

If (1.2) holds, then k < n — 1 and k is uniquely determined. In the first case put 
ft(.x) = e\\ in the second case let h(x) = e2+/c. If x G E and (1.1) is valid, then 
fk(f(x)) ^ e2 for each keNu {0} and 

ft(/(.i:)) = e 1 = / ( e 1 ) = /(//(:r)). 
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Let x G E and suppose that (1.2) holds. If k is as in (1.2) and k ^ 1, then 
fk~l(f(x))=e2 and 

Kfi?)) = e2+(/c-i) = /(e2+fc) = f(h(x)). 

li x e E and x = e2, then 

M/(-0) = Mei) = ei = /(e2) = /(ji(e2)) = f(h(x)). 

Therefore h is a homomorphism of (E, f) into (M, f). If ê  € M, then e2 = fj~2(ej) 
and /i(ej) = e2+(j_2) = ej. Thus M is a retract of (E,f). D 

2.2. Corollary. Let n e N, n > 1 and iet (A, / ) be a connected monounary alge

bra such that card A = n, A = {Oi,... ,an), f(an) = a n _i , .. . , / (a 2 ) = Oi = /(Oi). 

Suppose that (E, f) is a connected monounary algebra. The following conditions are 

equivalent: 

(i) (A,f)GR(E,f); 
(ii) there exist distinct elements e\,...,en G E such that f(en) = en_i, . . . , 

/ (e2) = ei = / (e i ) and that f^n-l\e2) = 0. 

2.3. Lemma. Let the relations a,b G A, f(a) = /(b) imply that either a = b or 
c G {a, b}. If A is a finite set, then (A, f) is retract irreducible. 

P r o o f . Let card A = n G N. If n = 1, then (A, f) is retract irreducible in 

view of 2.0. Suppose that n > 1 and that (A, f) G R[ Yl(Bi,f)L where (Bi,f) 
^iei J 

is a connected monounary algebra for each i G I. Put (B,f) = n ( ^ ^ / ) - Then 
iei 

(A, f) is isomorphic to a subalgebra (M, / ) of (B,f), M is a retract of (B,f). We 
obtain that there are distinct elements {bi , . . . , bn} = M such that f(bn) = bn_i, . . . , 

/(fc2) = &i =/(&i) . If i € J, then 

(1) / ( M i ) ) = (f(h))(i) = 6*-i for each k G {2, . . . , n} , 

(2) / (b 1 ( i ) )_=( / (b 1 ) ) ( z ) = b1(i). 

Assume tha t 

(3) {A, f) i R(Bi, f) for each i G I. 

If i G I, then 2.2 implies that one of the following conditions is satisfied: 
(4.1) if e i , e 2 , . .. ,en G B{, f(en) = e n _ i , . . . , / (e 2 ) = ex = / (e x ) , then the ele

ments e i , . . . , e n are not distinct (and then e2 = ei, since ejt = e/ for k < I implies 
e2 = f>--\e,) = / ' -2(e f c) = / ' - ^ ( I * " 1 ^ ) ) = / ' " ^ U e i ) = ^ ); 
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(4.2) if there are distinct elements e i , . . . , e n G Bj such that f(en) = e n _i , . . . , 
f(e2) = ei = / (e i ) , then f~{n~l)(e2) / 0. 

Let Ii = {i G I: h(i),. • . ,bn(i) are not distinct}, I2 = I - Ii. If I2 = 0, then 
b2(i) = 6i(z) for each i G I, thus b2 = bi, which is a contradiction. Thus I2 ^ 0. Let 
i G I2. Then (4.1) is not valid for ( £ ; , / ) , hence (4.2) holds and / ~ ( n _ 1 ) ( ^ ( 0 ) / 0-
Take ^ G / ~ ( n - 1 ) ( ^ ( i ) ) - Vet .r G 5 be such that 

, . , fhti) ifjelu 
X(J) = 1 , T • r 

[*j l f j € I 2 . 

We obtain 

(r-1(-r))(J)=h(j)=b2(j)l{j€h, 

(r-Hx))U) = fn-\tj) = b2u) if j € /2, 

i.e., re G f~{n~x)(b2). Since M is a retract of (B , / ) , this is a contradiction in view 
of 2.1. • 

2.4. Proposition. Let the relations O,b G A, f(a) = /(b) imply that either 
a = b or c G {a, b}. Then (A, / ) is retract irreducible. 

P r o o f . If A is finite, then (A, / ) is retract irreducible in view of 2.3. Let A be 
infinite. Suppose that (H, / ) = f] (Hi, / ) for connected monounary algebras (B?7;, / ) , 

iei 

i G I, where (A,/) G it( n ( ^ n / ) ) - Then there are distinct elements bk G B for 
MG1 ' 

k eN such that 

(1) /(bi) = hj(bk) = b/c-i for each k G N, k > 1. 

Let i G I. By (1), 

(2) /(bi(i)) = 6i(i), 

(3) f(bk(i)) = &fc-i(i) for each k G N, A: > 1, 

therefore either 

(4.1) bk(i)=bi(i) for each A; EN 

or 

(4.2) there is n G N such that the elements bk(i), k G (̂ J, k > n 
are mutually distinct and b\(i) = b2(t) = . . . = bn(i). 
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If (4.1) holds for each i G I, then O2 = ^1, which is a contradiction. Thus (4.2) is 
valid for some i £ I. Let us denote M = {bk(i): k £ M,k > 11}. We have 

(5) (MJ) = (A,f). 

Let y e f~l(M). Then /(H) = bk(i) for some k £ H, k > n. Put z = 6fe+i(i). We 
obtain 

(6) /(;r) = bk(i) = /(g) , S /(*) = sf(bk+1(i)) = c o ^ 5 / (g ) . 

According to 1.2, M is a retract of (Hi, / ) and (5) implies that (.4,/) £ R(Bi,f). 
Hence (A, / ) is retract irreducible. • 

3 . CONDITION ( C 3 ) 

In 3.1-3.6 suppose that the following condition is satisfied: 

(C3) (-4,/) contains a cycle {c} and there are a,b £ A — {c} with a / b and 
/ (a) = /(&) = c. 

3.1. Construction. Let {a,: i G 7} be the set of all elements x £ A — {c} with 
f(x) = c (assume a; ^ aj for i ^ j ) . According to (C3), card I > 1. For i £ I put 

Ai = {c} U {x £ f~k(ai): k £ N U {0}}. 

Then (Ai, f) is a subalgebra of (A, f). Let 

(H,/)=n^,/). 

3.2. Lemma. If i G I, then (A J) (£ R(A{J). 

P r o o f . Suppose that (A, f) £ It(A,,/) for some i G I. Then (.4,/) is isomor
phic to a subalgebra of (Ai,f). Since 

card{T £ A- {c}: f(x) = c} ^ 2, 

card{x G -4i - {c}: f(x) = c} = card{a7;} = 1, 

we arrive at a contradiction. • 
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3.3. Notation. If i e I, then denote 

Ti = {be B: b(j) = c for each j el - {i},b(i) G A{}. 

Further put, 
T=\jTi. 

iei 

Define a mapping v: T -» A as follows. If b e Ti for some i e I, then v(b) = b(i). 
Notice that b G T{ n Tj for i ^ j iff 6(fc) = c for each k G I and then v(b) = c = 

b(i) = b(j), thus the mapping v is defined correctly 

3.4. Lemma. (T, / ) is a monounary algebra and v is an isomorphism of (T, / ) 
onto (A J). 

P r o o f . Suppose that b,teT, v(b) = v(t). Then there is i G I with {b, t} C T{. 
We obtain b(j) = t(j) = c for each j G I — {i}, b(i) = v(b) = v(t) = l(i), thus the 
mapping v is injective. 

If x e A, then x e Ai for some i G I and then x = u(6), where b(i) = T, b(j) = c 
for each j e I — {i}. The mapping .v is surjective. 

Let beT. Then there is i G I such that b G T, and /(b) G T,. Thus 

K/(6))) = (/(6))(0 = /W)) = /M6))-

Therefore v is an isomorphism, (A,/) = (T, / ) . • 

3.5. Lemma. If 2/ G / _ 1 ( T ) , tien there is 2 G T such that / (u) = f(z) and 
sf(y) < s /W-

P r o o f . Let H G / - 1 ( T ) . /(y) = t e T{. Then f(i) G ̂ ^ and t(j) = c for each 
j e I — {i}. Take z e B such that z(i) = g(i), z(j) = c for each j G I — {i}. We get 

(1) zeTi<mdf(z) = t = f(ij). 

Further, 

s/(z(i)) = sf(y(i)), 
sf(z(j)) = 00 ^ sf(y(j)) for each j G I - {i}, 

which implies that 5/ (z) ^ Sf(y). • 

3.6. Lemma. T is a retract of (B, f). 

P r o o f , (a) of 1.3 is valid in view of 3.5. Further, (T, / ) contains a one-element 
cycle by 3.4, thus 1.3(bl) and 1.3(b2) are satisfied. Hence T is a retract of (A,f). 

• 
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3.7. Proposition. If (A, f) satisfies (C3), then (A, f) is retract reducible. 

P r o o f . We get the assertion by virtue of 3.1, 3.2, 3.4 and 3.6. • 

4. CONDITION (C4) 

In 4.1-4.7 suppose that the following condition is satisfied: 
(C4) (.4,/) contains a cycle {c}, (C3) is not valid, there are a, b G A with a / ! ) , 

/ (a) = /(b) T-: c and Sf(x) = oo for each x G A. 
Hence, A is infinite. 

4 .1. Construction. Let I be an index set, cardI = A = card.4 and let (f^J,/) 
be a monounary algebra with f(n) = n — 1 for each 77, € N, n > 1, / ( l ) = 1. For 
i € I put 

(£;,/) = (N,/), 

(£,/) = ]}(£;,/)• 
iG / 

4.2. Lemma. If i e I, then (A J) $ R(Biyf). 

P r o o f . The assertion is obvious, (-4, / ) is not isomorphic to any subalgebra of 

(N,/) . • 

4.3. Lemma. Let R = {x £ B: {i € I: x(i) 7- 1} is finite}. Then 

(i) it contains a one-element cycle {r}, where r(i) = 1 for each i G I; 
(ii) (it, / ) is a connected subalgebra of (B, / ) ; 

(hi) Sf(x) = 00 for each x G it; 
(iv) c a r d / - 1 (a;) ^ A for each x G R. 

P r o o f , (i) It is obvious that r e R and that f(r) = r. 
(ii) Let x G it. The set {i G / : T(i) 7-= 1} is finite, thus there is m =max{x(i): 

x(i) 7-I} . Then, for j G I, 

(fm(x))(j) = r(x(j)) = l = r(j), 

i.e., frn(x) = r and (ii) is valid. 
(iii) Let x e R. If x = r, then Sf(x) = 00. Let x / r . For k G r>J U {0} define an 

element y^ G it as follows: 

f x(i) + k if .T(i) 7- 1, 

2 / k w = r . . 
(̂  1 otherwise. 
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It is easy to see tha t yk G R for each k G N U {0}. Further, yk / yt for k, I G N U {0}. 

k ^ / and if k G N, then 

f z(i) + ft- 1 if T(i) / 1,) 
{f(yk)m = f(Vk(i))={ / , =2/ /c- i( i ) , 

I 1 otherwise J 

i.e., f(yh) = ijk-i- Clearly y0 = x. Hence sf(x) = oo. 

(iv) Let x G R, y G / _ 1 ( " ) - I f " ( 0 7̂  1, then g(i) = x(i) + 1. If x(i) = 1, then 

2/(i) G {V2} . The assumption of the lemma implies 

card{ i G / : x(i) = 1} = A, 

therefore card / _ 1 ( ~ ) = 2A- • 

4 .4 . C o n s t r u c t i o n . Let us define a mapping v. A -» i? as follows. Consider 

- G A. There is a unique n(x) G N U {0} such that fn{x)(x) = c and if m G N U {0}. 

77i < n(x), then / m ( . z ) 7̂  c. 

The relation 72(~) = 0 implies x = c; put v(c) = r. 

Let n G N, 7i > 0. Suppose that if y G A, n(y) < n, then 1/(2/) is defined, and that 

2/1 / 2/2, n(2/i) = n(H2) < n yield 1/(7/1) ^ ^(2/2). Let n(x) = n. Pu t H = / ( z ) . Then 

77,(2/) = n — 1 < n and 1/(2/) = y' G it . In view of 4.3(iv) we get 

c a r d / " 1 (2/) ^ card A = A, 

caxdr^y'J^A, 

therefore there is an injective mapping v of f_1(g) into f~l(y')- Thus, t/(T) is 

defined. 

Let us have x\,x2 G A, x\ 7- X2, n(;Ti) ^ 71, 77(^2) ^ n. Pu t y\ = f(xi), y2 = 

f(x2), y[ = 1/(2/1), 2/2 = K2/2). Then n(yi) < n, 71(2/2) < " . If 2/1 / 2/2, the induction 

hypothesis implies tha t v(yi) / ^(2/2)- This entails that f~l(y[) H f~l(y'2) — 0 

and the conditions //(.vi) G f~[(y[), ^(^2) " f~[(fJ2) imply t/(Ti) 7̂  ^(#2)- If 

^ =2/2, then the injectivity of the mapping 1/ of f~l(iji) into f~1(y[) implies that 

z/(xi) ^ t/(.T2)- Thus, //(;*:) is defined for any x G A with n(.r) < 77 -h 1 and xi 7̂  .r2, 

7i(.Ti) < 77 -f- 1, n(x2) < n + 1 yield v(x\) ^ v(x2). 

4 . 5 . L e m m a , v is an isomorphism of (A, f) into (R,f). 

P r o o f . By 4.4, v is an injective mapping and a homomorphism. • 

4 .6 . L e m m a . If T = v(A) mid y G f~l(T), then there is z G T with f(y) = f(z) 

and 5/(2/) ^ * / ( - ) • 

P r o o f . Let T = i/(A), <y G / _ 1 ( T ) . There is /. G T with / ( g ) = l. Since 

( T , / ) = ( .4 , / ) by 4.5 and sj-(x) = 00 for each x G A, we obtain Sf(t) = 00. Then 

there is z G T with / ( ^ ) = l and sf(z) = 00 ^ s / (g ) . D 
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4.7. Lemma, is (A) is a retract of (B, f). 

P r o o f . We get the assertion by virtue of 1.3. In fact, (a) of 1.3 is valid in view 

of 4.6. Further, if K is a connected component of (B, f) with K D T = 0, then (bl) 

and (b'2) are satisfied, because there is a cycle {r} = {v(c)} G T, Sf(r) = oo. D 

4.8. Proposition. If (A, f) satisfies (C4), then (A, f) is retract reducible. 

P r o o f . It follows from 4.L 4.2, 4.5 and 4.7. D 

5. CONDITION ( C 5 ) 

In 5.1-5.6 suppose that the following condition is satisfied: 

(C5) (A, f) contains a cycle {c}, there are a, b G A such that a ^ b and f(a) = 

/(b) ^ c and (A,f) fulfils neither (C3) nor (C4). 

5.0. Lemma. If (A, f) is a connected monounary algebra, M C A, x G M such 

that f~l(x) 7- 0 and f~x(x) n M = 0,fchen M is no/: a retract of(A,f). 

P r o o f . Suppose that M is a retract of (.4,/) and let the assumption hold. 

Then there is y G f~l(x) and, by 1.1, there exists z G M with f(z) = /(g). Hence 

^ G f~l(x) fl M, which is a contradiction. D 

5.1. Construction. (A, f) does not satisfy (C4), thus the set L = {a G .4: 

f~l(a) = 0} is nonempty. By (C5), for a G L we have 

{kEN: c a r d / - 1 ( / / c ( O ) ) > l } ^ 0 ; 

put 

k(a) = min{fc G N: card f~l(fk(a)) > 1}. 

Further let, 

77i = min {k(a): a G L}, 

J = {a E L: k(a) = m}, 

V = {r(a):aeJ}. 

Since (C3) is not valid, c ^ V. For each i; G V such that f~m(v) C J we choose a 

fixed element of the set f~m(v) and denote it by v. Then we define 

I={ae J: / - m ( / m ( a ) ) ^ Ј} U {a Є Ј : / - m ( / m ( a ) ) Ç Ј, a ^ /-(o,)}. 
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If a G I, then put 

Aa = {a,f(a),...,fm-1(a)}, 

Ba=AaU {c}, 

(f(x) iSx€Aa-{fm-1(a)}, 
g(x) = < 

\c if xe{c,f m~l(a)}. 
Denote 

B0 = A-{jAa. 
aEl 

lix G Bo, then f(x) G B0, because in the opposite case f(x) G {a,f(a),..., fm~1(a)} 
for some a G I and then 

. T G { a , / ( a ) , . . . / m - 2 ( a ) } C A a . 

Thus (B0, / ) is a subalgebra of (A,f). Put 

(B0,g) = (B0,f), 

(B,g)= n (S-'f)-
aGIU{0} 

5.2. Lemma. If a G I U {0}, then (A, f) £ R(B„, g). 

P r o o f . Let a £ I. In (Ba,g) there are no distinct elements x,y with g(x) — 
g(y) z£ c, thus (A, f) is not isomorphic to any subalgebra of (Ba,g) and hence 
(A,f)iR(Ba,g). 

Suppose that (A, f) G R(Bo,g). Then there is an isomorphism e of (A, f) onto a 
subalgebra (M,g) of (Ho, g), where M is a retract of (B0,g); let fo be the correspond
ing retraction endomorphism. Take a G I, b = e(a). First suppose that g~l(b) ^ 0. 
According to 5.0, there is 2 G a _ 1 (b )nM. This implies that z — e(d) for some d G .4. 
We have 

s(f(d))=g(e(d))=g(z) = b = s(a), 

thus /(d) = a, which is a contradiction, since f~l(a.) = 0. Therefore g~l(b) — 0. 
Then f~l{b) = 0, since 6 G L — Iby5.1. We have two possibilities: 

(1.1) beL-J, 

(1.2) b G J - I, i.e., 6 = U for some v G V 

If (1.1) is valid, then k(b) > m and the definition of k(b) implies 

ca rd / - 1 ( / w (b ) ) = V 

a contradiction, since c a r d / - 1 ( /m(a)) > 1. Hence (1.2) holds. In this case 
g-1(gm(^~)) — {gm-1(^)}> which is a contradiction to card f~1(fm(a)) > 1 as well. 

• 
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5.3. Lemma. If a G I, then there exists an endoinorphism <pa of (A, f) such 
that <pa(x) ̂  x iff x G Aa and pa(Aa) C B0. 

P r o o f . Put <pa(x) = x for each x G A — Aa. 
First suppose that f~m(fm(a)) C J. Denote U = fm(a) and put 

(1) ^a(a) = v,^a(f(a)) = f(v),. . . ,^fm~\a)) = fm-\v). 

Then a / v and we obtain 

(2) Va(x)±x iff i G i , 

(3) (p a (A a )CH 0 . 

If :r G Aa - {fm~l(a)}, then (1) implies 

(4) * « ( / ( * ) ) = / t e a ( * ) ) . 

If x' G A - Aa, then (4) is valid, too. Let a; = fm~l(a). Then /(rr) G A - Aa, thus 
we have 

(5) V«(/(*)) = /(*) = T » = « = fm(v) = f{<pa{x)). 

Therefore 

(6) ipa is an endomorphism of (A, / ) . 

According to (2), (3) and (6), <pa has the desired properties. 
Now suppose that / ~ m ( / m ( a ) ) £ J. Then there exists y G f~m(fm(a)) n Ho and 

we can proceed analogously, only with g instead of v. D 

5.4. Nota t ion. Denote 

T0 = {6 G H: o(0) G Ho, b(a) = c for each a G I} 

and if a G I, then 

Ta = {b e B: b(a) G Aa, 6(i) = c for each i G / - { a } , 

b(0) = <pa(b(a))}. 

Let 

T = | j Pa-
a6/U{0} 
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Consider 6 G T, i.e., b G Ta, a G I U {0}. 

a) If a = 0, then 6(0) G H0, b(i) = c for each i G F thus (g(6))(0) = g(b(0)) = 

/ (6(0)) G B0 and (g(6))(i) = .o(6(i)) = g(c) = c, which implies g(b) G T0. 

b) Let a e I. We obtain that f(a) G Aa, 6(z) = c for each i e I - {a}, 6(0) = 

<pa(b(a)). This yields tha t (g(b))(a) = g(6(a)) G ,4,, U {c}. Further, if i G 7 - {a}, 

then (g(b))(i) = g(b(i)) = g(c) = c and, by 5.3, (g(b))(0) = a(6(0)) = g(<pa(b(a))) = 

(^a(a(6(a))) = (Da((a(6))(a)). Thus either g(b(a)) G A,,, which implies g(b) G T a , or 

a(6(a)) = c, which implies a(6) G T0. 

Therefore the set T is closed under g. 

Define a mapping v: T —> A as follows: if l G T,,, a G I U {0}, then z/(l) = l(a). 

5.5. L e m m a . (T, a) is a LnoLioiLrjary algebra and v is an isomorphism of (T,g) 

onto (A,f). 

P r o o f . Suppose tha t b,t G T, i/(6) = i/(*) = x. If J- G H0, then {b,t} C T0 and 

b(0) = i/(6) = x = v(t) =t(0), 

b(a) = c = t(a) for each a G I. 

If x G 5 a , a G / , then {6, t} C Ta and we have 

6(a) =i / (6) = a, = i/(£) = !(a). 

b(i) = r = l(i) for each i G I - {a}, 

6(0) = <At (6(a)) = (pa(x) = <*>,.(*(«)) = *(0). 

Thus v is an injective mapping. 

Let x G .4. If rr G J?0, then x — v(b), where 6(0) = x, 6(a) = c for each a G / , 

6 G T0 . Let re E .4 — L?0. Then there is a G / such that x G Aa and then re = v(b), 

where 6 G T a , 

{ x if i = a, 

c i f i G / - { a } , 

(Da(x) ifi = 0. 
Hence the mapping v is surjective. 

Let 6 G T. If 6 G T0 , then g(b) G T0 and 

K g W ) = (0(6))(O) = g(6(0)) = /(6(0)) = f(v(b)). 

If 6 G T a , ae I and o(6) G Tn , then 6(a) ^ c and 

"(9(b)) = (g(b))(a) = g(b(a)) = / (6(a)) = f(v(b)). 
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If 6 G Ta, a G I and g(b) <£ Tft, then (g(b))(a) = c, g(b) G Fo and by 5.3 we obtain 

HfjW) = (g(b))(0) = g(b(0)) = g(tpa(b(a))) = f(<pa(b(a))) = y>«(/(6(a))). 

Since g(b(a)) = c, we get / (6(a) ) G H0, thus (Dft(/(6(a))) - / (6(a) ) = f(v(b)). 

Therefore v is an isomorphism and (T,g) = (A,f). D 

5.6. L e m m a . F is a retract of (B,g). 

P r o o f . We will prove the assertion by means of 1.2. Let y G g~l(T). Then 

there is 6 G T with a(u) = 6. If 6 G Fo, then 6(0) G # 0 and 6(a) = c for each a e I. 

Put 
(2/(0) if i = 0, 

[ C if 2 G F 

Then :, G Fo, 0(2) = 0(1/). Further, sg(z(0)) = sg(y(0)) and sg(z(i)) = 00 £ sy(i/(z)) 

for each i G I, thus 5^(2) ^ sg(y). 

Suppose tha t b e Ta, a £ I. Then 

( O(H(a)) if i = a, 

c i f i G / - { a } , 

ipa(g(y(a))) if i = 0. 

Take 2 G Tft such tha t 

{ 77(a) if i = a, 

c i f 2 G / - { a } , 
{Pa(y(o)) if 2 = 0. 

Then g(z) = g(y) by 5.3. Further, since y>a is a homomorphism, 
sg (z(a)) = sg(y(a)), 

sg(z(i)) = 00 ^ sg(y(i)) for each i G I - {a}, 
^ ( ^ ( 0 ) ) = .s,(^(27(a))) ^ . s , ( g ( a ) ) , 

hence ^ ( - ) ^ /^(H). 

Therefore we have proved tha t T is a retract of (B,g). D 

5.7. P r o p o s i t i o n . If (A, f) satisfies (C5), fclien (A, f) is retract reducible. 

P r o o f . It is a consequence of 5.1, 5.2, 5.5 and 5.G. D 
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6. PROOF OF (R) 

We conclude by proving Theorem (R) above. 
Suppose that (A, f) is a connected monounary algebra with a cycle {c}. Then 

(A, / ) satisfies one of the following conditions: 
(1) If a,b G A, f(a) = /(b), then either a = b or c G {a,b}. 
(2) There are a, b G A - {c} such that a ^ b and /(a) = /(b) = c. 
(3) The condition (2) is not fulfilled, there are a, b G A with a / b, / (a) = /(b) ^ c 

and Sf(x) = oo for each x e A. 
(4) The conditions (2) and (3) are not fulfilled and there are a, b G A such that 

a # b, / (a) = /(b) / c. 
If (1) is satisfied, then (A, f) is retract irreducible by 2.4. If (2), (3) or (4) holds, 

then 3.7, 4.8 and 5.7 imply that (A, f) is retract reducible. 
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