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PSEUDOSEMIRINGS INDUCED BY ORTHOLATTICES 

IVAN CHAJDA, Olomouc 

(Received September 22, 1993) 

It is well known (see e.g. [1]) that a unitary boolean ring can be assigned to every 

Boolean algebra and vice versa, and the operations are derived by the rules 

x + y = (T A y') V (x Ay), x • y = x A y 

and 
x V y = x + y + x • y, x A y = x • y, T' = 1 + T, 

where V, A, ' are operations of the Boolean algebra and +, • are ring operations and 1 
is the unit element in both of these algebrcis. This construction can be extended also 
to relatively complemented distributive lattices with zero and boolean rings which 
need not be unitary, see [1]. Another generalization is done in a similar manner for 
the so called g-algebras and boolean semirings, see [2]. 

The aim of this paper is to follow these considerations also for more general lattices 
with complementation, namely for ortholattices and orthomodular lattices. Since 
such lattices need not be modular or distributive, it is clear that the induced oper
ations need not satisfy associativity or distributivity laws. Henceforth, we do not 
expect to obtain a semiring as a derived algebra but only a weaker form, the so called 
pseudosemiring. 

An algebra (L; V, A, ±, 0,1) of the type (2,2,1,0,0) is an ortholattice if (L; V, A) is 
a lattice with the least element 0 and the greatest element 1 satisfying the following 
identities: 

( A ) ( T ^ ) - L = T , 

(B) (T V y ) 1 = x1- A y1- and (T A y ) x = T X V y1-
(the so called De Morgan laws), 

(C) T V x1- = 1 and x A xL = 0. 
If it satisfies also the implication 

(*) x ^ y =-> x V ( T X Ay) = y, 
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then (L; V, A, x , 0 , 1 ) is called an orthomodular lattice. It is almost evident tha t (* 

can be replaced by the identity 

(D) (xAy)V((xAy)±Ay) = y. 

An example of an ortholattice which is not orthomodular is in Fig. 1. 

1 = 0 J 

An example of an orthomodular lattice which is not modular is depicted in Fig. 2. 

1 = 0 ± 

It is well known (see e.g. [3]) that if an or thomodular lattice is distributive then 

it is a boolean lattice. An example of a modular but non distributive or thomodular 

lattice is in Fig. 3. 

Now, let (A; + , -,0,1) be an algebra of the type (2, 2. 0. 0). This algebra is called a 

pseudosemiring if the operation • is associative, + is commutative and the following 

laws hold: 

(i) x + 0 = T, x • 0 = 0 • x, x • 1 = x = 1 • x, 

(ii) x + (1 + y) = (x + 1) + if (iveak associativity). 
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0 = 1 

Fig. 3. 

(iii) for each x £ A there exists y £ A such that x + y = 0 

(inverse element), 

(iv) (1 + T?j):r = T + xyx (weak distributivity). 

A pseudosemiring is called commutative or idempotent if the operation • is com

mu ta t ive or idempo ten t , respectively. 

A pseudosemiring is called an orthopseudoring if it is commu ta t ive, idempo ten t 

and satisfies the following identities: 

(a) x + x = 0, 

(l>) (l + x)(l+xy) = l + x, 

(c) (1 + a,(l + y))(l + 2,(1 + x)) = 1 + (x + y). 

If, moreover, it satisfies also 

(d) (x + xy) + xy = :r, 

it will be called an orthomodular pseudoring. 

L e m m a . Let ( A ; + , - , 0 , 1 ) bean orthopseudoring. Then the following identities 

hold: 

(1) l + (l+x)=x, 

(2) (l + x)x = 0. 

P r o o f . Pu t t ing y = 1 in (ii), we obtain using also (a) x = x + 0 = x + (1 + 1) = 

(./: + l) + l = 1 + (1+T ) . If we put y = 1 in (iv), we have (1 + T):r = x + x-x = x + x = 0. 

• 

T h e o r e m 1. Let L = (L; V, A, x , 0,1) be an ortholattice. Put x + y = (x A y1-) V 

(.rx A y) and x • y = x A y. Then P = (L; + , •, 0,1) is an orthopseudoring, called an 
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orthopseudoring induced by L. If, moreover, L is an orthomodular lattice then P is 

an orthomodular pseudoring. 

P r o o f . Commutativi ty of + , associativity of • and the identities of (i) are 

evident. We can easily show that 1 + x = (1 A xL) V (0 A x) = 1 A x 1 = x1-. Let 

us prove (ii): x + (1 + y) = (x A [(1 A yL) V (0 A y)]L) V (;r> A [(1 A y1-) V (0 A 

y)]) =z (x A y) V (xL A y x ) = (x1 A yL) V (x A y) = xL + y = (x + 1) + y. Since 

x + x = (x A x1) V (xL A x) = 0 V 0 = 0 which proves (a), we have proved also (iii). 

As for (iv), it is enough to prove (1 + xy)x = x + xy because of idempotence and 

commutativity of •. Thus x + xy = (x A (x A y)L) V (x1- A a; A y) = x A (x A y)1- and 

(1 + xy)x = (x A y)1- A x, i.e. (iv) holds. 

Hence ( L ; + , - , 0 , l ) is a commutative and idempotent pseudosemiring satisfying 

(a). 

Let us prove (b): 1 + (1 + x)(l + xy) = 1 + (xL A (x A y ) 1 ) = [xL A (x A y ) 1 ] 1 - = 

x V (x A y) = x\ using (ii) we have (1 + x)(l + xy) = 0 + (1 + x)(l + xy) = (1 + 1) + 

(1 + x)(l + xy) = 1 + (1 + (1 + x)(l + xy)) = 1 + x, which proves (b). For (c), we 

can count (1 + x(l + y))(l + y(l + x)) = [(1 A (x A y 1 ) 1 ) V (0 A (x Ai/ 1 ))] A [(1 A (y A 

x±)-L)V(0A(yLAx))] = (xAy±)±A(yAx-L)-L = [(xAyJ-)V(x±Ay)]-L = l + (x + y). 

We have proved now that (L; +, -,0,1) is an orthopseudoring. 

If, moreover, L is an orthomodular lattice, then (x + xy) + xy = [(x A ( x A y ) x ) V 

(x1- A x A y)] + (x A y) = [(x A (x A y)L A (T A y ) 1 ] V [(x A (x A y ) 1 ) 1 A (x A y)} = 

(xA(xAy)±)v[(x±V(xAy))A(xAy)] = (x A (x Ay)L) V (x Ay). By (d), it is equal 

to x, which completes the proof. • 

T h e o r e m 2. Let P = (L\ +, •, 0,1) be an orthopseudoring. Put x V y = 1 + (1 + 

x)(l + y), x Ay = x • y and x1- = 1 + x. Then L = (L; V, A, ± , 0,1) is an ortholattice. 

If, moreover, P is also an orthomodular pseudoring, the L is an orthomodular lattice. 

L is called an orthomodular lattice induced by P. 

P r o o f . Commutativity, associativity and idempotence of A as well as commu

tativity of V are trivial. Let us prove associativity of V: 

x V (y V z) = 1 + (1 + x)(l + (1 + (1 + y)(l + z))) by (1) 

= 1 + (1 + .r)(l + y)( l + z) by (1) once more 

= l + (l + z)(l + (l + (l + x)(l + y))) 

= z V (x Vy) = ( x V y ) V z. 

Further, by (1), 
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by (2) we obtain x A xL = x(l + x) = 0 and, by (1) and (2), x V xL = 1 + 

(1 + x)(l + (1 + x)) = 1 + (1 + x)x = 1 + 0 = 1 . 

Let us prove De Morgan laws: by (1) we have 

(x V y)L = 1 + (1 + (1 + x)(l + y)) = (1 + x)(l + y) = xL A y x . 

Using this law with (x1-)1- = :r, we obtain the second law: 

a : - V y - = ( ( : r
J - V j / - ) J - ) - = ( a : A y ) - . 

It remains to prove the absorption laws: by (b) and (1) we immediately obtain 

x V (x A y) = 1 + (1 + x)(l + xy) = 1 + (1 + x) = x. 

Using this law and the De Morgan law, we infer 

x A (x V y) = [xL V (x± A t / x ) ] x = ( * - ) - = x, 

thus L is an ortholattice. 

If, moreover, P is orthomodular, we infer by (d) (x A (x A i / ) 1 ) V (x A y) — (x A 

(x A y ) x ) V (1 A (x A u)) = ( ( T A (x A H)J-) A (x A H)x) V ((:T A (:r A y)^)1- A (x A y)) = 

[(T A (.T Ay)1-) V (.T-1 A x A y)] + xy = (x -f Tu) + xy = T. According to (d), L is an 

orthomodular lattices. D 

R e m a r k 1. Orthomodular pseudorings do not satisfy (x + y) + y = x + (y + y) 

or x(l -My) = x + xy in the general case. If e.g. L is the orthomodular (and modular) 

lattice visualized in Fig. 3 and P the orthomodular pseudoring induced by L, then 

(a + cL) + c1- = [(a A c) V (a1- A c1-)] + c1 = T X + cL = (xL A c) V (T A c x ) = b, 

but a + (c1- + cL) = a + 0 = a 7̂  b. Also a ( l + cL) = a A c = 0 7- a = a + a c x . Of 

course, if L is distributive, then it is boolean and both of the foregoing identities are 

satisfied in the induced pseudoring (which is in this case a boolean ring). 

T h e o r e m 3. Let L be an ortholattice, P(L) the induced orthopseudoring and 

L(P(L)) the ortholattice induced by P(L) . Then 

L = L(P(L)). 

Let P be an orthopseudoring, L(P) the induced ortholattice and P(L(P)) the or

thopseudoring induced by L(P) . Then 

P = P(L(P)) . 
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P r o o f . Denote by ^ , ^ and * the operations in L(P(L)) and by V, A, _L 

those L. Evidently, ^ = A and x* = (1 + x) = xL, which proves * =±. Further, 

x V y = 1 + (1 + -r)(l + y) = (1 A [(1 + s ) ( l + g)]1) V (0 A [(1 + x)(l + y)]L) = 

[(1 + ir)(l + y)]L = (xL AyL)L = x V g, thus also ^ = V, which proves the first 

assertion. 

Further, denote by c+ and <•> the operations in P(L(P)) and by + , • those in P. 

Trivially, 0 = • and, by (c) and (1), we obtain x + y = (x A yL) V (xL A y) = 

x(l + y) V H(l + x) = 1 + (1 + T(l + 2/))(l + 2/(1 + *)) = 1 + (1 + (* + 2/)) = x + </, 

thus proving the second assertion. • 

R e m a r k 2. We cannot introduce the operation V in the induced ortholattice by 

the rule 

,r V g = (x + y) + xy 

similarly as in boolean rings. In such a case, we have 

xtyy = (x + y) + xy = (x A yL) V (xL A y) V (x A y) 

but the last term can be different from x V y. For instance for the ortholattice in 

Fig. 2 we have a V d = 1 but 

(a A dL) V (a1- A d) V (a A d) = 0 V 0 V 0 = 0. 

Because of lack of associativity of + , we can try to introduce V in another way similar 

to tha t of boolean rings, namely xVy = x + (y + xy). In also leads to a contradiction, 

as we can see in the ortholattice given in Fig. 1: 

y = xtyy = x + (y + xy) = x + (y + x) =x + [(y A xL) V (yL A x)] = x + 0 = x. 

R e m a r k 3 . Let ( A ; + , - , 0 , 1 ) be an orthopseudoring. If card A = 2, i.e. A = 

{0,1}, then, by (i) and (ii), (A: + , -,0,1) is the two element boolean ring and hence 

the induced ortholattice is the two element boolean lattice. 

If card A > 2 then the operation + need not be associative and it need not satisfy 

the distributive law. However, the groupoid (A; +) is a union of four element Klein 

groups. Namely, for any a G A we have 

+ 0 a aL 1 

0 0 a aL 1 
(I a 0 1 u1-

aA aL 1 0 a 
1 1 aL a 0 

where aL denotes 1 + a. 
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Example. Let A = {0, x, y,xL, ux, 1} and L = (A\ V, A, _L,0,1) be the ortho-

lattice whose diagram is in Fig. 1. Denote by +, • the operations of the induced 

orthopseudoring P(A). Then the operation + is not associate since x + (x + y) = 

x + 0 = x 7- y = 0 + y = (x + x) + y and P(A) is not distributive: 

^ ( l + y J - ^ Л ^ - ÿ 1 ^ ^ + 0 = x1- • 1 + xA 
У-

The operation table of + is the following: 

+ 0 X У x± гЛ 1 

0 0 X У x1- УŁ 1 
X :r 0 0 1 1 x1-

У У 0 0 1 1 гŕ 
xŁ x± 1 1 0 0 X 

гŕ гŕ 1 1 0 0 У 
1 1 XŁ 

y± T У 0 
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