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Czechoslovak Mathemat ical Journal , 46 (121) 1996, P raha 

DYNAMIC CONTACT PROBLEMS WITH GIVEN FRICTION 

FOR VISCOELASTIC BODIES 

JlRI JARUSEK,1 P r a h a 

(Received May 11, 1994) 

1 . FORMULATION OF THE PROBLEM AND THE PENALTY METHOD 

We assume a bounded domain Q, C UN having a Ci^-smooth boundary dSl dis-

jointly divided into the contact part d?tc and the remaining parts 3ft>p and dQu. All 

parts are assumed to be measurable. The investigated model is 

(1) it. - -Q-^-Oij(u) = fi, i = l,...,N on Q.7 = I.y x O, 

un ^ 0, Tn(u) ^ 0, Tn(u) un = 0 on Sc,y = I.y x dflc, 

\Tt(u)\ ^G, Tt(u)ut+G\ul\=0, 

| T ( ( u ) | = G ^ o = > - 3 „ u,= \T,(u) on Sc^, 
A^O on S, _:7 

T(u) = To on ST,P = 1.7 x dVtT, u = U on Su^ = Ip x dftu, 

u(0, •) = u0, u(0, •) = u,[ on £1, 

with the stress tensor o = {O,y- ; •/, j = 1,. . ., JV} given by 

;j(H) = O/j(D) + cr,̂ ('</.), M = 1 , . . . , N, where 

<9e 

Ѓ? 

/;(«•) = - T T O . ^ O ) . Vl = 1,...,IV, and OV' = W > ) } = A?(H). 

Here and in the sequel the dots denote the appropriate time derivatives, the time 
interval I ? = (0, f?) and 

1 ( Dili Ouj 
(:î) ВД = < 5 ( ^ + ^ 1 = ^ = 1 . - . " 
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is the small strain tensor. T denotes the boundary stress vector (Ti(u) = (Tij(u)iij, 

i = 1 , . . . , JV, where n is the outer normal vector). For a vector function w: dfl -» UN 

we denote by wn = Willi its normal component and by wt — w — wnn its tangential 

component . To avoid any confusion with this notation, we shall denote the time 

variable by r. The operator A is assumed to be linear in the form A: e(u) i-> 

a,ijkieki(u) with the coefficients satisfying \^\~2aijki(x)(tij^ki G (^i,c.j2), x ~ H. £ 

symmetric G HN~ for some positive constants u^, / = 1,2 (independent of x and £). 

and the usual symmetries ci^ki = ajiki = cikuj, i,j, A\ I = 1,. . . , N on ft. (Here and 

in the sequel we use the usual summation convention.) The space-dependent stored 

energy function W: MN+N" -» 1R is assumed to be CV^uooth o n U x [R^2, satisfying 

VV(-, 0) = 0, ^f- ( - , 0) = 0 and having the partial Hess matrix ^ S - uniformly strongly 

elliptic with the elliptic!ty constant /30 and uniformly bounded (with constant pi) for 

almost every x € Q. G is assumed to be nonnegative and — G is a given friction force. 

(We remark tha t the signs used in the third row in (1) are chosen for the sake1 of 

simplicity of notation.) Let us mention that the additional condition G = —<yrTn(u), 

where nothing else than the coefficient of friction & is given, formulates the classical 

contact problem with Coulomb friction. 

The mathematical difficulty of the problem, which has a parabolized character, 

consists in the Signorini boundary condition formulated in displacements. The results 

of the paper are in a close connection with [6], where the contact problem without 

friction for nonlinearly elastic material with a singular memory is studied, with [8], 

where a contact problem for viscoelastic membrane is solved and with [4], whore 

an analogous problem is investigated for linear elasticity but, differently from the 

above mentioned approach, the Signorini boundary value condition is formulated in 

velocities. 

We remark tha t the boundedness of ft can be replaced by the boundedness (and 

finite measure) of suppG. Then all convergence results used, partially based on 

imbedding theorems, will be proved for some neighbourhood of supp G and the results 

of the paper will remain valid. 

To give the variational formulation of the problem and to solve it, we shall use 

the following notation: For / £ IR+, p G (1,-hoo) and a domain M C iRm (having 

a sufficiently smooth boundary) we denote by W}}(M) the Sobolev space of LP(M)-

functions having the (fractional, if I is non-integer) derivatives in all directions of the 

order I such tha t for i = I, /// these derivatives in the coordinate directions belong 

to Lp(M)—d. [1], [12], . . . If p = 2, we shall write U'/,(M) = H'(M). H(M) denotes 

the space of functions from H^M) having zero traces on DM. If / € R+, then its hist 

coordinate indicates the existence of the appropriate time derivative and the second 

the existence of the appropriate space derivatives such that all derivatives mentioned 

belong to Lp(M). C ^ M ) , k ^ 0, denotes the space of continously differentiable (or 
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continuous for k < 1) functions the highest-order derivatives of which are Holder 

continuous with the exponent equal to the fractional part of k. It is equipped with 

the usual norm. For an interval I C U and a Banach space H, LP(I\B) denotes 

the usual Bochner space, and also the introduction of Wp(I\B) or Hl(I\B), I ^ 0 

is obvious—cf. [11], [12], [5] etc. B0(I\B) is the space of bounded functions from I 

into B with the sup-norm. For a set M , Int M will denote its interior. 

For w G Hl2(dft\UN) denote ^w := {v G Hl(tt\UN)\ v = w on 3ftu , vn ^ 

0 a.e. in dflc}. We introduce the variational formulation of the problem: a weak 

solution to (1) will be a function u G B0(l^\Hl(fl\ UN)) for which it(T, •) G ^u(T,-) 

for a.e. T G / ^ , a G H0(I^; I>2(ft; R N ) ) H L 2 ( I ^ ; II1 ( f t ; R N ) ) , u(&, •) G L2(^; R N ) 

(therefore a G (Hl(Q?\ UN)Y~) and for all D G Hl(Q^\ UN) such tha t D(T, •) G 

tf(;(r,.) a.e. in !$• the following inequality holds: 

(4) ' 

(aij(u)eij(v - u) - úi(vj - úi)) dxdr + / G (\vt + út - ut\ - \út\) dx di 
Q.y Jst...>7 

+ / {iii(vi-Ui)){&r)dxZ / {ui)i{vi{0,-)-{uo)i)dx 
Jn JQ 

+ / fi(vi ~ Ui) dx dT + / T0ii(vi - Ui) dx dr . 
J Q/j JST.!7 

The inequality (4) clearly follows from (1) by multiplying the equilibrium of forces by 

v — a, by integrating the result over Q&, using the Green theorem both in the time 

and space variables and the boundary value conditions and the initial conditions in 

(1). For the t reatment of the friction term cf. [2], Chapter III, Section 5 and [3]. 

Now we introduce the penalized problem to (1). We consider the simple penalty 

function h: z H-> \(Z+)'2 with z+ = max(0 ,^) , : G K. Moreover, we introduce 

smoothing convex functions 

/kl. kl ^ n, 
( 5 ) A V X ^ ( 1 . ,4 3 . ,9 3 

x eUN, for // > 0 and 

K 0 : x ^ \x\, x G UN. 

For arbitrary ;/ > 0 we have 

(G) A\7 eC2(U
N), 0 ^ Iv,; are Lipschitz with the constant 1 on UN, 

supp(A\, - No) C {x G UN \ \x\ < q} 

and ||A\; - KoWd-^p") ^ c o n s t ' A I3 e (0* l)-
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Put M := {w G Hl(Q:RN)): w = 0 a.e. in dftu}. For e > 0 and 11 > 0 we define 

tha t u£^ is the weak solution of the penalized problem, iff Ht-}.; G U + Bo(Iy\Jf') 

for which H,,7? G 50(/^;L2(n;[R7V)) nU2(I^;H i(n ;R
A:)) and il£,n G L2(1>: Jf+), 

the initial condition in (1) is satisfied and the equation 

((v^.n)iVi + (?ij{u£,n)eij{r)) dxdr 
Q.7 

+ j (G(VKn)((u£tV)t)vt + lh'((u£.n)n)vn] dxdr 

fiVi dx dr + I Tojr; dx dr 
Q.y JsT.:7 

holds for any v G L2(I*r\J£). (The function U is assumed to be defined on Qy and 

the prime denotes the derivative of the corresponding function (R —> U.) In fact. the 

penalized problem consists in replacing the Signorini boundary value condition on 

5,v5r in (1) by the condition 

Tn(uStn) = -h,((Ue,l)n). 

and in smoothing the Coulomb law condition. This can be proved using (7). where 

v — w — u£;n for arbitrary w G U + L2(I^-]Jr°) is put and the inequality 

(8) 

G(VA'„)(we,„),.(«>, - (..,,.,),)ch:dT ^ / G(K,,{uu) - A' ,((u e .„) ,)) &VI\T. 
S,-.:7 -'S,.-7 

which holds due to the convexity of Kn and to the non-negativity of G for any /;. s > 0 

and each w G L2(I?\ H-"(<9ft: UN)), provided G G L>(I?; (Hs(<9fic)*)), is applied. 

The resulting variational inequality will be denoted by (7'). 

The introduced problems will be solved under the* following set of assumptions: 

(9) w 0 e % ) , Hi eHl{lhRx). 

U G H2(Q:7: UN) such that U(0. -)\<)Ui = uo\dQ^ 

dU I , 
_ _ ( 0 , •) =H i L 0 and U — 0 a.e. in 5f. 7 , 
or Ion,, Wl1" 

To £ L2(I<r-,(Hi(dnr\Ux)y), 

f e L2(l^:(Hl(n: UN))*) and 0 <C G G L2(Ir, {H±{dSlc))*). 

The sign of G is understood in the usual dual sense. We remark that the assumptions 

caii be a little weakened (some of such possibilities will be mentioned in the sequel). 
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To solve problem (7), we use the usual Galerkin approximation. We denote QT 

IT x ft, T e Iy, and use the same notation for 5T , SL>, Sc,r- Putting 

_ ' U - Úe,n 011 QT, 
V = {,0 on Q?\QT 

and exploiting (8) we obtain 

(10) XG K ' r '" 1 2 + ^(•'è(^,„)))(r,-)dx' 

+ / A(ê(ùe,v))?(ùe,v)dxds+ / —\(uE,v)t\
2(T,-)dx 

JQT Jan,.l£ 

< / GKv(Ùt) dx ds + J T0,i(àE,v - U),- dxds 
J S, .T J ST.T 

+ f ( i | « l | 2 + W(;?(uo)) - « l v ( 0 , •) + (Ù£,nÙ)(T, •)) dx 

(A(è(ùe,v))è(Ù) + 4(u)e, : j(U) - ùe,vÙ + fi(ùe,n - Ù)i) dxds 
QT 

Here we used the relations JQQ 7 (uo)~ (UQ)+ dx = 0, fs G K71((u£^)t) dx ds ^ 0 

and £\V(.,e(u£tn)) = | ^ ( - / e (D^ ; ) ) ? (H , , ? ? ) . 

Let us denote by & the space of all u G Hv(Vt; UN) for which jQ elj(u)eij^t) dx = 0 

and by V its orthogonal complement in Hl(Q; RN). It is well-known that & is the 

space of all shifts and rotations of f£ as a rigid and undeformable body and that 

d i n i ^ = (
 2

+ 1 ) . Let ny denote the orthogonal projection H[(Q; UN) —•> Y. From 

the assumption on W we obtain 

(11) lV ( - , ? ( iv ) )= / ( 1 - f l ) ^ ™ (•^(Ow))eiJ(w)ekl(w)dO 
J0 oeijdeki 

€ {yPoenMeij^u), -faeij^ei^w)), 

(^,,^»-^,..,,>),„-, 
1 <92IV 

, - — ( - , e ( i u + 0(v - w)))e.ij(v - w)eki(v - w) dO 
0 deijdeki 

G (l30eij(v - w) e{j(v - tv),l3ieij(v - w) e{j(v - w)) 

for arbitrary displacements w and v on Q,y. By virtue of the strong ellipticity of 

A and the nonnegativity and strong convexity (11) of IV we derive from (10) in the 

standard way (with the help of the Holder inequality and the trace theorem) the 
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a priori estimate 

(12) sup ( | K „ ( r , jlF|2(fi;RW) + l | | ( « e , , ) + ( r , - M l L ^ . , ) 

+ l lV lW/llL 2 (Q ^.;R-v-) < co> where c0 = c0(f) with 

, / = [/3o,/3l,CUi,6c)2, | |^0 | | / / i (^;R^) , ||^l||L2(Q;RlV), II ̂  11 ^V / /7 . ( ^ i ( a n . } } , ^ 

H/IUaC/ .^ jCz/ icn^^))* ) , ( ( ^ ( ^ - ( / - . ^ / / . ( a i O j R ^ ) ) * ) ' NC/IIJ-r2(Q.'3r;iR
iV)J -

In fact, such an estimate is nearly obvious if mesyv-i 0QU > 0. If mesyv-id-^ = 0, it 

holds evidently for KY VH£)7/. However, due to tlie finite dimension of ffi tlie following 

inequalities with cx and c2 indei)endent of ?/ and e hold: 

(13) / | |VTi^u f ,7?(T , • ) I I 1 _ I ( 1 2 ; R N 2 ) dT <C CI / ||7i^Ofc-,?;(T, • ) l l i 2 (n .R .v ) dT 
Jo Jo 

^ C 2 | | ^ £ , 7 7 | | L 2 ( Q / 7 ; i R N ) , 

therefore the estimate (12) is valid in this case, too. 

An arbitrary function w G L2(l^\ H1^, UN)) can be put into (7). The estimates 

(12) together with (11) and the Gronwall-lemma-type arguments yield tha t 

(14) ll^,77l|L2(/T;//-i(r2;Rlv)) ^ ^ I I ^ ^ I I / ^ Q ^ . R A ^ ) + c ,4||/ | |L2(/.7 ;//-i(r2 ;RN ) ) 

with C3, C4 independent both of e, rj and of any l)oundary data. Here and in the 

sequel, H_1(^; ^N) = ( H 1 ^ ; ̂ N)) • N o w > w e apply the interpolation theory for 

Sobolev spaces of the Hilbert type (cf. [9], Chapter 1—the technique of the local 

straightenning of the boundary studied e.g. in [3] shows that the requirement of 

the high smoothness of the boundary is redundant) for the spaces Hx((7; UN) and 

H-1(ft; UN). This and the estimate (14) lead to the estimate 

(15) H ^ ^ l l i i ^ . ^ ^ ^ , ) =̂  ŝll̂ ^^^^Hl̂ cQ.̂ iR -̂2) "̂  ^ell.rill-.cz^;-^-^!"^^)^ 

where for c5 , CQ the same assertion as for C3 and c<\ holds. To prove it, we ex tend 

the solutions u£iV = u£^ — it\ in time in such a way tha t u£J1 = 0 for r G ( — 00, 0), 

£, ?? > 0. Moreover, we extend / , T0 and G by 0 onto ( ^ , 0 0 ) x ft and U onto the 

same set in such a way that the appropria te conditions in (9) still hold (for such an 

extension see [9], Chap ter 1). We employ a nonincreasing cut-off function O0 G C2(1R) 

such that O0 = 1 on ( - 0 0 , 3?) and D0 = 0 on ( 2 ^ , - f o o ) . For | |V(O0H£ ,77)| |L2(RxQ;R .v^ 

the es t imate of the type (12) which is uniform in e and // remains valid. The uniform 
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estimate of the type (14) for -^(QOU£^) in L2 (U\H~l(i~l\UN)) remains valid as 

well. From this and with the help of the partial Fourier transformation in time, the 

estimate (15) follows immediately by the use of the Holder inequality. 

The precise trace theorem and (15) yields that 

(16) Wil^v\\Hli{Sv,UN) ^ cr\\uetV\\HhA{QvMN), 

where for C- the same assertion as for C 3 , . . . , c 6 holds. In fact, the localization 

technique (as in [3]) and the just defined extension in time yields tha t we can restrict 

ourselves to the case of the functions defined on J2 = U x J?, where ft = UN~l x [R+, 

and having uniformly bounded supports there. Then the extension to U x UN is 

possible like in [9] and similarly to [10] we introduce two Fourier transformations: 

the first one in all variables—the transforms will be denoted by hats—and the other 

one with respect to the time and the tangential space variable only—the transforms 

will be denoted by checks. The dual time variable will be denoted by L>, the dual 

space variable by £. Then we have 

(17) 

!«*.,,{>,6, • • • , 6 v - i , 0 ) | 2 (1 + \v\ + | 6 | 2 + • • • + l&v- i l 2 )* dvdfc . . . d ^ v - i / 
JRI 

= / 7Г / Ù^v(v^)dí 
JUN ZK Ju 

(1 + \v\ + |612 + ... + lOv-if2)1 dt>d&... d6v-i 

^~[ |Se,>,0|2(l + M + lď)di;d£ 

(i + M + |6l2 + ..- + l6v-i|2)^ 
/ 
JR ì + M + KI-

• d Ç w . 

The last integral is equal to n. The appropriate expression of the Sobolev-Slobodeckii 

norms (cf. [5], Lemma 1) and (17) yield (16). 

Let & = {zr; r E N} be a basis of the space JF which is L2(Ct\ RN)-orthogonal 

and such tha t the first ' 2
+ ' elements of .$f create a basis of & if mesjv-idtt — 0. 

The existence of such a basis is a consequence of the spectral theory Let 

Xm = {f2qrz
r-qT&L2{I^;RN)\. 

^ r = l -* 

An element u£jV,m ~ U + Km will be an approximate solution to (7) if it satisfies the 

approximate version of the initial condition and for every v G Km the variational 
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+ 
ls, 

equation 

(IS) / ((u£,n.ni)iVi +crij(ue,n,m)rij(r)) dTdT 
JQ.7 

(7h'((u;,n,m)n)vn +G VKv((ue.,hm)t)vt) Ax AT 

= I fiVi dx AT + / T0,iVi dx dT Vv e Xm 

JQ.7 JST.:7 

holds, where all the terms have a good sense. The existence and unicity of such u<-,,,,,,, 

for ?7,5 > 0 and m e N is obvious as usual from the theory of ordinary differential 

equations. The estimate (12) for u£,v,,n, being uniform with respect to E. // > 0 and 

7/i e N, can be verified in the same way as the original estimate (12). 

Let us denote by (•, •) and [•, •] the L2(Q?; UN)- and L2(Q; Ryv)-scalar product, re-
> ,n 

spectively. The I^-orthogonahty of i2? yields that for -j^u£,n,m = Y [u£,tl,tn, ~i] ~/ + U 
i = i 

and for an arbitrary v E L2(f7;Jf) it holds (uE,,hn,,r) = (uE,7hm,^xmv) + (U. r -

nxmv). From (18), (9), (12) and from the uniform boundedness of the projections 

7ix„, in II1 (H; IR^) we prove the essential boundednoss of {uE,,hm; e,i] > 0,/?/ 6 N} 

in L2(Ip;JT*). 

Now we prove the convergence of the Galerkin approximate solutions for fixed c~ 

and //. Due to (12), (15) and (1G) which validity is now verified for {u£,n,,n ; £ , / / > U. 

m e N} by the same arguments as for {u£,tj; s. // > 0} . there is a subsequence 

nik —>> +oo such tha t for every fixed e > 0, // > 0 and for k —>• +oc the following 

convergences are valid: 

(19) uE,v,nn. -> u£,n in L2(Q:7: UN), u£,v,nlh,(^, •) - uE,n(/7, •) in L2(Q; UN). 

Ue,rhm,, ~* U£,n ill II* '-" ( / S ^ ; U^ ) => .'/,-.,,,,,, A - » H ^ , , <VJ 

A\,(u,,IMnJ -+A',,^,,,) bothin^^ f t ' i - n ( .S ,
( ,7 :R A ' ) , a e (o, J 

VwЄł,lłTOÂ -> YH,,ř/ in L2(Q,7; UN~), Vùє,n,Шľ -- Vń f ) ř j in L 2 ( Q ^ ; R 

'є,/,,77iA -"- üє,ri in L2(l,7;//Í") and Ђ(uє,Пìttìk) -± rr(uє,n) in L2(Q:7: 
D Л Г -

The strong convergence of velocities holds by virtue1 of the compact imbedding 

H^l(Q;7; UlX) <--* L2{Q:7; [RA ). The weak convergence of their traces is a con

sequence of (16), the strong convergence follows from a certain more general com

pact imbedding theorem (sec e.g. [9]). The strong convergence of their A^-images 

holds due to the same reasons and to (G). For the gradients the weak conver

gence is obvious. For the projections 7i,?1A. = ~/>.\\M in Hl(Qy\R!y') we put 

v = iznilu£,t1 - uE,t],nil into (IS), change (18) with the help of an appropriate version 
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of (8) and add j Q ^ <Jij(u£t<n)eij(u£t11trtlk. -u£t11)+aij(u£tth7nk.)eij(u£jri-Kmk.u£tn) d;/:dT 

to both sides of the inequality. On the left hand side of the resulting inequality we 

keep j Q ^ ((7ij(u£t.n) - <Jij(uEtthttlk))eij(uEtn - He,,M,u ) d T d r and we can check that 

its right hand side tends to 0. (In particular, we exploit the weak convergence 

Of Kn((Kmk.UEtt))t - (H5,v?,mJ/ + (U£trj,rnk)t) a i ld of Kn((u£tthttlk.)t) t o K7](u£,n)t) ill 

HT.y(5r ,7) which follows from their boundedness in that space (due to (6), (12) and 

(16)) and their convergence almost everywhere in SCt,^.) The strong convergence of 

gradients then follows from the strong inonotonicity of the employed operators A and 

-rji- (cf. (11)) provided n\es^-[dVtu > 0. The last convergence in (19) holds again 

duo to the strong inonotonicity of -rj£ which yields its maximal inonotonicity, due 

to the almost-everywhere pointwise convergence of (a subsequence of) gradients and 

due to the linearity of A. From this, it is easy to see that u£^n is a solution of (7'). 

If mes/v_i<9nu = 0, we use for the strong convergence of \7K^>u£j7hmk., which re

mains to be proved, the inequality (13) and the fact that all space derivatives of such 

elements of orders higher than one are zero (therefore {VK^u£t7h-mk.} is bounded in 

H[ (l,7; L2(Q; UN'2)) n L2 (l:7;H
r(Vt\ UN'2)) for any •/• G N and the compact imbed

ding theorem can be used). The rest of the proof is the same as above. 

To complete the proof, we take a subnet of (YKn)(u£tthmk) tending to some Iv 

in the //'"-topology of LOQ(Sc^y)U
N). Let the sequence {Gp} C L2(SCty) tend to 

G in L2(I;7\(H-2(DVtc)y). Then for arbitrary w G L2 (l?; H^ (<9ftc; UN)\ we have 

j ; s , 7 G ( ( V A ^ ( H ^ 

/s, _ Gp((X
7Kn)(u£J],rnk.) — IO//jd;r d r . The first term tends to zero for tha t net also 

due to the boundedness of <̂  (YKn)(u£,thnik) — K > in L00(Sc^y, UN) and the second 

also due to the boundedness of {Gpw} in L\ (Sc^\ UN). The strong L2-convergence 

of the traces of velocities yields the identity A' = (YKv)(u£iV) and therefore for 

some subsequence (denoted again by 7//./.) the convergence G (VKn)(u£tlhnik) —^ 

G(YKn)(u£,v) holds in L2(l;7; (H*(dnc)yY We have proved 

L e m m a . Let the assumptions concerning il, its boundary, the operator A. the 

function \V and the assumptions (9) be fulfilled. Then there exists a solution to the 

problem (7) for every s > 0 and // > 0. 

R e m a r k . The assumption //[ G LI[(Q\ UN) in (9) was imposed in order to make 

possible to consider more general G (see Theorem below). If we restrict ourselves to 

G from (9), the usual assumption u{ G L2(Q; UN) is sufficient both for Lemma and 

for Theorem below. 
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2. E X I S T E N C E T H E O R E M AND R E G U L A R I T Y RESULT 

The aim of this section is to prove 

T h e o r e m . Let all the assumptions of Lemma be fulfilled with the exception of G 

for which we assume G G (H :*'- '(5C j i^))*. Then there exists a weak solution to the 

contact problem (1). 

To prove Theorem, two limit procedures must be carried out. Firs t we make the 

limit procedure for /;. Due to (12) (15) and (1G) it is easy to see that there is a 

sequence {ijk} such that i]k -> 0 for k -> +00 and all the weak convergences of the 

derivatives similarly as in (19) are valid, where the limit elements will be denoted by 

uE. Moreover, the strong convergence of velocities u£_n -> u£ in L2(Q^r) and of their 

traces like in (19) holds. It is easy to see that for any a G (0, | ) , each 6,7] G (0,1) 

and any w G Hz(d£lc) the following inequality holds: 

(20) | | (K , - ^ o ) ( ^ ) l l 2
H i - . . ( a a ; R N ) ^ \\Kv ~ Ao | | ^ ( R ) (mesAr_ i9n c ) 

• I ! * , - * - * «>/ / *?-$£"**<• 
Jan,. Jon,. \x U\ 

1 - 2 . V 

The continuous imbedding H^(<9HC) <--•» W2
2Zlp (dilr), 6 G (0 ,2a) , based on the re

sults of [12], Chap ter 2, Sec. 4 (cf. [1], too), and the relations (6) yield that the left 

hand side in (20) tends to 0 uniformly with respect to bounded sets in H^(dQ.c\ (RA ). 

Using this and the compactness of the operator w M> \w\ from H + ^(Scry) to 

L2(I:7;H
L2-"(dnc)), a > 0, we obtain 

KmX{ue,>n-)t) = (Km ((ue,m)t) ~ Ko((ue.m )/)) + K0((ue,m)t) 

^ 2 1 ) LAlv,Hh — {dn,.)) 
> Ko((u,)t). 

On the other hand, {Km ((//.,,,, )t)} is bounded in HT-i(5c :J) due to (G) (12) and 

(1G), therefore there is its subsequence having a weak limit there. From (21) we can 

derive in the s tandard way that this limit is Ko((us)t) and it is the limit of the whole 
1 1 

s e q u e n c e . A n a l o g o u s l y , A',/A ((//--h - ('Ue,m )t + Ofr,,„, )/) —^ K0((u£)t). Le t u s 

put w — u£ in (7'). Similarly to the proof of Lemma, we add \Q <Jij(u£)eij(u£ 

u£) dx dT to bo th sides of (?'). With the same arguments as in the proof of Lemma w 

prove the strong convergence of gradients like in (19) and then the weak convergent 

e 

e 
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of stresses. Thus we prove tha t u£ is the solution of the variational inequality 

(22) / (u£)i(w - u£)i + aij(u£)eij(w - UE)AXAT + I -h'((u£)n)(w - u£)n 
JQ.<7 Js^.r? e 

+G(\wt + (u£)t - (u£)t\ - \(u£)t\) dxdT 

^ / fiiw — us)i dxdT + / Toj(w - u£)i dxdT 
J Q y J ST. !7 

VweU + L2(If\JlT). 

Now, the a priori estimate (12) can be recalculated using the ideas leading to (14), 

(15) and (16). For the test functions v such tha t vt G H4-2 (Sc,y\ UN) we use the 

estimate of the friction term 

(23) / G (\vt + (u£)t - (u£)t\ - \(ue)t\) dxdT 
JS,...<7 

< 5 | | G | l ( H i i ( 5 , ; . . , ) ) * ( I I^I I /VH^, . . - . ! ,* ) + ^Hh-i(S^;fin) 

with c independent of e > 0. On the other hand for y summing all suitable norms 

of the input da ta with the exception of G, the test function v = U put into (22) yield 

( 2 4 ) "'^"Hi-^Q^jRlV)) ^ C*\\Uc\\LiI.v,Hi(Q;UN)) + r6||/IL2(/ /3 r ;//-i(Q ;Riv ) ) 

with the constants C5, CQ from (15), and c8, C9 independent of e > 0. Therefore the so-

lutions uE satisfy (12) with J, where | | G | | ( / / i . i ( S _ , ? ) ) . replaces l |G | l L a ( / _ T ; ( / . i ( a n i . „ . , • 

Then the used technique gives easily that the penalized problem has a solution for 

any G G ( H ^ ( S C , ^ ) ) 

For the second limit procedure for e —> 0 we verify again the validity of the 

convergences like in (19)1 to a certain limit u for some sequence Sk -» 0. In particular, 

we can prove tha t u£h —> u in L2(Q y\ UN) which is important clue to the sign at 

ll̂ 'U'/ -,(Q- -uN) m (4) excluding the use of the weak lower semicontinuity arguments. 

The proofs of the remaining strong convergences are based on the same ideas as in 

the preceding limit procedures and then the weak convergence of stresses is clear. 

It is obvious that the limit u satisfies (4). Redefining the set of the test functions 

for (4) in such a way that the appropriate anologue of estimates (23) and (24) can 

be performed, we prove the existence of a solution for each G G (H^^(SC^)) . 

Theorem is proved. 

• The accelerations converge in L2(Iy\ H l(Q;UN)). 
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Corollary. Under the assumptions of Theorem let, moreover, the coefficients of 

A he d-smooth on ft, let W he CTsmooth on ft x (RA'\ let f e L2(Q&\ K N ) . and 

let G e (H^0(SC^)Y. Then the solution found belongs to B0 (lT\ H2A(ft'; Rx)Y 

where ft' C ft is a domain along the contact part of the boundary, the first index 

denotes the tangential and the second the normal regularity of u. Moreover, the 

solution belongs to any space II'2 '2 ^ (Qf
9\ RN) for any Q':7 = ly x ft', ft' as above. 

(Here the first component of the vector-index of the space corresponds to the time 

variable, the second to the tangential space varial)les and the last to the normal 

variable.) 

The proof of the time regularity (the second term) was in fact done without any 

additional assumption. Due to the strong monotonicitv of A and of 4Ji-. the space 

regularity in the tangential direction will be proved, after the local straightening 

of the boundary, by the usual shift method. By this method, a difference of dis

placements (at the original points and at the points shifted in a certain tangential 

direction) multiplied by a suitable smooth localization function is put as a test func

tion (v — H) into (4) and into its shifted version. The result is multiplied by an 

appropriate power of the Euclidean norm of the difference of points and integrated. 

In the estimates of the fractional derivative seminorm. the velocity is treated as a 

part of the right hand side of the problem and its space regularity (cf. (12)) is ex

ploited. For details see Remark 3.2 of [8], where an analogous proof for the case of 

a membrane is done, and [3], where the use of the shift method is described in all 

detail. The use of the method requires the smoothness of both the "coefficients" and 

the boundary Of course4, the strong monotonicitv of A and of ^ji- is here essentially 

employed. 

R e m a r k . The B0(I:?\ HJ~f (ft))-regularity of the solution for any s > 0 on any 

ft C ft such tha t dist(ft,<9ft) > (J can be proved via the shift method as above. Here 

naturally no constraint to directions of shifts occurs and the smooth localization 

function multiplying the difference of displacements vanishes outside ft such that 

ft C ft and ft C ft. This result can give the strong convergence of the gradients in the4 

limit procedures and the point wise convergence of a subsequence almost everywhere 

on Qy which yields the weak convergence of stresses. Inside ft, naturally, SOUK4 

better time regularity of u can be proved, too, particularly in the case of the linear 

viscoelasticity. The regularity along the contact part of the boundary, however, is 

particularly important for the possibility to solve the original contact problem with 

friction (where only the coefficient of friction is given) which can be solved by means 

of the fixed point approach (cf. [3], [10]). The impossibility to use velocities in the 

shift technique bounds its result to that mentioned in Corollary which is far from the 
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possibility to use such a procedure. Differently from [7], where the contact condition 
is formulated in velocities, the classical shift technique does not seem to be sufficient 
to prove the existence of a solution to the original contact problem with Coulomb 
friction. 

Acknowledgement. The author is deeply grateful to the referee for a careful 

revision of the text which led to its improvement. 
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