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Czechoslovak Mathematical Journal, 46 (121) 1996, Praha 

INVERSE SEMIRINGS AND THEIR LATTICE OF CONGRUENCES 

BEDRICH PONDELlCEK, P r a h a 

(Received August 16, 1994) 

To the memory of Otakar Boruvka 

Universal Algebra Theory, algebras whose congruences form a modular (distribu­
tive, boolean) lattice with respect to inclusion have attracted great attention. For 
example, in semigroup theory see [1]. The aim of this paper is to describe all inverse 
semirings having a modular (distributive, boolean) congruence lattice. The notion of 
an associative inverse semiring can be found in [2]. The congruence lattices of these 
semirings have also been studied in [3]. 

1 . INTRODUCTION 

We shall fix the type r = (t, ar) with t — (+, •, - ) , ar(+) = ar(-) = 2 and a r ( - ) = 1, 
An inverse semiring is a r-algebra y = (5, r) satisfying the axioms 

(1.1) (5, +) is a commutative semigroup, 

(1.2) x(y + z) = xy + xz, (y + z)x = yx + zx, 

(1.3) x — (x — x) + x, — x — —x + (x — x) where xy — x • y, xy + z — (xy) + z and 
x-y = x + (~y), 

(1.4) (.T - x) + (y - y) = (x - x)(y - y). 

Note that we need not use and suppose the associativity of the multiplication. 
By S(y) we denote the set of all elements of an inverse semiring y . We put 

E(y) = {x e S(y),x = x + x}. It follows from (1.3) that x - x <E E(Y) for 
every x G S(y). Let 0: S(y) -> E(y) be a mapping such that Ox = x — x for all 
x G S(y). According to (1.1) and (1.3) we have 

x + Ox = x = Ox + x. 
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In some proofs the following implication will be used: 

(1.5) x = x + y + x,y = y + x + y => y = —x for every x, y G S(y). 

P r o o f . Suppose that x = x+y+x and y = y+x + y. Then according to ( IT) and 

(1.3) we have y = y+x+y = y+x+(-x)+x+y = (x+y+x)+y+(-x) = x+y+(-x) = 

x + y + (-x) + x + (-x) = (-x) + (x + y + x) + (-x) = (-x) + x + (-x) = -x. D 

From (1.1), (1.2) and (1.5) it is easy to show the following: 

(1.6) -(-x)=x, 

(1.7) -(X + y) = (-X) + (-y), 

(1.8) -(xy) = (-x)y = x(-y). 

It follows from (1.5) and (1.4) that 

(1.9) e = -e = Oe = e2 for every e G E(y) and 

(1.10) e + f = efe E(y) for every e, / G E(y). 

This implies that <f?(y) = (E(y),r) is an inverse subsemiring of y which is a 

semilattice and so for e, f G E(y) we can put 

(1.11) e ^ f if and only if ef = c, 

(1.12) e < / if and only if e ^ / and e ^ / , 

(1.13) e || / if and only if e ^ c / ^ / . 

According to (1.2), (1.9), (1.8) amd (1.10) for every c G E(y) and every x G S(y) 

we have 

(1.14) xe = (0x)e = e(0;r) = ex G E(y). 

Indeed, we have xe = x(e + c) = x(e — e) = xe — xe = (x — x)e = (0x)e = (Ox) = 

. . . = ex. It follows from (1.1), (1.6), (1.7), (1.9) and (1.14) that 

(1.15) 0 is the homomorphism projection of y onto &(y). 

2. P R O P E R T Y (M) 

Let y be an inverse semiring. By (Cou(y), A, V) (or briefly Con(y)) we denote 

the lattice of all congruences on y with respect to set inclusion. For x, y G S(y') we 

denote by <dy(x,y) (or briefly (r)(x,y)) the least congruence on y containing (x.y). 

Recall that KerO = {(*, / ; ) ; x,y G S(y) and Ox = 0/y} G C o n ( ^ ) . By [KerO) 

we denote the principal filter of Con(.y') generated by KerO, i.e. [KerO) = {X G 

Con(«y); KerO C X}. For evcTy X G [KerO) we put <p(X) = X n (E(y) x E(y')). 

It is clear that (p: [KerO) -> Co\\(6,(y)). 

L e m m a 2 .1 . The mapping <p is an isomorphism of the lattice [KerO) onto the 

lattice Con(£(y)). 
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P r o o f . First we shall show tha t X± C X2 if and only if </?(Ni) C (f(X2) for all 

A"i,A'2 G [KerO). It is clear that Xi C A"2 implies </?(Xi) C </?(X2). Suppose tliat 

y°(NL) C <^(N2). Let (x,y) G Xx. Then (0:r,0g) G Ni and so (0x,0y) G <p(Xi) C 

^p(X2) C X2. It is easy to show that (x,0x), (Oy,y) G KerO C X2 and so (:r, g) G X2. 

We have A'i C X2-

Now, we shall prove that </? is a surjective mapping. Let Y G Con(<f (y 7 ) ) . Pu t X = 

{(x,y); x,y G S(y') and (0:r,0/y) G Y } . According to (1.15), we have X G C o n ( y ) . 

If (x,y) G KerO, then 0:T = OH and so (:r, H) G AA. Therefore we have KerO C X 

and so X G [KerO). Finally, we obtain Lp(X) = X n ( £ ( y ) x £(«*")) C Y C Lp(X). 

Hence we have <p(X) = Y. • 

Recall tha t a semilattice £ is a tree if for any pair of elements e, f G 5 ( ^ ) with 

c || / there is no element g G 5(c?) such that e ^ g and / ^ g. 

L e m m a 2.2 . Let y be an inverse semiring. 

If C o n ( y ) is modular, then S(y) is a tree. 

If £(y) is a tree, then [KerO) is distributive. 

The proof follows from Lemma 2.1 and Theorem 4.4 of [1]. • 

L e m m a 2 .3 . If the lattice C o n ( y ) is modular, then a + f = f for all elements 

O, / of an inverse semiring y , where f = Of < Oa. 

P r o o f . Suppose that C o n ( y ) is modular and a+f / / , where / = 0 / < 0a = c. 

It follows from (1.4) that a / c Pu t A = Q(a + f, f),B = 6 ( e , / ) and C = Q(a, e). 

We have (a + / , / ) = (a, e) + (/*. f)eC and so A C C. 

Let g G E(y') and put Gg = {(x,y); x,y G S(y), where x = y or 0:r — 0y ^ g}. 

We shall show that Gg G C o n ( y ) . Evidently Gg is an equivalence on S(y). Suppose 

that (x,y) G Gg and x / y. By (1.15) we have (-x, -y) G Gg. If z G S(y), then 

by virtue of (1.4) we obtain 0(x + z) = 0(xz) = (0x)(0z) = (0y)(0z) = 0(yz) = 

0(y + z) <C g and 0(xz) = 0(yz) = 0(zx) = 0(zy) ^ g. Therefore Gg G C o n ( y ) . 

We have (a + / , / ) G Gf and so A C Gf. From (a, e) G G e it follows tha t G C G,. 

Let F> = {(x,ij); x.y G 5( f
(/ ') and x + f = y + / } . We shall prove that D G 

C o n ( y ) . It is clear tha t D is an equivalence on S(y). Assume that (x,y) G 

D. By (1.7) and (1.9) we have (-x,-y) G D. I f ; G S(y), then ( IT) implies 

(,l- + z,y + z) G D. It remains to show that (xz,yz) G D (and dually (zx,zy) G /}) 

for every z G 5 ' ( y ) . We have x + f = y + f and so, by (1.15) amd (1.2), we obtain 

(2.1) 0x + f = 0tj + f and xz + fz=yz + fz. 

Using (1.14) and (1.10) we have 

(2.2) xz+f + 0z = yz + f + 0z. 
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From (2.1) and (2.2) it follows that xz + f = xz + O(.rz) + f = xz + Ox + 0z + f = 

yz + Ox + Oz + f = yz + Oy + Oz + f = yz + 0(yz) + f = yz + f. Thus we have 
D G C o n ^ ) . 

Since (e , / ) G D, we have B C D and so B n C C D n Ge = L) A Ge. We 
have (a, a + / ) = (a, a) + (e, /) G H, (a + / , / ) G A and (/, e) G H. This implies 
(a,e) G (A V H) A C = A V (H A C) C GfV (D AGC). Then there exists a finite 
sequence a = xo,xi,... ,xn = e of elements from S(Y) such that („i_i, X{) G G/ or 
(„i_i,„i) G D H Ge. We can suppose that the length n ^ 1 is minimal. 

If (#0,-1) G G/, then „o = Ti, which is a contradiction. We have x0 7- xi and 

(„o,xi) E D f l Ge. Then 0:vi = 0„o = e, a + f = x0 + f = x\ + f and so xv ^ 

e.Therefore n ^ 2 and (Ti,:v2) G G/. This implies that x.\ = x-2, a contradiction. 

Consequently, we have a + f = f. D 

Definition 2.1. We shall say that an inverse semiring y" has property (M) if 

« + / = / 

for all aje S(y), where / = 0/ < 0a. 

Lemma 2.4. If an inverse semiring y has property (M), then for a,b e S(y) we 

have 

(i) a + b = b for Ob < 0a, 

(ii) ab = ba = Ob for Ob < 0a, 

(hi) a + b = ab = 0(ab) for 0a || Ob. 

P r o o f . (i) and (ii). If Ob < 0a, then by (1.3) and Definition 2+ we obtain 
a + b = a + 0b + b = 0b+b = b. Further we have ah + b'2 = b'2 (see (1.2)) and so 
ab + Ob'2 = Ob2. It is easy to show that 0(ab) = Ob = Ob2. Hence we have ab = Ob. 
Analogously we can show that bo = Ob. 

(in). Suppose that 0o || Ob. According to (1.3), (1.4) and Definition 2.1, we have 

a + b = a + b + 0(a + b) = a + b + ()(ab) = a + 0(ab) = 0(ab). This implies that a2 + ab = 

a,0(ab) and so, by (1+4), (1.15) and (i), we have ab = o2 + ab = (Oa)O(ab) = 0(ab). 
D 
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3. PROPERTY (D) 

Let y be an inverse semiring and let e G E{y). By ye we denote the inverse 

subsemiring of y satisfying S{ye) = {x G S{y); Ox = e}. By virtue of (1.15) it is 

easy to show that E{ye) = {e} and so ye is a subring of y . 

Pu t Hc = {{x,y); x,y G S{y), where x = y or Ox = e = Oy}. 

L e m m a 3 . 1 . Let y be an inverse semiring having property (M) and let e G 

E{y). Then He G Con{y) and the principal ideal {He} of Con{y) generated by 

Hc is isomorphic to Con{ye). 

P r o o f . Suppose that an inverse semiring y has proper ty (M) and e G E{y). 

Let A G Co\\{ye) and pu t ty{X) = A U i d 5 ( ^ ) . 

First we shall show that ^{X) G Con{y). Evidently, i^{X) is an equivalence on 

S{y). Suppose that {x,y) G 4'{X) and x ^ y. Then {x,y) G X and so Ox = e = Oy. 

It is clear tha t {-x,-y) G X C ip(X), Let z G S{y). If Oz = e, then evidently 

{x + z,y + z), {xz, yz), {zx, zy) G A C \jj{X). From Lemma 2.4 we ob tain the following 

implications. If Oz < e, then {x + z,y + z) = {z, z) and {xz, yz) = {zx, zy) = {Oz, Oz) 

belong to ip{X). If e < Oz, then {x + z,y + z) = {x,y) and {xz,yz) = {zx,zy) = {e,e) 

belong to X C ip{X). If e \\ Oz, then {x + z,y + z) = {xz, yz) = {zx, zy) = {ez, ez) G 

</>(A). Hence ip(X) G Con{y) and so i/>:Con(ye) -> Con{y). 

It is easy to see that A C Y if and only if i/>{X) C ^(Y ) for all A, Y G Con{yc). 

Clearly 'ip{S{ye) x 5 ( y c ) ) = He and so He G C o n ( y ) and ^{Con{ye)) C (He] = 

{A G C o n ( y ) ; A C He}. It remains to prove that ^p{Co\-\{ye)) = (He]. Let 

Y G {He}. Then Y C He. Pu t A = Y D {S{ye) x S{ye)). Clearly A G C o n ( y ) . 

Suppose that {x,y) G tp{X). Then (a;,?;) G A" or T = y and so (z,?/) G F . Hence 

we have 4}{X) C y . Assume that {x,y) G V. Then (x,H) G He and this implies 

x,y G 5(J7e) or ;r = y. Consequently, we obtain that {x,y) G A U ids(y) = il>{X). 

Thus we have Y C ^ ( A ) and so y = -ip{X). D 

De f in i t i on 3 . 1 . We shall say that a/z inverse semiring y has property (D) if 

for each e G E{y) the lattice Coi i (y e ) is distributive1. 

L e m m a 3 .2 . If the lattice Con( ,y) is distributive, then an inverse semiring y 

has property (D). 

The proof follows from Lemma 2.3 and Lemma 3.L • 
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4. M O D U L A R I T Y AND DISTRIBUTIVITY 

L e m m a 4 . 1 . Let A\ Y G Con(y), where y is an inverse semiring. Then (e, f) G 

X V y for e, f G E(y) if and only if there is a finite sequence e = xo, x\,.. ., xn = f 

of elements from E(y) such that (T^_i, ;r?) G X UY for i = 1,2,... ,n. 

P r o o f . It is well known that (e, f) G A" V Y if and only if there is a finite 

sequence e = yo,y\,. .., yn = f of elements from S(//) such that (iji-\, yi) G A ' U l ' 

for i = 1 ,2 , . . . , n. Suppose that e, / G E(y) and put .r?: = Oiji for i = 0,1 //. 

Then we have (;rz_i, :/,•) G A ' U 7 for i = 1 ,2 , . . . . / / and .r0 = e,xn = f and 

Xi G E ( ^ ) . • 

L e m m a 4 . 2 . Let A" G Con^Y7), where 5 is an inverse semiring. If for e, / G E(// ) 

we have (e, f) e X V Ker 0, <Jjcn (e, / ) G A\ 

P r o o f . According to Lemma 4T, there is a finite sequence e = XQ, rq , . . . , xn = 

f of elements from E(y') such that (;T{_i,:r;) G A' UKerO for i = 1 ,2 , . . . , / / . If 

(xi-i,Xi) G KerO, then .r2-_i = 0xi-\ = 0;r; = :r?- and so (T?-_i, :iq) G A\ Therefore 

we have (e,f) G X. • 

L e m m a 4 . 3 . Let A',B,C G C o n ^ ' ) , wiiere y is an inverse semiring in which 

£(y) is a tree. If for c,f G E(y) we have (c,f) G (A V B) A C, riien (e.f) G 

(A A C ) V(HAC7). 

P r o o f . Suppose that (cf) G (A V D) A C WIKTC e,f G F(J^). Put A' = 

AVKerO,H/ = HVKerO and C = CVKerO. Clearly we have (e,f) G (A'VB')AC'. 

It follows from Lemma 2.2 that (e,f) G (A' A C) V (B' A C). By Lemma 4.1 

there is a finite sequence e = xo,x\,. . . ,xn = f of elements from E(y) such that 

(xi-i, Xi) G (A1 A C) U (17' A C) for i = 1 ,2 , . . . , / / . According to Lemma 4.2. we 

have (xi-^Xi) G {A A C) U (B A C). Consequently, ( c f) G {A A C) V (B A C). • 

L e m m a 4 .4 . Let X.Y G Con(«y), where y is an inverse semiring. If (x.z) G 

X, (z,y) G y and 0:r = 0^ = 0/y, rJien there exists //' such that (x,iv) e i\ (w,y) G X 

and Ow = Oz. 

P r o o f . Pu t w = x - z + ,/y. It follows from (1.4) that Ow = Oz and (.r, ir) = 

(x,x) - (z,z) + (z,y) G y (ic,.:) = (x,z) - (z,z) + (/y./y) G A . • 

L e m m a 4 . 5 . Let X G C o n ^ ) , wiiere y is an inverse semiring having property 

(M). Let (x,y) G A . If Ox < 0/y or 0T || 0//, then (//, /') G A for aii H, v G 5(J / ' ) with 

Ow = 0;/y = 0D. 
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P r o o f . Suppose tha t Ox < Oy. Then according to Lemma 2.4, we have (u, x) = 

(u - y,u - y) + (y,x) G X and (x,v) = (v - y,v - y) + (x,y) G X. Therefore 

(u,v) e x. 
Assume tha t Ox \\ Oy. Then we have 0(xy) < Oy. Using (1.3), (1.4) and (1.14) we 

obtain (0(xy),y) = (0y,0y) + (x,y) G X. The rest of the proof follows from its first 

part . • 

L e m m a 4 .6 . Let A,B,C G Con(y), where y is an inverse semiring having 

property (M), and @(y) is a tree. 

(i) If A C C, then (A V B) A C C A V (H A C) . 

(ii) If J/ ' iias property (D), then (A V B) A C C (A V C) V (H A C) . 

P r o o f . Let (H,D) G (A V H) A C. Then there exists a finite sequence u — 

XQ, xi,... ,xn = v of elements from S(y) such that (xi-i,X{) G A U H for i = 

1 ,2 , . . . ,u . Further, we have (u,v) G C. Put e = OH and / = Ov. Clearly (e,f) G 

(A V B) AC. We have the following possibilities: 

C a s e 1. e = / . Pu t xji — x\ -f-e. It follows from (1.4) that Oiji ^ e, it = uo, U = y u 

and (//i i, (ji) G A U H for i = 1. 2 , . . ., n. 

Subcase la . 0u?; = e for all / = 1,2, . . . ,n. It follows from Lemma 4.4 that there 

is an element w of S(y) such that (H,u') G A, (w,D) G 5 and Ouj = e. 

If A C C then (I/J, v) G C and so (u, v) G ^ V (B A C) . 

If J/1 has property (D), then according to Lemma 3.1, the lattice (He] is distribu­

tive. Clearly (u,iv),(iv,v),(u,v) G He and so (u,w) G A', (Hl,U) G B', (u,v) G C , 

where A' = A A He, B' = B A He and C = C AHe. It is clear tha t A7, H;, C r G (H f] 

and so we have (u,v) e(A'vB')AC' = (A' A C) V (B' A C) C (A A C) V (H A C) . 

Subcase l b . 0gz- < e for some i. It follows from Lemma 4.5 tha t (u,v) G A or 

(u , r ) G B. Thus we have (H,U) G (A A C) V (B A C) . 

C a s e 2. / < e. It follows from Lemma 4.3 that (/ , e) G (A A C) V (H A C) . 

According to Lemma 4.5, we have (u,e) G (A A C) V (B A C) and so (u, f) G 

(A AC)V(BAC)C(AVB)AC. This implies that (/, v) e(AwB)AC. Using Case 

1 we can continue our proof. 

If A C C then (f\v) G A V (13 AC) and so (H,D) G AV(HAC). If ^ has property 

(D), then (/ , v) G (.4 A C) V (13 A C) and so (u, v) G (A A C) V (B A C). 

C a s e 3 . e < / . This is dual to Case 2. 

C a s e 4. e || / . According to Lemma 4.3, we have (e, / ) G (.4 A C) V (B A C). It-

follows from Lemma 4.5 tha t (u,c), (f,v) G (A A C) V (B A C). Therefore (u, e) G 

(AAC)V (B AC). a 
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T h e o r e m 4 . 1 . Let y be an inverse semiring. Then 

(i) Con(y) is modular if and only if &(y) is a tree and y has property (M) ; 

(ii) C o n ( ^ ) is distributive if and only if &(y) is a tree and y has properties (M) 

and (D). 

The p r o o f follows from Lemmas 2.2, 2.3, 3.2 and 4.6. D 

5. P R O P E R T Y (B) 

De f in i t ion 5 .1 . We shall say tha t an inverse semiring has property (B) if 

cardS(o^ e ) > 1 implies that c is the zero of &(y) and Con(ye) is boolean. 

L e m m a 5 .1 . If the lattice Con(y) is boolean, the the inverse semiring y has 

property (B). 

P r o o f . Assume that C o n ( ^ ) is boolean and e G E(y). It follows from Lemma 

2.3 tha t y has property (M). According to Lemma 3.1, the lattice Con(J^e) is iso­

morphic to the principal ideal (He] of C o n ( y ) . It is well known tha t (He] is boolean 

and so C o ^ o ^ ) is boolean. Suppose by way of contradiction that c a r d S ( y e ) > 1 

and e is no zero of &(y). Then there exists some / of E(y) such tha t f < c. 

Since C o n ( ^ ) is boolean, there is Y G Con(y) such that He A Y = i d s ^ and 

He V y = S(y) x S(y). We have ( e , / ) G H, V Y and so, by Lemma 4.1, 

there is a finite sequence e = :vn , : r i , . . . , xn = / of elements from E(y) such that 

(xi-.\,Xi) G He U y for i = 1 , 2 , . . . , n . If (Tr_i,.r^) G He, then Xi-i = Xi and so 

(xi-.uxi) G y . Thus we have ( e , / ) G Y. Let a G S(ye). By (M), we obtain 

(a, / ) = (e, / ) -I- (a, a) G Y. Hence (a, e) G Y D He = ids(^)- This implies tha t a = c 

and so c a r d S ( y e ) = 1, a contradiction. 

Consequently, y has property (B). • 

Recall tha t a tree & is said to be locally finite if every interval of & is a finite 

chain. 

L e m m a 5.2 . Let E be a semilattice. Then Con(^) is boolean if and only if & is 

a locally finite tree. 

P r o o f . See Theorem 4.5 of [1]. • 

T h e o r e m 5 .1 . Let y be an inverse semiring. Then the lattice C o n ( ^ ) is boolean 

if and only if &(y) is a locally finite tree and y has property (B). 

P r o o f . 1. Suppose that C o n ^ ) is boolean. According to Lemma 5.1, y has 

property (B). It follows from Lemma 2.1 that the lattice Co\\(&(y)) is isomorphic 
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to the principal filter [KerO) of Con(y), which is boolean. Thus Con(£(y)) is 
boolean. It follows from Lemma 5.2 that £(y) is a locally finite tree. 

2. Now we assume that <f?(y) is a locally finite tree and y has property (B). 
Lemma 2.1 and Lemma 5.2 imply that the principal filter [KerO) of Con(y) is 
boolean. 

liE(y) = S(y), then KerO = i d S ( j n and so [KerO) = Con(J^), which is boolean. 
Assume that E(y) / S(y). Property (B) implies that £(y) has the zero 

e,Con(ye) is boolean and according to (1.10), y has property (M). Lemma 3.1 
implies that the principal ideal (KerO] of Con(y) is boolean, because He = KerO. 
Hence (KerO] x [KerO) is a boolean lattice. 

Now, we shall prove that KerO has a complement in the lattice Con(y) . Put 
P{(x,y)\ x = y G S(y) or x,y G E(y)}. We shall show that P G Con(J^). Clearly 
P is an equivalence on S(y). Assume that (x,y) G P,x =fi y, and z G S(y). Then 
x,y G E(y) and so, by (1.14), we have xz,yz,zx,zy G E(,9°). This means that 
(xz,yz), (zx,zy) G P. If z G E(y), then it follows from (1.15) that x + z,y + z G 
E(y). Thus we have (x + z,y + z) G P. Suppose that z $ E(y). Then z G S(ye) 

and so, by (1.3), (1.4), we have x + z = x + z + e = z = y + z + e = y + z. This 
implies that (x + z,y + z) G P. Consequently, P G Con(y). It is easy to show that 
P A Ker0 = i&S(<?) and P V KerO = S(y) x S(y). 

Finally, if y has property (B), then it has properties (M) and (D) and so according 
to Theorem 4.1, Con(,y) is distributive. It follows from Theorem 6 (Section 7) of [4] 
that Con(y) is isomorphic to the boolean lattice (KerO] x [KerO). Hence Con(y) 

is boolean. • 

6. INVERSE A-SEMIRINGS 

Following the semigroup theory, an inverse semiring y is called an inverse A-

semiring if the lattice Con(y) is a chain. 

Lemma 6.1. If y is an inverse A-semiring, then card E(y) ^ 2. 

P r o o f . It follows from Lemma 2.1 that Con(E(y)) is a chain and so, by Lemma 
3 of [5], we obtain card E(y) <C 2. • 

Lemma 6.2. Let y be an inverse A-semiring. If E(y) = {e,f},e < f, then 

card S (ye) = 1. 

P r o o f . Put Q = {(x, y); x, y G S(y) and x + e = y + e}. It is easy to show 
that Q G Con(J^). Since Con(,y) is a chain we have the following two possibilities: 
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Case 1. Q C KerO. We have (e,f) G Q and so ( r \ / ) G KerO. This means that 

e = f, a contradiction. 

Case 2. KerO C Q. For ./\ y G 5 ( ^ c ) we have (J\ / /) G KerO and so (x,y) G Q. 
Thus J: = x + e = y -f- e = g. Consequently, card5( e / ;) = 1. • 

Let i ^ b e a ring. By ;i^° we denote the T-algebra, where S(^°) = S(i#) U {/?}, /? ^ 
5 ( ^ ) , and 

{ :r for x = //, 

-a; for :r G S(;#). 
The addition and the multiplication on S(&°) are defined as follows: 

If x,y G S(y#), then T + y (xy, respectively) is the same as in &. 
If x G S(&°), then x + /i = // + x = xh = hx = //. 
It is easy to show that <^° is an inverse semiring with cardF (^°) = 2. 
For every X G Con(^) we put X° = Xu{(h, h)}. Clearly we have X° G Con(^°). 

Lemma 6.3. Let $ bearing. Then Con(^°) = {N°; X G C o n ( ^ ) } u { 5 ( ^ ° ) x 

S ( ^ 0 ) } . 

P r o o f . The former statement UD" is obvious. To prove the latter statement 
UC", let Y G Con(^°) and (h,z) G Y for some c G S(&). Then for arbitrary 
:r,y G S(^° ) we have (b,ir) = (h,z) - (/i, z) + (x,x) G Y and similarly (h,y) G Y. 
Therefore (T,g) G Y, which means that Y = 5 (^° ) x 5 ( ^ ° ) . • 

Theorem 6.1. Let J/7 be an mverse semiring. Then Con(.y) is a chain if and 

only if y is isomorphic to either & or y?°, where :tf is a ring whose Con(^) is a 

chain. 

The p r o o f follows from Lemmas 6.1, G.2 and G.3. • 

References 

[1] H. Mitsch: Semigroups and their lattice of congruences. Semigroup Forum 26 (1983). 
1-63. 

[2] V. N. Salij: To the theory of inverse semirings (Russian). Izv. vuzov. Matem. (19G9), 
52-60. 

[3] B. B. Kovalenko: On the theory of generalized modules (Russian). Izdat . Saratov. Univ. 
Saratov, Studies in algebra (1977), no. No. 5, 30-43. 

[4] C7. Grdtzer: Latt ice theory, first concepts and distributive lattices. San Francisco, 1971. 
[5] T. Tamura: Commuta t ive semigroups whose lattice of congruences is a chain. Bull. Sue. 

Math . France 97(1969), 369 380. 

Author's address: 166 27 Praha 6, Technicka 2, Czech Republic (Fakulta elektrotech-
nicka C V U T ) . 

522 


		webmaster@dml.cz
	2020-07-03T10:54:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




