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INTRODUCTION

This paper takes place in the context of non-associative systems. We study left
sclf-distributive structures: this mecans the ones, called LD-systems, consisting of a
set equipped with a binary operation satisfying the identity

(LD) 2(yz) = (xy)(xz).

The importance of monogenic LD-syst.ms has become apparent only in recent
years. The fascinating connectica pesween a free monogenerated LD-system a and
huge cardinals [10] has initiated an intensive study, which led to the discovery of a
faithful realization of a within the braid group B. [2].

For any positive integers v and v let (u), be the unique integer between 1 and v
such that u is congruent to (u), modulo v For every k there exists a finite factor of
aon {1,...,2%} determined by i -1 = (i + 1)+, 1 < i < 2*. These LD-systems have
been invented by Laver and they will be denoted here by py.

For a LD-system g and an element x of g let us define the sequence (z(x))x>1 of left
powers of x by (1) = 2 and z[x41) = z¢. Then p; happens to be the LD-system
generated by the element 1 submitted to the relation 1jpr ) = 1 ([12]). In [4] and [12]
it is shown that the LD-system p, has a property of periodicity: for each 1 < 2 < 2*
there exists an element vk () such that for all 1 <y < 2%, 2y = z - (Y) vy (2) and
vor () divides 2*.

It is not known whether there exists for any i > 1 a k big enough so that 1-i # 2*
in pi. Laver [9] gave an affirmative solution assuming the existence of a non-trivial
elementary embedding of a rank into itself, a very strong set theoretical assumption,
while Dougherty and Jech [3] have shown that there is no proof within primitive
recursive arithmetic.
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The aim of this paper is to show that using three operators we can build a large
family of finite monogenerated LD-systems (the no:mal LD-systems) from the pys.
We prove that these new LD-systems satisfy a similar periodicity property. The
normal LD-systems are defined as a sub-family of the left LD-systems. which are
the ones that are made exactly of all left powers of the gencrator. The generality
of our construction has heen made more obvious by the recent result of A. Drapal.
who proved, after reading the first draft of this work. that all left LD-systems are
normal [7].

This paper is organized as follow. The first three sections introduce the basic
notions and results. In Section 4 we define the operators to work with and give
examples of the way they behave. Section 5 defines the normal LD-systems and
Section 6 is devoted to the main result.

1. LD-SYSTEMS

For each element a of a finite LD-system the sequence of left powers of r is even-
tually periodic. More precisely. there exists a unique pair of positive integers (r.p)
such that the powers @, [y, ..., L[r4p—1) are distinct and for all & > r + p, we have
) = ape), where &' is the unique positive integer hetween r and 7+ p—1 such that
k' = k mod(p).

Definition 1.1. Suppose that the set of the left powers of x is finite (which is
certainly the case if the underlying LD-system is finite). The return o(x) is the least
positive integer r such that there exists & > 0 satisfving .v.41) = 2, and the period
m(x) of x is the least positive integer k satisfying v, .x) = U[o(2))-

Proposition 1.2. Let P and Q be two terms in one variable. Let g be a monogenic
LD-system and g a generator of g such that P(y) = ((g). Then for all x in g.
P(z) = Q(x).

Proof. By induction on the complexity of a one variable term T, it is easy to
show that left distributivity implies that 7 () is T'(aru). Let X be the set of all » in
g such that P(x) = Q(x). Then for all , y in X we get Play) = aP(y) = 2Q(y) =
Q(xy), so ay is still in X. The set X is a sub-LD-system of g. Moreover, g is in .\,
so X equals g. O

In particular we deduce that two generators g and h of a monogenic LD-system
satisfy the same equations and so there exists an automorphism ¢ such that o(g) = /.
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Proposition 1.3. Let g be a finite monogenic LD-system. Let g and h be two
gencrators of g. Then the positive integers o(g), m(g) are respectively equal to o(h),
m(h).

So. for a monogenic LD-system we can speak, without any ambiguity, of the return

and of the period.

Lemma 1.4. Let g be a finite monogenic LD-system and let g be a generator. If
there exist a and b in g such that ab = ¢ then the mapping L, defined by L,(x) = a.
is an automorphism of g.

Proof. For each @ € g the mapping L, is an endomorphism by the left dis-
tributivity identity. Now, L, is onto since for cach @ in g there exists a term in one
variable P such that a is P(g). Therefore, we get © = P(g) = P(ab) = aP()). Since
g is finite, L, is bijective. 0O

Definition 1.5. A left LD-system g is a monogenic LD-system with generator
g such that for cach v in g there exists & > 1 such that @ = gy

When we look at the multiplication table of a left LD-system g with the generator g
as the first element of the table. left powers in ¢ are the elements on the first column.
[f g iv & monogenic LD-system. saying that g is a left LD-system is equivalent to
saving that cach element but perhaps the generator appears on the first column of
the table of g. If g has n elements then the clements of g ave exactly g, gpo),- -+, gu)-

Here are two examples of left LD-systems. They are defined on the set {1..... 4},
I is a generator and the product is such that -1 =20+ 1 for 1 < x < 4.

|1234 [1 234
112222 1{24 24
213232 21343 4
34222 314 44 4
113232 4112 3 4
Table 1 Table 2

In Table 1 the return is 3 and in Table 2 the return is 1. In fact the second table is
the table of the LD-system p..

2. CONSTANT AND STABLE ELEMENTS

From now on we will use the following conventions: the underlying set of a left
LD-system g with cavdinality n will be {1...., nj, Lwill be a generator and 1, will
be equal to @ for 1 < @ < n. Then the value of the return is » = n - 1 and for all
ref{lo .., n—1}wehave a1 =ua+1.
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Definition 2.1. Let g be an LD-system. An clement @ of g is constané it tor
cach element y in g we have yo = za. If in addition »r is idempotent then r is called

stable.

On the table of an LD-system a constant element ¢ corresponds to a constant
celunn. In Table 1 the constant elements are 2 and 4 and 2 is stable. In Table 2
therc is a unique constaut 4 and it is also stable.

In (1], P. Dehornoy proves the following lemma.

Lemma 2.2. Let g be an LD-system and xr. y. = be three elements of g. If y
and z are elements of the sub-LD-system generated by 1 then there oxists a positive

integer r such that yal'l = -]

Using this lemma one can prove that each finite monogenic LD-system has at least
one constant element. Notice that a generator cannot he a constant element (unless
we are in the trivial cases of LD-systems with one or two elements). Considering the

left LD-systems we have the following result.

Proposition 2.3. A finite left LD-system g with cavdinality n > 3 has a unique
stable cicinent d aud for cach constant elemenc = ¢ have
re=uxd for all x,
cr =dr for all v distinet trom 1.
cr# 1 forallxin{2... .. ot

Proof. Forallzinglet v~ beax—1if2 < v < naudnif v =1. Then we have

_ {.’L‘ if2<a< .
r1l= .
r ifer=1

Let us prove cc = ¢'c’ for any distinct constant elements ¢ and ¢’. Since ¢ and ¢’ are
not equal to 1, we have ¢~ -1 = cand ¢~ - 1 = ¢". Then we obtain cc = ¢/~¢ =
(1) =7 (T ) =d7e = Let d be ce. We claim that d is
constant. For all 2 in g we have r+d = x-cc = zc-we = cc-cc = dd. From the preceding
equality, the product dd must be equal to cc since ¢ and d are two constant elements.
So we have dd = cc = d. The element d is a constant. element and idempotent. hence
it is stable. Assume there exists an other stable element d’. Then d' is constant and
we have d' = d'd’ = dd = d. Now, if z is in g\ {1} then there exist two elements u

and v of g such that x = wv. Then, we get

cx=c-uv=cu-cv=(cu-c)(cu-v) =d(cu-v)=(d-cu)- dv
(dc - du) - dv = (dd - du) - dv = d(du - v) = (du - d)(du - v)
=du-dv=d uv=dz.
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To prove the last assertion we will suppose that there exists a win {2, ..., c} satisfying
cu = 1 and show this leads to a contradiction. Under this hypothesis the morphism
L. is bijective by Lemma 1.4, therefore. « is a generator of g. Moreover, c is the
unique constant, hence stable, element of g (otherwise if ¢’ were another constant
clement not equal to ¢ we would have cc = ¢c’, which contradicts the fact that L,
is one to one). If u is equal to ¢ then we have 1 = cc = ¢ since ¢ is stable and thus
is idempotent. This is impossible since the LD-system g has at least two elements.
Now. assume u < ¢ and compute ¢(u-1): c¢(u-1) = cu-(c-1) = 1(c-1) = (1-¢)(1-1) =
c(1-1) =¢-2. Since L. is one to one, we get u - 1 = 2. which implies either v = n or
w = 1. The two cases lead to a contradiction since if u is n then we have n < ¢ < n
and if w is 1 then w does not belong to {2,....c}. (]

The last result of this section is the proof of the periodicity for constant elements.

Lemma 2.4. Let ¢ be the least constant of a left LD-system g with cardinality
n = 3. Then for each constant clement ¢ and for each integer x satisfying ¢ < c+.x <

we have
'( N [ Cl(lv)c if (;lt)c ?1- 1,
d(e+ux) = {(.I((_-‘ 1) if (). =1.

Prooft. By the preceding proposition we have cy = ¢’y for all y > 2. Since ¢ is
at least 2, it is enough to prove the lemma for ¢. Let d be the stable element of g.
For & = 0 there is nothing to do since (0), = ¢. If wehavez =l and c+1 < n
then we obtain (1), =1 and ¢+ 1 =¢- 1. So, we obtain ¢(c + 1) = ¢(c-1). Now, we

proceed by an increasing induction on x. For @ = 2 we have

cle+2) =dlc+2)=d((c-1)-1)=((c-1)-d)-((c-1)-1)
((c-)-e)-((e- -1 =(c-1)-(c- 1) =c-(Iel) =c-2=c(2).

Il

Assume that the hypothesis is true for all y < < n —c. We have c(c+z +1) =
c((ec+a)-1)=(c-(c+a))- ( 1). If (v). is strictly greater than 1 then we have
cle+ax+1) = (c(x)e) - (e-1) = c((x)e - 1). If (x)c is ¢ then (z + 1). is 1 and we
have c(c+x + 1) = ¢(c - 1). If ()¢ is strictly between 1 and ¢ then (z). + 1 equals
(x+1), and we get c(c+x+ 1) = c((x)c - 1) = c((x)c + 1) = ¢(x + 1).. Now, for the
case (r). = 1 we have (z + 1), = 2, therefore, c(c+ 2+ 1) = (c-(c-1)) - (c-1) =
c((c-1)-1) =c(c+2) =c(z +1).. a

701




3. THE CONGRUENCE =4

From Proposition 2.3 we have for all constant clements ¢ and ¢ of a left LD-
system g
[re=wd forall xin g.
<
L /

cr=cuw forall ving) {¢}.
where ¢ is a generator of g. We define a relation which associates two elements of g

having the above property.

Definition 3.1. Let g be a monogenic LD-systen and ¢ a generator of g. The
relation x4 is defined by

hy for all & in g.
yhk forall kin g\ {y}.

Il

TRy = I

Lok

Omne can prove easily that this relation is an equivalence relation. Consider the

Il

two examples of section 1: in Table 1 the equivalence classes are {1}, {2.4} and
{3}: in Table 2 all equivalence classes have a single clement and the the relation =,
is trivial. We will sce that i the case of a left LD-sy=tem g the relation =g is a
congruence.

Definition 3.2. Let @ be a LD-system. For each v and y in g for cach integer
k> 0 the k-th left iterated product of y by a, denoted v LY (. y), is defined by

L y) =,
L, y) = 2y,
P (ay) = LE ey

Lemma 3.3. Let g be a left LD-system with cavdiualitv n > 3. Let ¢ be tlie icast
constant element of g.

1) If there exists an element a # 1 such that a=g | then necessarily we have a = n.
n-1=2and {1,n} is the unique non-trivial pair of the relation =,.

ii) If we have amg b and a < b then we necessarily have ¢ < b.

Proof. i) Assume there exists an element o € g’ {1} such that 1~ r. Let « be
the least of those elements. We have the equalitics 2 = 11 =10 = aa = a - L.
Either « is n and the return of g is equal to 2 or « is 1. This last case is impossible
since by hypothesis a is distinct from 1. Let v and ¢ he two elements in g not equal
to 1 and n such that w=gv. We obtain v -1 =wun = cn = r- 1. The mapping which
maps all elements 2 in g onto o+ 1 is one-to-one on the subset {1..... n — 1}, thus

we have u = v.
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i) One can assume «, b minimal in their equivalence class with respect to ~g.
Assume a < b < ¢. From Definition 3.2 it follows that L¥(x, 1) is the k-th successor
of . (with respect to the order <). For all + we have ra = xb. Thercfore, for all
integers b > 0 we get v 1L¥(a, 1) = LA (wa, o 1) = th(eb, 1) = o L5(b, 1). We can pick
k- such that L¥(b, 1) equals ¢. Then for all r we have 1L (a, 1) = xc and L¥(a,1) < c.
So. L¥(a. 1) is a constant element of g which contradicts the fact that ¢ is the least

such. O

Theorem 3.4. Let g be a finite left LD-system. Then the relation =g is a con-

gruence.

Proof. For n < 2 a direct computation from the table of g gives the result.
Assume n > 3. Let a, b, ', V' he elements of g such that axgb and o' =g0'. For all
r € gwehave v ad = xa-xd = ab-2b =2 db. I (a/, ) is not equal to (1,1)
then we have aa’ = ba’ = 0V’ 1t remains to prove that (a-1)x = (b-1)x for all & # 1.
We show this by an increasing induction on @, assuming without loss of generality
a < b. We get for v =2

(a-1)2=(a-1)(1-1)=(a-1)1-(a 1)1 =1L*(a,1)(a-1)1
= (L3 (a, )a - L*(a. 1)1) - L% (a, 1)1 = (L*(a, 1)b - L*(a, 1)1) - L2 (a, 1)1

[rom the preceding lemma we have ¢ < b. where ¢ is the least constant of g. There
exists an integer I such that b is L' (¢, 1). We get

(a-1)2 D) (e, 1)1 1) = 12 (a, 1) L2 (e, 1)
h“( 1?(a.1)e, 1% (a, 1) = L2 (L2(a,1)c, Ls(a,,l))
(

L2 (L2 (0. 1)e, 12 (a0 1))

Since we have xa.= a0 for all @ for all integers k > 0 we get,
LA(a, 1) = LF (ra,a - 1) = LA (eboa - 1) = 2 L4 (D, 1).

We obtain

(a-1)2=1""2 (L0 1)e, 12 (b, 1)) = L2 (L2(0, 1) e, L2 (0. 1)1)
L0, 1) L2 (e, 1) = L2 (b, (1L (e, 1)1 - 1)
(b-1)1-(b-1)1=(b-1)(1-1) = (b-1)2.
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Assume (a- 1)z = (b- 1)z and consider (a-1)(z - 1). We have

=0 -z-b-D1=(Db-1)(r-1).

This shows a - 1~4b -1, hence the relation x4 is a congruence. O

4. THE OPERATORS B, R. S

This section consist of technical results. We begin to define methods which are
used to obtain new LD-systems from an LD-system g. From these methods we
define the operators B, R and S and prove that they transform a left LD-system
into another left LD-system. Throughout this section n will be a fixed integer at
least equal to 2.

The first method, called the repetition method, consists in adding a new element
to g. More precisely it consists in «dding the new element n + 1 in the table of g hy
copying the row and the column number p- 1 at the row and column number n + 1
as well as replacing the value p -1 by the new value n + 1.

Definition 4.1. For all p hetween 2 and n, the p-repetition of g is the structure
E, (g) of underlying set {1,...,n + 1} with the product defined by

oy = {0 L
ey = f

) # (p, 1)
n+1 if ( (

Ty
x.y) = (p,1)
where ¢, (z) is « for 2 < n and p,(n +1) isp- 1.

Lemma 4.2. If the LD-system g satisfies 1 € g-g then all p-repetitions of g are

LD-systems.

Proof. The mapping ¢, is clearly an homomorphism from E, (g) to g. Its kernel
contains only one non-trivial class, namely {p-1,n + 1}. As (p,1) is the only pair
(z,y) with x *xy =n + 1 and as 1 is never of the form x * y we see that n + 1 equals
neither x * (y * z) nor (z *xy) * (z * z) for any z, y, = € E, (g). O

The next method will change a value on the first column.

704



Definition. 4.3. Leta # 1,0 # 1, e # 1 be elements of g such that e- 1 = «a and
a=yb. We denote by M, e (g) the structure consisting of the set {1....,n} and the

product defined b,
ay if (x,y) # (e, 1),
rTxYy=
Y= if (ay) = (e, 1),

Lemma 4.4. If in the LD-system g we have 1 € g- g then the structure M., 1, (g)

is an LD-system.

Proof. In M (g) the element 1 is never of the form v x y, as a consequence.
the products a * (y * z) or (v * y) * (@ * =) are never of the form w + 1. Using this
fact. by checking all cases when one or more of the couples (x.y), (x,2), (y, 2} cquals
(c.1). one can see that in M, ;. (g) % (y*2) = (x *xy) * (x * ) holds. .

The last method will change the value of all products ay for y # 1.

Definition 4.5. Let a # 1 and b be elements of g such that axgb. We denote
by M, (g) the structure consisting of the set {1,....n} and the product defined hy

e n(vy) ify #1,
Txy = .
ay ify =1,

where v, 5 () is @ if @ is not o and ¥, 4 (a) is 0.

Lemma 4.6. If in the LD-sy<tem g we have 1 € g - g then the structure M, (g)

a,b
is an LD-systen.

Proof. If a product uv equals a then for all w € g we get wipq p(uv) = w-uv and
for all w' # 1 we get ¢, p(uv)w' = uv - w'. Using this and computing the products
wx (y*z)and (x*xy)* (x*z). when y or = is 1, one can see that in A, (g) we have
rr(yes) = (vey) s (ox ). .

Starting with a monogenic LD-system and applying these three different methoc<
we do not necessarily obtain a monogenic LD-system. But, if we consider the left
LD-systems and particular values of these parameters (e.g in E, (g) take p = n) we
do obtain left LD-systems.

Definition 4.7. Let g be a left LD-system. Assume g satisfies 1 € g- (g \ {1}).
For r # 1, we define B(g) by B(g) = M, ., (E,(g)). For r = 1, B(g) is the
structure consisting of the set {1,...,n + 1} with the product defined by

vy — {<Pn(17)90n(y) if (z,y) € {(n,1),(n,n+ 1)},
y= n+1 if (I»y) € {(nvl)v(n7n+1)}v

where ¢, is the same mapping as in Definition 4.1.
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In fact the operator B adds the new element n -+ 1 1o g, copies the value of the
column and the row + = » - 1 to the column aud row n + 1. It also gives the new
value n + 1 to the product n -1 and changes the value of the products xvy, y # 1.
cqual to 7. to the new value n + 1. As an example assume g is like in Table 1. In
g, nis 4 and r is 3. We add the new element 5. We copy the column and the row
3 to the column and the row 5. We change the value of 4-1 equal to 3 in 5 and we
change all products 2y, y # 1. equal to 3 in 5. So. we obtain the structure B(g) of
table

[RGB O] N

NN NN

o Ot

NN NN

o O o Ct | Ct

Table 3

Lemma 4.8. Assume g is a left LD-system, with cardinality n, satisfving 1 ¢
g-(g\{1}). The structure B(g) is a left LD-system with cardinality n + 1 and it has
return v+ 1 if r <n orr if r = n.

Proof. In both cases, if B(g) is a LD-system then it is a left one since we added
a new element n + 1 such that nx1 =n+1 and for cach @ between 1 and n — 1 we
have v *1 =2 -1 = a + 1. Also by construction, the return will be » + 1 if » is not
n and equals to n otherwise. If » is not 1 we have | € g-g. Then Lemmas 4.2 and
4.6 imply that B(g) is a LD-system since by construction we have rxpg, g)n + L.
Now if 7 equals 1, g is the LD-system p; for an integer Ao By construction we have
Lxpyp,)n+1and 1 &€ B(py) * B(px). The mapping >, is an homomorphism from
B(px) to pr of kernel {1,n+1}. The only possibility that a product o * (y * =) equals
n + 1 is when we have @ = n. yxz = n+ 1. For a product (v * y) * (@ * ). the
only possibility it equals 1, is when we have ¥ *x y = 1. v * = = n + 1. Checking the
different cases we obtain that I3(py) satisfies the LD-law. O

Definition 4.9. Let g be a left LD-system. For all s such that s~y r, R.(g) is
the LD-system M, ,, (g) .

In this LD-system the only change made by the operator R is the value of the
return, which from » becomes s where s is in the cquivalence class of r with respect
to the relation =,. Taking the previous LD-system (g) (i.e. Table 3). the return is
4 and its equivalence class with respect to the relation =g ) is {2,4}. Then taking
s = 2 we obtain the new structure Ry (B(g)) in which the only change is the value
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of the return which now equals 2.

2345
2222
2525
2222
2525
2222
Table 4

Lemma 4.10. Assume g satisfies 1 € g-g. The structure R (g) is a left LD-system

with return s.

I’roof. The structure R¢(g) is a LD-system by Lemma 4.4 and it is a left one
since by construction we have v x1 = o -1 = o+ 1 for each 1 < x < n. Also by
construction 1 * 1 = s, hence the return of Ry(g) is s. ]

Definition 4.11. Let g be a left LD-system with cardinality n.

1) A selector for the congruence x4 is a set [ such that for cach x € g there exists
a unique y € T such that TN P = {y}. where T denotes the equivalence class of .

it) For I” a selector for &g, the structure Sp(g) is the successive application of the
modification M{ - where @ is in g and @N P = {b, }, thus we have

Sp(g) = ( H Mfw,,) (g)

taegq

(the product used here denotes the successive use of the modification M').

Ihis operator replaces the value of all products vy, y # 1, by a new value that is
equivalent with respect to &=;. In the table of the LD-system R (B(g)) (i.c. Table 4)
the equivalence classes are {1}. {2,4} and {3,5}. If we take the selector P = {1,4.3}
then we obtain a new structure Sp (Ry (B(g))) in which the value of the products
1y, y # 1. has been changed.

Lt —

UL W o —
— 2
H—
e QI o WO e W
e QO M Lo

1o C o
NN

Table 5

Lemma 4.12. Assume that g satisfies 1 € g-g. The operator Sp does not depend
on the choice of the order to enumerate the selector IP.



!

Proof. If a belongs to > then M)  (g) is g since ¥, is the identity. The
modification M ,, with @~ u. changes only the products xy. y # 1, which equal a.
Let a, b be in g and u, v be in P such that a~yu and b=, v. If we have a # v and
b # w then for all @, y in M/, (\Mb"u (g)) we get

vy ify=Tloray#hor oy #ua.
rxy=<¢ v ifay=0b,
u if xy = a,

and for all @, y in M}, (M), (9)) we get

talu

vy fy=1loraey #aorcy#0,

rey=<cu ifay=a,

v ifxy=0b.
Then we have M, o M, , = A, oM . If we have « = v or b = u then u equals
0. We get 1L (M, (@) = M, (ML, (@) = 10, (@) and M, (A1, (0) =
AL, (\1 () = M, (g). w

Lemma 4.13. For every selector P of &g, the stracture Sp(g) is a left LD-system
with the same underlying set and the same return as q

Proof. Lemma 4.6. mnplies that Sp(g) is a LD-svstem. Moreover it is a left

—/

LD-system since by construction the first column does not change. 3

Remark 4.14. If we have | =gn, then Lemma 3 3 ninplies that {1.n} is the only
non-trivial pair of ~=g. If 7 is {1,2,...,n = 1} then 2l equivalence classes of =<, )
are trivial since the generator 1 belongs to the image of one of the endomorphisims

L., which is, therefore, an automorphism.

5. THE NORMAL LD-SYsTEMS

We now introduce the family of LD-systems to be used in the sequel. This family
is a subfamily of the left LD-systems defined using the constant elements and the
congruence ~g. Let g be a monogenic LD-system of underlying set {1,....n} with
1 as a generator. For a € g, denote the kernel of L, by =,. It is straightforward
that « ~yy implies x =, y for all @ in g. The experimental study of left LD-systems
of small cardinality (< 7) shows some periodicity phenomenons. In these examples
the least constant c is a power of 2 and either there is a unique constant c¢ satisfying
c¢(c-1) =1 (1 is a generator) or there are some constant elements such that one
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of them ¢ satisfies ¢/(¢' - 1) = ¢’ - 1. Moreover, the congruences =, and =4 are
cither identical or they coincide only on the subset {2,...,n} of g. This leads to the
following definition.

Definition 5.1. A left LD-system g with cardinality n is normal if

i) the e exists a constant element ¢’ such that ¢’(¢’ - 1) is either ¢ - 1 or 1 and

if) the congruence &4 coincides with the congruence x. on the subset {2,...,n},
e for all @, y in {2,...,n} =,y is equivalent to x =5y, where c is the least
constant element of g.

[t is easy to see that the LD-systems py are normal as well as the three monogenic
LD-systems of cardinality 2 which are

pp 12 ot 12 ¢ |12
1[2 2 1122 1]21
2|1 2 2|2 2 2|2 1

We now give some properties of the normal LD-systems and prove that there exist
only four kinds of normal LD-systems.

Lemma 5.2. Let g be a normai LD-system with cardinality n > 3. Let ¢ be the
icast constant of g. Then for all 2 < z < ' < ¢ we have cz # ¢='.

!

Proof. Assume ¢z = c¢z’. we have z=.:' and, since g is normal, z=x42'. By

Lemma 3.3, we get ¢ < /. So, we obtain ¢ = 2’ and hence z=gc. This implies
vz =rc=ccfor all  in g. Thus, = is a constant element strictly less than ¢, which

contradicts the fact that ¢ is the least constant. ]

Lemma 5.3. Let g be a left LD-system with cardinality n > 3. If in g a constant
¢ satisfies ¢(c- 1) = 1 then g is a normal LD-system, ¢ is unique and either ¢-1 =1
or ¢ -1 =n holds.

Proof. In this case tue mapping L. is one to one by Lemma 1.4. Therefore, ¢
is the unique constant, hence it is stable, and the congruence ~ is trivial. The two
congruences x4 and =, are identical. Compute c¢((c-1)1): ¢((c-1)1) = ¢(c-1)-(c-1) =
1(c-1) =(1-¢)(1-1) =¢(1-1). The injectivity of L. gives (c-1)1 = 1-1. Therefore,
eitherc-1=1lorc-1=n. O

Remark 5.4. If for some element z of g we have -1 = 1 then, from [4] and
(12], g is a LD-system p,, for some integer m. If we have c(c-1) =l andc-1=mn
then the return of g is 2.
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Lemma 5.5. Let g be a normal LD-system with cardinality n > 3. Let ¢ be the
least constant of g. If ¢ is n then g is the LD-svstem p,, for some integer m.

Proof. If ¢is n. with n > 3. necessarily it is the unique constant element. hence
it is stable. The mapping L, is one-to-one on g\ {1}. We have n -2 =n(1-1) =
(m-D)(n-1)=(n-Dn-(n-1)1 =n-(n-1)1. Thus (n-1)1 = 1-1 which implies either
n-1=1orn-1=n.Inthe first case g is a LD-systcm p,, for an integer m. In the
second case we obtain 2 = (n- 1)1 =n -1 =mn, so the cardinality of g is 2 which is
impossible. J

Proposition 5.6. Each normal LD-system g is of oue and only one of the following

tvpes:
tvpe 1: cither the least constant ¢ satisfies ¢ -1 == i or we have ¢(c- 1) = 1 and
c-1=n:

type 2: ¢ is the unique constant (thus stable) clement. satisfies ¢ -1 = n and we

have ¢(c-1) # 1;

tyvpe 3: ¢ is the unique constant (thus stable) clement and we have 1 < ¢-1 < n:
- type 4: there exists at least one other constant ' not equal to c.

Proof. Since the four tvpes cover all different vidues of ¢ - 1, each normal LD-
system is of one of the four types. Let 1 be the cardinality of g. For n = 2 we sce
that the LD-systems pp and t' are of type 1 and the LD-system tis of tvpe 4. Now.
assume that n is greater than 2. If ¢(c- 1) = 1. using Lemma 5.3, ¢ is the unique
constant. So. in type 1, 2 and 3 there is a unique constant, thus they are distinct
from type 4. Now, one can sce casily that type 1. 2 and 3 ave distinct. d

Proposition 5.7. Let g be a normal LD-system of cavdinality n. Let ¢ be the
least constant of g.

i) If g has type 2 then the congruences =g and ~. coincide.

i) If g has type 3 the class of 1 with respect to the congruence =g is {1},

i) If g has type 4 then the congruence =g coincides with the congruence =< - for
all constant element ¢ such that /(¢ - 1) # ¢ - 1. except tor the LD-svstem ¢ where

(. =~ and =, are identical.

Proof. i) Since none of the LD-systems of cardinality 2 has tyvpe 20 we can
assume n > 3. By definition ¢ is unique, thus stable. and we have e =nor e =n—1
We cannot have ¢ = n by Lemuna 5.5, So, let ¢ = n—1 By definition the congruences
~q and &, coincide on the subset {2, n} and the mapping L. is one-to-one on the
subset {2....,¢} (Lemma 5.2). Thus for all 1 <. <2 g - n.we have co # cy henee
& aég y. Since we have ¢ 1= and ¢+ 1 = ¢(c- 1) we only need to prove that 1=, n

implies 12 n. the converse hecing true by definition of =, Let us prove that the
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return » = n - 11is 2. It cannot be 1 otherwise, using Remark 5.4, g would be of type
1. Wehavec-2=c¢(1-1)=(c-1)(c-1)=(c-D)e-(¢c-Dl=c-(c- Dl =c(n-1) =cr.
If r=nwehavec-2=cn=c(c-1)=c-1=mn. Sincer =n-1 we have n-1 =n and
weobtamn-2=n(l-1)=m-D)n-1)=nn=(c-1)(c-1)=c(l-1)=c-2=n. An
casy computation shows that na = n for all v in g and we obtain ne = ¢ =n — 1.
which is a contradiction. Therefore, » is always 2 and this implies for all @ in g
that 1 -+ = nw. Using Proposition 2.3, for all x in {2,...,¢} we have cx # 1. We
now prove that for all 2 < o < ¢ we have cx # n. Assume the converse is true,
then @ is not equal to ¢ since ce = ¢ € {I,n}. We have v -1 = 2+ 1 > 2 and
clr-1)y=cr-(c-1)=n(c-1)=(c-1)(c-1) =¢(l-1) = c- 2. The injectivity of L.
on {2,...,c} gives @ - 1 = 2 which is a contradiction. Now, a decreasing induction
on r. taken between ¢ and 2, shows that cx = w. We now prove that x - 1 = an for
all v in g We get an =w(c-1) =wxc- (1) =c(x-1) thus

RER | if v < e,
n=< c(c-l)y=c-1 if v =c,
cn-D=c1-1)=1-1 ifx=n.

i) Here we can also assume n > 3. Assume there exists an element @ # 1 satisfying
1 =y.r. Using Lemma 3.3, & = n and this is the only non-trivial pair of ~;. This
implies that the LD-system g has a unique constant (thus stable) ¢. By definition the
congruences = and =g coincide on {2,....n}. If cis n then we have n-1 = nn = n.
So. g has type 2. If ¢ < n — 2. since ¢ - 1 is strictly less than n, we have (c¢- 1)1 =
c+2<n. Weobtaine-2 =¢(1-1) = (c-1)(c1) = (¢:1)c (e 1)1 = ¢+ (c- 1)1 = ¢(c+2),
then 2. ¢ + 2 which also gives 25 ¢ + 2 and this is a contradiction. Now, if ¢ is
n—1then we get c-1=c+1=mnand g has type 2.

ili) Assume n > 3. If g has type 4 the equivalence class of 1 with respect to = is
trivial, otherwise using Lemma 3.3 there is a unique constant. Let d be the stable
of g. We show that ¢’k # ¢ -1 for all & > 2. Assume it is not true, then, using
Lemma 2,40 pick & between 2 and ¢+ 1. If A is ¢ + 1 then A is ¢- 1 and we have
ey =de- (") = (1) = (1) wich is a contradiction. If & is ¢ then we
hawved l=de=dd =dand (1) = (1) = (- 1)(1)=dd=d =1

which is also a contradiction. Now if & is in {2,..., ¢—1} then weget 2 <h-1<¢
and (A1) =k-("-1) = (" 1)(c"-1) = (1-1) = ' - 2. Since ¢’ =g ¢ we also have
¢(h-1) = ¢- 2. which contradicts the injectivity of L. on {2,....¢}. This proves that

the equivalence class of 1 for = is trivial. Now. since all constant elements are in
the same equivalence class for =g, the congruences =3 and = coincide on g\ {1}.
Therefore, they coincide everywhere. O



6. NORMAIL LD-SYSTEMS AND LD-SYSTEMS pg.
The aim of this section is to prove the following:

Theorem 6.1. i) The normal LD-systems of type | are exactly the LD-s:sten.s
p, and the LD-systems Sp(B(p,)) with P = {1,2.....2" —1}.

it) The normal LD-systems of type 2 are exactly tiic LD-systems B(p,,).

iii) The normal LD-systems of type 3 are exactly the LD-systems
R.(Sp(B®(pn))) with d < 2". P a selector for ~ ., , and r in the equivalence
class of the return of B (p,,).

iv) The normal LD-systems of type 4 with cardinality greater than 2 are exactiv
the LD-systems R, (Sp(B“ (p.))) with d > 2". P a sclector for =ga,,, and r in the
equivalence class of the return of B4 (p,,). For cardinality 2. t is the only possible
LD-system (i.e. t = B(pg)).

In each case the values of 1. P and d are uniquely determined.

We first study the congrucnce =g in the LD-systewms [3(g). R.(g) and Sp(g).

Lemma 6.2. Let g be a left LD-system with cardinality n > 2. If in g we have
Lxgnorr =1 thenin B(g). {r.n+1} is the only non-trivial pair of = ;). otherwisc
a=gb implies axpq) b and we have r=pgn+ 1.

Proof. Let g’ = B(g). We use the notation of Section 4. By construction we
have r =y n + 1. Let us consider the other elements of g’ Assume first 12,1 and
r # 1. Let a, b be two elements of g’ satisfying a ~¢ b and both neither cqual te 1
nor to n+ 1. Let x in g', we have x ¥ a = ¢, n(pn ()90 (@) = ¥, p(va) = ¢, (b)) =
Vrn(@n(@)@n (b)) = xxb. Let v in g'\ {1}, we have a x & = ¢, n(pn()pn(r)) =
VYrn(az) = VYra(br) = Vrn(@n(b)pn(x)) = bx 2. Thus. axy b. Now, if {1.n} is the
only non-trivial pair of &, then let a, b be such that {«,b} N {1,n} = 0. We have
a = band a=g b. For the equivalence class of 1, we get by construction nx1 = n+1
and n * n = n. Thus, we have two distinct equivalent classes 1 = {1} and = {n}.
If 7 is 1 then all the equivalence classes of ~g are trivial and if a =g b we have a = b
S0 a~g b. a

Lemma 6.3. Let g be a left LD-system with cardinality n and return not equal
to 1.

i) If g is different from t the congruences =, and ~p 4 coincide. If g is t then
R Ry IS trivial.

ii) If 1=gn holds and P is {1,...,n — 1} the equivalence classes of =g 4 are
trivial. Otherwise, the congruences =g and Xgq) coincide.
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Proof. This comes from the definition of the operators. They only act on ele-
ments of the same equivalence class. Let g = Ry(g) and g = Sp(g). Denote by *
the product of g’ and e the one of g”’. We use the notation of Sect:un 4.

1) If g is t then R(t) is p; and =y, is trivial. Now let n be greater than 2.
The LD-systems g’ and g only differ from the value of the return. This return was
substituted with an element of its equivalence class with respect to =4. Let 2 and y
satisfying v =gqy. For all 2z # 1 we have x * 2 = 2z = yz = y* 2. If 2 # n we have
sk = zu = zy = zxy and if neither z nor y is 1 we get for n, nxx = nx = ny = nxy.
If v is 1 then there are two cases. Eitlier y is also 1 and we get nxz =nx1=nxy
or (Lemma 3.3) y is n and the only non-trivial pair of ~; is {1,n}. The return r is
2, hence its equivalence class for x4 is {2} and the LD-system g’ is g. In each case
the equivalence classes of ~4 and =g are equal.

ii) For g”, if 1 n for all x, y such that v =gy and for ail z # 1 we have x o
: = Yy u(t2) = Yy2u(yz) = y e z and if neither 2 nor y is 1, for all z we have
e = Y. (22) = Yaye(zy) = zey. If 1xgn and P # {1,...,n — 1} then the
LD-system g” is g. In these two cases the congruences =g and x4 coincide. Now,
if 1=gn and P = {1,...,n— 1} it is straightforward that the equivalence classes for

g are trivial. O

Proposition 6.4. The set of normal LD-systems is stable under the action of the
operators B, R and S.

Proof. Let g be a normal Li‘*-system with cardinality n. We can assume n > 2
since the operators R and S cannot act on py and B(pg) = t has type 4. Let ¢ be
the least constant of g. By definition, to apply B we must have zy # 1 for all y # 1.
Then g cannot be of type 1 with ¢-1 =n . Let g’ = B(g). Assume g is normal of
type 1 with ¢-1 = 1 then g is a LD-system p,. Therefore, ¢ is n = 2" and, from
Lemma 6.2, the only non-trivial pair of =g is {1, 2"}, The construction of g’ gives
hxx =2y =qa, forall v € {2,...,2"}, and 2" x (2" x 1) = 2" x (2" + 1) = 2" + 1.
Thus, in g’ the only non-trivial pair for . is {1,2" + 1}, so =4 coincides with ...
The LD-system g’ is normal of type 2. Now, if g is normal of type 2 then g’ is normal
of type 3 since by construction we have, forallz € {2,...,c},cxz # 1, cxz=cr ==x
and c* (cx1) =c*1=n < n+ 1. For the case where g is normal of type 3 or 4,
using Lemma 6.2, the only new pair is {r,n + 1} then c * r is equal to ¢ * (n + 1).
Thus, g’ is normal of type 3 or 4.

The operator R only changes the return of the former LD-system. Therelore,
R,(g) is of the same type as g unless g is equal to t and in this case R;(t) is p;, which
has type 1.

The operator S only exchanges values belonging to the same equivalence class. If
g has type 2, by definition and using the Proposition 5.7, we have 1 x3n and ¢-1 = n.
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If Pis {1,....n— 1} we have in Sp(g), cx1 =nand ¢ x (c* 1) = cxn = 1. Hence.
Sp(g) has type 1. In all other cases Sp(g) is of the same type as g. (-

In the sequel we will prove the converse of the previous proposition. Let us begin
with some preliminary results.

Lemma 6.5. If g is a left LD-system, with cardinality n > 2, such that the only
non-trivial pair of =4 is {1.n} then there exists an mteger h such that g is B(p;,).

Proof. If n equals 2 then g is t and we have t = B(py). Now assume n > 3.

Denote by T the equivalence class of  for ~g. In g/ =~y we get (n — 1)1 = (n — 1)1 =
7 = 1. Therefore, g/ = is a left. LD-system with return 1. It is a LD-system p), for
an integer h. Moreover, the number of equivalence classes is n — 1 thus n = 2" + 1.
Let ¢’ = B(pn). The cardinality of g’ is 2" + 1 = . From Lemma 6.2. the only
non-trivial pair of =g is {1.7'}. The congruences =, and =g coincide. For all 4+ we
have v -1 = x x 1, then an = » *n. We must check that vy = a % y for the other
values of y. Let xy = = and @ xy = z’. Since g and g’ have the same quotient for
~, we must have Ty = T¥ y = =’. From the congrucnces a2, and ~q we have z = 2/
or {z,z'} C{1,n}. Assume {z.2'} C{l,n} and = = 1. :' =n. We have vy = = =

which implies that all the pairs for &4 are trivial. This contradicts the hypothesis.
sogisg. O

Proposition 6.6. Let g be a normal LD-systemn with cardinality n. Let ¢ be its
least constant element.

1) If g has type 2 then there exists an integer h such that g is B(pp).

i) If g has type 1 and ¢-1 = n there exist an integer h and a selector P such that
g is Sp(B(pn)).

Proof. i) We can assume n > 3. The only non-trivial pair of =~ in g is {1.n}.
Since =, is =g, {1,n} is the only non-trivial pair of = too. Applying the preceding
lemma we obtain g = B(p,,).

ii) For n = 2, it is casy to sec that t'is Sg;y(B(py)). Let nbe greater than 2. Since
c(c-1) =1, L. is an automorphism of g and ¢ is the unique constant of g thus stable.
Let us show first that L. is the transposition 7(, ). We have c-1 =n, ¢(c-1) =1
and cc = ¢. Since L. is one-to-one, using the notations of the Proposition 2.3. we
have, for all @ € {2,....¢7}. co € {2,...,¢”}. In addition, for all x in g. we have
v-l=x-clc-1) =wc a(c-1)=c-a(c-1) =cr-c(c-1) = cx-1. But, we have
x-l=a+1forxin{2,...,¢7}. Therefore, weget -1 =ax+1=cr-1=cr+1.50
ce =a and L. = 71 ,,). The return of gis 2 since -1 =(c-1)1=(c-1)-c(c-1) =
(c-De-(c-1)(c-1)=c-c(1-1)=c(c-2) =c-2=2 Now. define a relation = on
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x =y,
or {x,y} C{1,n}

and show it is a congruence. The relation = is an equivalence relation since it is a

=Yy = {

partition of {1,....n}. We have to show it is compatible with the product. Fix a. b
in g satisfying a = 0. For all v in g
e if « = b we have xa = xb, ar = ba then xa = vb and ax = b,
o if {u.b} C{l.,n} and a#0
ifr <cwehavearn =uw(c-1)=xc-(a-1) =c(r-1) =uwx-1,since L. is 7y ),
then @ - 1 = am,
if = ¢ we have ecn = ¢(c-1) = 1 and ¢-1 = n then {en,c-1} C {1,n} so
c-1=cn,
fe=n=c-1lwehave nn=(c-1)(c-1)=c(1-1)=c-2=2=1-1=n-1,
sinee the return is 2, then n - 1 = nn,
since the return is 2, we have n -1 = 1-1 which implies ne =1 for all @ # 1
sonr=1-.u.

This proves that = is a congruence. Moreover, the only non-trivial pair is {1,n},
thus there is 1 — 1 equivalence classes for =. Ing/ = wehavec-I1=c- 1=n=1.
Therefore. g/ = admits 1 as return. Thus, g/ = is a LD-system p, for an integer
I I addition, n is equal to 2" + 1. Let ¢' = B(py,). From Lemma 6.2, the only
non-trivial pair of =g is {1.n}. By construction the return of g’ is 2, there is a

unique constant ¢ = n — 1 and we have

n ifr=1orae=n.
ckU =

roifl<a<n.

Thus. in g’ the relations =g . =, and = coincide. Morcover, g’ satisfies the definition
of the normal LD-systems of type 2. Apply the operator S to g' with P = {1,.... n—
1'}. The only change between the table of g’ and the table of Sp(g’) is the value of
¢* (¢ * 1) which becomes 1. This proves Sp(g') = g. O

Lemma 6.7. Let g be a normal LD-system of type 3 or 4 with cardinality n > 3.
There exists an integer h such that g/ =4 = B(py).

Proof. Let ¢ be the least constant of g. From Lemma 5.3, /(¢ - 1) # 1 for
all constant ¢, otherwise g cannot be of type 3 or 4. Assume g has type 3 aud
let h = g/ =~y The LD-system b is a left LD-system since it is a quotient of g.
From Lemmas 2.4, 3.3, 5.2 and the hypothesis, one can sce that the number of
equivalence classes for =g is -1 = ¢+ 1 > 3, the only constant of h is ¢ and
¢(©-1) = c(c-1) = ¢-1 = - 1. Moreover, we have ¢-1 = {c-1}. Then the
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cardinality of his ¢- 1 =7 1. Since we have #7- 1) # 1 b is normal of tvpe 2. and
using Proposition 6.6, § is B(p,,) for an integer h.

Now, if g has type 4 and if there is an @ > 1 which is not a constant element.
using the same argument as above, we can prove that b is B(py,) for an integer h. If
all » > 1 are constant then b is t which is B(po). =

Proof of Theorem 6.1. Let g be a normal LD-system with underlying ser
{1.....n}, L as a generator and return r = n - 1. Let ¢ be its least constant. If g his
type 1 or 2 the Proposition 6.6 gives the result. If it has tvpe 3 or 4+ we can assuiie
n = 3 since t = B(pg). Then using Lemma 6.7, g/ =, = 8(p,,) for an integer h. \We
have to rebuilt g from B(pp ). The case of type 3 ov -t 15 sunilar. From the injectivity
of L. and Lemma 2.4, for all vy in {2.....n} we have =gy < | - y| = ke
with A = 0 or & = 1 if g has tvpe 3 and £ satisties k¢ < n if g has type 4. Since
=, and =, coincide on {2..... 1} from the Proposition 5.7, the equivalence classes

of =4 are given by

({1} e o=1
T:{{('-l} e =c-1
!\{:/e}g 2.y — U= Ay dae {20000 c}

where & = 0 or & = 1 if g has type 3 and A satistios 4o < n if g has type 4. Lot
d = card(g) — card(py) and g’ = B (py,) (i.e. apply d trnes the operator B to p, 1
Let * denote the product of g’. Since the normal LD-svstems are stable under 3. g
is normal of same cardinality asx g. From the construction of g" and Lemma 6.2, we
deduce that

1) if g has type 3 then there is a unique constant . we have ¢* (¢ 1) = % L and
cx 1 ¢ {1,n}, thus, g’ has type 3,

ii) if g has type 4 then there is a constant ¢’ such ithat ¢ % (¢/ 1) = ¢/ * 1. if ¢ i
the least constant of g’ then ¢ ¢ {1,n}, thus, g’ has type 4,

iii) the equivalence classes of =g are given by

{1} if =1,
=4 {cx1} itr=cx1,
lveg yza, y—v=ke} iforef{2... ¢},

~|
I

where k = 0 or k =1 if g has tvpe 3 and k satisfies k¢ < n if g has type 4.
Therefore, =4 and =y coincide. If 2y # x * y then the two values belong to
the same equivalence class. We can pick a selector P such that zy represents its
equivalence class. Let s = Sp(g’) and denote its product by e. The return of s is ',
return of g’, and for all couple (v, y) of s? such that (., y) # (n,1) we have zoy = xy.
Let v = R,(s) and denote its product by o. The LD-system t is a left LD-system
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with return » such that, for all couple (x,y) # (n,1), we have z oy = xy. Then ¢
coincides with g and we obtain g = R.(Sp(B%(pn))).

To prove the unicity, assume that we try to construct a normal LD-system g of
cardinality n from the LD-system p,,, with 2 < n. Then the value of d is determined
hv the equation 2™ + d = n and, therefore. it is unique. Each selector P determines
all the values of the table but those in the first column. Therefore, to each selector
corresponds a family F of tables which only differ by the first column. The values
rom 1 to n — | are fixed since a normal LD-system is a left LD-system. Hence, the
tables of F only differ by the value of the return which is the value of n-1. Therefore,
the choice of a return » determines a unique table of this family. Then the choice of
the three parameters d. r and P determines a unique table. 0O

Let us consider the following tables.

123456 1123 123456 123456
11244444 12 22 1126 6666 11244444
21343434 21323 21365656 21343434
3j4 44444 31222 314 66666 31444444
1543434 41565656 41543434
51644444 516 6 6666 5644444
6{343434 61565656 6|543434
Table 6 Table 7 Table 8 Table 9

Let g be the normal LD-system of Table 6. This is a normal LD system of type 4, the
cardinality is 6, the return is 3, the least constant is 2 (the constant column of least
indice) and the equivalence classes of the congruence ~g are {1}, {2,4,6}, {3,5}.
The table of g/ ~4 is Table 7. which is the normal LD-system B(p;). We apply
successively 3 times the operator B and we obtain the normal LD-system B*(p,) of
Table 8. In this LD-system the equivalence classes of the congruence ~pg1(,,) are
{1}. {2.4.6}., {3,5}. They are identical to equivalence classes of the congruence .
Taking P equal to {1,3,4}, we obtain the LD-system Sp(B*(p1)) of Table 9. Now,
taking s equal to 3, we obtain the LD-system Rs(Sp(B*(p1))) of Table 6, which
coincides with g.

To finish we prove, now, the periodicity phenomenon for normal LD-systems.

Lemma 6.8. Let g be a normal LD-system with cardinality n > 3 and return
r > 2. Assume g = R.(Sp(B“(pm))) for suitable d, P, r and m. Then the least
constant of g is 2™ and we have for all 1 < x < 2™ and integer k, 0 < k < 2™ —vam (),

I(k)ugm(x) If (k)l/gm (:c) # 1)

z(vom(z) + k) = {x v ()1 i (K)yy (2) = 1.
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Proof. For k = 0 there is nothing to do since (0),.,,, () is vaw (). Then let
k > 1. By construction the cardinality of g/~q is -1 = ¢+ 1 = 2" + 1 where
¢ is the least constant clement of g Hence. we have ¢ = 2™, Moreover. since
vam (2) is 2™, Lemma 2.4 gives the result for ¢ = 2. Now. let xr be between |
and 2" — 1. Consider the case of a LD-system B“(p,,). Let % denote the product
of p,.. Assume we have v () + A < 2™ If neitheir (k)
then in p,, we have r* (vom () + k) = & * (K),,.. () and this still holds in Bi(p,.;

vy () DOT Vom () 181
by construction. If vom (@) is L then (h).,., (p) is 1 for all & and in p,, we have
vy =ax*zforall 1 <y < 2 < 2" Therefore by contruction, in B (p,,) we
have @ -2 = xu for all u > 2. In particular vom () + A 15 at least 2. Thus. we have
c(vgm(v)+ k) =20 -2=2(1 1) =2 (r)-1). Now it we have (A),,.(; = 1 and
vom (1) # 1 then we have either A =1 or b = urgw () + 1 2 2. In the first case we
have @ (vom () + 1) = w(ram () - 1) since vom () 18 less than 2™ + d. the cardinality
of B(p,,). For the second case. in p,, we have v (urvan (1) + 1) = 1% 1w (1) +
and vom () + 1 > 2. Then still by contruction, in 2(p,,) we have @(rm () + A =
r(vom (1) + 1), hence, we have w(vom (@) + &) = w(ion () + 1) = x(vom () - 1), For
vom (&) + k> 2™, by construction there exists a unique 2 < y < 2™ satisfving
1y = x(vem () + k) and such that y — (vam (@) + &) is 2 multiple of 2™, Let y =
vym () + Iy we have vom () + b = u2™ + vow () + /. Since vyw () divides 27, we
have (B)yy () = (V2w (1) + R, o) = (2™ Fvom i) + 1) 000 (o) = () ogu (o) - S0
we obtain @ (vom (X) + k) = (10 () + 1) and, from the preceding, the result follows.
Now if we apply S. all equalities of the type xy = 2. 1 < y < z. in B (p,,) still
hold in S;:(B"(p,,,)). If & is 0 then we have the result sinee (0),,,, (o) = v () If
k is at least 1 then we have von () + & > 1 and vow (1) - I > 1. Therefore, we can
conclude. For the operator R we have the result since it only changes the return.
thus, none of the products ry. y > 1. 0

Proposition 6.9. Let g he a normal LD-system wetli cardinality n > 3 and return
1> 2. Assume g = Rl-(sl’(B'l(IJ,n))) for suitable « . r and m. The values of r

and of the products xy. for o in {1...., 2mband y in {2 .. vaw (0) + 1} compietely
determine the table of g.

Proof. Since gis a left LD-system, all values in the first column but the one of
the return are determined. The previous lemma proves that for all »in {10027
the values of the products ry are determined by the values of the products vy with
yin {2,...,vym () + 1}, Now. by construction for all 4y > 2" there exists a unique

< 2™ such that yz = oz holds for all = > 1. (]
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CONCLUSION

The normal LD-systems have the same periodic behaviour as the LD-systems py.
Morcover. the least constant element of a normal LD-system g is a power of 2, which
is the cardinality of the LD-svstem pi from which g is built. Thus. the normal
LD-systems are “natural” extensions of the LD-systems py.

To mention some natural open questions, we would mention the conjecture that
the relation & is a congruence for any monogenic LD-system (and not only for the
left ones). an assertion that has heen verified for all LD-systems with cardinality < 6
(there are 1221 non isomorphic such systems). and the more informal conjecture that

all monogenic LD-systems can he constructed from the py in some sense (sec [7] and
(8] for further result on this question).
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