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Czechoslovak Mathematical Journal, 47 (122) 1997, Praha 

ON m-SEMIGROUPS* 

JILL A. DUMESNIL, Nacogdoches 

(Received March 30, 1994) 

In this paper, we discuss semigroups S with the property that every subsemigroup 
is an ideal of some ideal of 5, or m-semigroups. We obtain that m-semigroups are 
periodic semigroups with zero and have index less than or equal to 5. It follows that 
commutative m-semigroups are archimedean semigroups with zero. Those commu
tative m-semigroups whose index is less than or equal to 3 are characterized. 

1. PRELIMINARY RESULTS 

Lemma 1.1. Let S be a semigroup and let T be a subsemigroup ofS. Then there 
exists an ideal J of S such that T is an ideal of J if and only if T is an ideal of 
S^S1. 

P r o o f . Let S be a semigroup. Let T be a subsemigroup of S. Suppose there 
exists an ideal J of 5 such that T is an ideal of J. Then JlTJl C T. Since SlTSl is 
the smallest ideal of S containing T, we have that SxTSl C J. Therefore, we have 
that 

(SiTSiy . T . ̂ TS1)1 c JlTJx c T. 

Hence, T is an ideal of SlTSl. The converse is immediate. • 

We say that a semigroup S is an m-semigroup provided that for every subsemi
group T of 5, there exists an ideal J of 5 such that T is an ideal of J, or equivalently, 
T is an ideal of SlTSl. Thus, for every subsemingroup T of 5, there exists an ideal 
J that "mediates" between T and 5, i.e., there exists J such that T < J < S (where 
< indicates ideal). 

c This paper is pa r t of the au thor ' s doctoral disser tat ion wri t ten at Louisiana S ta te Uni
versity under the direction of Professor John A. Hildebrant . 
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Lemma 1.2. If S is a m-semigroup, then every subsemigroup of S is an m-
semigroup. 

P r o o f . Let S be an m-semigroup. Let R be a subsemigroup of S, and let T 
be a subsemigroup of R. We claim that T is an ideal of R1TR1. To see this, we first 
notice that T is also a subsemigroup of S. Therefore, since S is an m-semigroup, T 
is an ideal of S ^ S 1 . Thus, 

(RxTRxy • T • (RlTRxy C (S^S1)1 • T • (S^S1)1 C T. 

Hence, It is an m-semigroup. • 

Lemma 1.3. Let S be an m-semigroup. Let p: S —> S be a homomorphism from 

S onto a semigroup S. Then S is an m-semigroup. 

P r o o f . Let S be an m-semigroup. Let ip: S —> S be a homomorphism from S 
onto a semigroup S. We claim that S is an m-semigroup. Let T be a subsemigroup 
of S. Let T = (D_1[T]. Then T is a subsemigroup of S. Thus, T is an ideal of S1TSl, 
as S is an m-semigroup. Hence, 

(S^S1)1 -T-^TS1)1 CT. 

Since <p is a homomorphism onto S, we have that 

(S'TS1)1 • f • (Sxf S1)1 = V[S]VMS]1)1 • ^[T] • MS]VMS] 1 ) 1 

= (D[S1TS1]1 ^ [ T J - ^ T S 1 ] 1 

= (DKS^S1)1 • T • (S^S1)1} C <p[T] = f. 

Hence, we have the desired result. • 

We note that Example 3.9 shows that the product of m-semigroups is not. in 
general, an m-semigroup. Proposition 3.10 shows that the product S of commutative 
semigroups S a with index(Sa) ^ 3 is an m-semigroup if and only if each S a is an 
m-semigroup. 
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2. INDEX CONDITIONS 

Let 5 be a semigroup, and let a G S. We let (a) denote the subsemigroup generated 
by the element a; that is, (a) = {an: n G M}. The order of a is defined to be the 
order of the subsemigroup (a) . The set E(S) denotes the set of all idempotents of 
5; that is, E(S) = {x G S: x2 = x}. If a is an element of finite order, then it is 
well-known that (a) contains exactly one idempotent. 

Let 5 be a semigroup, and let a G S. If anx = an for some m > n, then the index 

of a is defined to be the least such n G N. If am / an for all m 9-- n, we say that 
a has infinite index. The index of a is denoted by index(a). We define index(5) to 
be the maximum over a G S of index(a), if this maximum exists. Otherwise, we say 
that S has infinite index, or index(S) = 00. 

A semigroup S is said to be periodic provided each element has finite index. In 
particular, if index(5) < 00, then S is periodic. However, by our definitions, it is 
possible that S may have infinite index and be periodic. 

Theorem 2.1. If S is an m-semigroup, then index(5) ^ 5 and E(S) = {0}. 

P r o o f . Let S be an m-semigroup, and let a G S. We first claim that (a) is finite. 
Suppose that (a) is not finite. Then (a) = {a71: n G N, ani ^ a712 for n\ / 712} is a 
subsemigroup of S. Now, (a2) = {a2k: k G N} is a subsemigroup of (a). By Lemma 
1.2, (a) is an m-semigroup. Thus, 

[ ( a ) 1 ( a 2 ) ( a ) 1 ] 1 . ( a 2 ) - [ ( a ) 1 ( a 2 ) ( a ) i ] 1 C ( a 2 ) . 

Hence, a5 = aa2a2 G [(a)1 (a2) (a)1]1 • (a2) • [(a)1 (a2) (a)1)1 C (a2) , a contradiction. 
Therefore, (a) is finite and thus contains an idempotent. 

We now claim that E(S) = {0}. Let e G E(S). Then T = {e} is a subsemi
group of 5. Since S is an m-semigroup, (S^S1)1 • T • (S^S1)1 C T. Hence, 
(51e51)1e(51eS1)1 = e. Therefore, for a l ls G 5, rre = rve2 G ( S ^ S ^ e ^ e S 1 ) 1 = e, 

ex = e2:r G (51eSTl)1e(51e>S1)1 = e, 

and e is a zero for S. Thus, E(S) = {0}. 
Let a E S. Then (a) is finite and contains the idempotent 0. We claim that 

index(a) ^ 5. Let p be the smallest positive integer such that ap = 0 G E(S), 

and suppose p ^ 6. Then (a) = {a, a2, a3,... ,ap~x,ap = 0}. Let 

T_ ({a2,a\a6}, if p = 6, 

\ { a 2 , a 4 , a 6 } u { a n : 7 ^ ?i ^ p}, if p > 6. 
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Then T is a subsemigroup of (a), and 

a5 = aa2a2 e [(a)1 T (a) 1] 1 • T • [(a)1 T (a) 1] 1 C T, 

as (a) is an m-semigroup. This is clearly a contradiction as a5 ^ T. Thus, p ^ 5, as 

desired. Therefore, index(a) ^ 5, for all a e S. Whence, index(5) ^ 5 . D 

E x a m p l e 2 .2 . This is an example to illustrate that the bound index(5) ^ 5 

in Theorem 2.1 is the lowest possible upper bound. Let S = {0, a, b, c, d, e} with 

multiplication given by the Cayley table: 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 a 

0 0 0 a a b 

0 0 0 a a b 

0 0 a b b c 

Then 5 is a commu ta t ive m-semigroup whose index is 5. To see index(S) = 5, 

check the index of each element of S: index(O) = 1, index(a) -= 2, index(b) = 2, 

index(c) = 3, index(d) = 3, and index(e) = 5. We exhibit the subsemigroups T{ of 5 

and SXT{ f o r i = 1,. . . , 1 2 : 

i Ti SlJ) 

1 {0} {0} 
2 {0,b} {0.O,b} 

3 {0,a} {0.O} 

4 {0,a,d} {0,O,b,J} 

5 {0,a,c} {0,O,b,c} 

6 {0. a,c,d) {0,O ,b ,c,d} 

7 {0,a,ò} {О.O.b} 

8 {0.a,b,d} {Ü,O,b.ť/} 
9 {0,a,b,c} {0,O.b.ť} 

10 {0,O,b,c,e} {0,c.b ,ť ,c} 
11 {0.O,b,c,гl} {О.O.b.cлl} 

12 {().O,b,c,d. e} {0.c .b . г .d,c} 

One may check by inspection that S is an m-senhgroup. 

C o r o l l a r y 2 . 3 . Let S be mi m-senrigroup. Then S i> periodic mid E(S) = n 
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Lemma 2.4. Let S be aperiodic semigroup with E(S) = {0}. For a,b G S, ab = b 
(dually, ba = b) if and only ifb = 0. 

P r o o f . The proof is the same as that given in [3] for Lemma 3.1. • 

Let S be an m-semigroup. Note that for all subsemigroups T of S, we have that 
SlT2 C T and T2Sl C T. For a commutative semigroup 5, S is an m-semigroup if 
and only if SlT2 CT for all subsemigroups T of S. 

Let 5 be a semigroup containing a zero element. The annihilator S is defined 
to be A(S) = {x G S: xS = Sx = {0}}. We frequently denote the annihilator of a 
semigroup with zero by simply A. 

Propostion 2.5. Let S be an m-semigroup. Then for each x G S with index(:r) > 
2, a;index(x)-l £ A 

P r o o f . Let S be an m-semigroup. By Theorem 2.1, index(S) ^ 5. 
Let x G S such that index(x) > 2. Then 3 ^ index(:r) ^ 5. Consider the subsemi-

group T = (x) of S. Since S is an m-semigroup, Sx(x) C (x) and (x) S1 C (x). 

Let s G S. We wish to show that sxindex(*)-i = 0 and xindex(*)-is = 0 W e 

will show 5X-ndex(x)-i — o for the case when index(:r) = 5, and all other cases will 
follow analogously. Suppose, then, that index(:r) = 5. We claim that sx4 = 0. Now, 
T = (x) = {0,x,x2,x3,x4} and sx2 G Sx(x) C (x). We consider cases for s:r2 

equaling each element of (x) . 

Case 1. sx2 = 0. If sx2 = 0, then sx4 = (sx2)x2 = 0, as desired. 
Case 2. sx2 = x. If sx2 = (sx)x = x, then x = 0 by Lemma 2.4. Hence, sx4 = 0. 
Case 3. sx2 = x2. If sx2 = a:2, then by Lemma 2.4 x2 = 0. Hence, sx4 = 0. 
Case 4- sx2 = x3. If sx2 = :r3, then sx4 = (sx2)x2 = x3x2 = x5 = 0. 

Case 5. sx2 = x4. If sx2 = x4, then sx4 = (s:r2):r2 = x4x2 = x6 = 0. 
In each case, we have established that sx4 = 0, as desired. 

If index(x) = 4, then T = (x) = {0,:r,x2,.r3}. We claim that sx3 = 0. Four cases 
analogous to Cases 1-4 above will establish this. 

If index(;r) = 3, then T = {0,x,x2}. Three cases analogous to Cases 1-3 will 
establish that sx2 = 0. 

Tims, for 3 ^ index(x) ^ 5, we have shown that 5tT
index(a0 l — o. Dually, we 

obtain that a;---dex(z)-i5 _ 0 T h e p r o o f i s c o m p i e t e . • 

Corollary 2.6. Let S be an m-semigroup. Let n denote index(5), and suppose 
that n > 2. Then x71'1 G A for all x G S. 

P r o o f . Let S he an m-semigroup with 2 < // = index(S). Let x G 5. By 
Proposition 2.5, .r

imlf'x(-7')-1 p A. Certainly, index(.r) Ĵ n. We may assume that 
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index(x) < n for otherwise the result is clear. Then u — index(x) > 0. Hence, 

^ n - l _ index(cr) —1 > n - i n d e x ( x ) ^ 1 C _ Q 

Therefore, xn~l G A. • 

Example 2.7. This is an example to illustrate that Proposition 2.5, and hence 
Corollary 2.6, does not hold if index(S) = 2. Let 5 = {0. a, b, c, d} with multiplication 
given by: 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 a 
0 0 0 0 a 
0 0 a a 0 

Then S is a commutative semigroup with zero such that index(S) = 2. We have that 
index(b) = 2, but b ^ A as b • d = a ^ 0. The semigroup 5 is an m-semigroup by 
Proposition 2.8. 

Note that a semigroup S with zero satisfying the condition that S2 C A has index 
less than or equal to 3. Indeed, let S be such a semigroup, and let x G S. Then we 
have that x3 = x(x2) G xA = {()}. Hence, x3 = 0, for all x G 5, and index(S) ^ 3. 

Propostion 2.8. If 5 is a semigroup with zero such that S2 C A, then S is an 

m-semigroup. 

P r o o f . Let S be a semigroup with zero such that S2 C A. Suppose T is a 
subsemigroup of S. Then 0 G T since 0 = t3 G T for all t G T. Let x,y,z G S. Then 
since .THz = 0, we have that (S^TS1)1 • T • ( S ^ S 1 ) 1 C T and 5 is an m-semigroup. 

• 
Remark 2.9. Let 5 be a semigroup with zero. Then S2 C A if and only if 

S3 = 0. To see this, suppose that S2 C A. Let .r,//\~ G 5. Then we have that 
xyz = x(u2:) G xA = {0}. Hence, S3 = 0. Conversely, suppose that S3 = 0. Let 
a,b e S. We claim that ab G A. Indeed, let c G 5. Then abc = 0, since S3 = 0. 
Therefore, ab E A. 

Corollary 2.10. Let S be a semigroup with zero. If S3 = 0, then index(S) ^ 3 

and S is an m-semigroup. 
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3. ARCHIMEDEAN SEMIGROUPS 

We recall that a commutative semigroup S is said to be archimedean provided 
that for any two elements of 5, each divides some power of the other. We use "|" to 
denote "divides". If a relation // is defined on a commutative semigroup S by 

(a, b) E 77 = a | bn and b | am for some ?i, m E N, 

then we have the following two well-known results from [2]: 

(1) The relation n on any commutative semigroup 5 is a congruence on 5, and 5/?/ 

is the maximal semilattice homomorphic image of S. 

(2) Every commutative semigroup S can be uniquely expressed as a semilattice Y 

of archimedean semigroups Ca (a E Y). The semilattice Y is isomorphic with 

the maximal semilattice homomorphic image 5/?/ of 5, and the Ca (a £ Y) are 

the equivalence classes of S mod ??. 

The next three results concern archimedean semigroups with zero. 

Lemma 3.1. [3] Let 5 be an archimedean semigroup with zero. Then for a, b E S, 

ah = b if and only if b = 0. 

Lemma 3.2. [4] Let S be a nontrivial, finite, archimedean semigroup with zero. 
Then the annihilator of S contains a nonzero element. 

Let K be a semigroup. Let L be a semigroup with a zero element 0 having no 
element in common with K. Let M = KU(L\{0}). If an associative binary operation 
o is defined on M satisfying: 

{ = xy, if x, y E K or if x, y E L and xy ^ 0, 

E K, otherwise, 

then M is a semigroup with respect to o, and M is called an extension of K by L. 
If A' and L are commutative, then M is a commutative semigroup and is called a 
commutative extension of A" by L. 

Lemma 3.3. [4] A commutative extension of a null semigroup of order 2 by an 
archimedean semigroup with zero of order n is an archimedean semigroup with zero 
of order n + 1, and moreover every archimedean semigroup with zero of order n + 1 is 
a commutative extension of a null semigroup of order 2 by an archimedean semigroup 
with zero of order n. 
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Corollary 3.4. If S is a commutative m-semigroup, then S is an archimedean 
semigroup with zero such that index(S) < 5. 

P r o o f . Let S be a commutative m-semigroup. Then by Corollary 2.3, S is 
periodic and E(S) = {0}. Thus, S is an archimedean semigroup with zero. That 
index(S) ^ 5 was established in Theorem 2.L • 

Example 3.5. This is an example to show that the converse of Corollary 3.4 
does not hold. In order to see this, we take S = {0, a, b, c, d, e, / } with multiplication 
given by the following Cay ley table: 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

0 0 0 0 0 0 a 
0 0 0 0 0 a b 

0 0 0 0 a a b 

0 0 0 a a 0 0 
0 0 a b b 0 e 

Then S is an archimedean semigroup with zero such that index(S) = 3, but S is not 
an m-semigroup. To see that 5 is not an m-semigroup, consider the subsemigroup 
T = {0,e , /} of S. We see that a = c- f • / G SXT2, but a£T. 

Let S be a semigroup. Recall that 

J? = {(a,b) G S x S'.aS1 = bS1 and Sla = Sxb}. 

If S is a commutative semigroup, then Jif is a congruence on S. 

Propostion 3.6. Suppose S is an archimedean semigroup containing an idempo-

tent. Then S is Jf-trivial if and only if E(S) = {0}. 

P r o o f . Let S be an archimedean semigroup with an idempotent e. Then E(S) = 
{e}. Suppose first that S is ^f-trivial, i.e., Jf = AS- Then aS1 = bS1 implies that 
a = b for a, b G S. Let a G S. We claim that ae = e. Now, aeS1 = eaS1 C eS1. Since 
S is archimedean with idempotent e, there is a' G S with aa' = a'a = e. Thus, for 
x G S1, ex = eex = eaa'x. Therefore, eS1 C eaS1. Hence, aeS1 = eS1 which implies 
that ae = e. Thus, e is a zero for S. 

Conversely, let E(S) = {0}. Suppose that S is not ^- t r iv ia l . Then there are 
distinct a,b G S such that (a,b) G J4?. Then there exist x,y G S such that a = bx 
and b = ay. Now, (bx,b) = (a,b) G Jf?. Compatibility of Jf yields that (bx2,bx) = 
(bx,b) • x G Jf. Consequently, (bxn~1,bxn) G Jf for all n G tU By transitivity 

40 



of Jtf, we have that (b,bxn) G JP for all n G N. Since, S is archimedean with 
zero, there exists m e M such that xm = 0. Hence, (6,0) = (b,bxm) G Jf. Thus, 
aS 1 = 6S1 = OS1 = {0}. Therefore, a = bx = 0 = ay = b, contrary to a 7- b. Thus, 
^ is trivial. D 

Lemma 3.7. Suppose that S is a finite archimedean semigroup with zero such 
that index(S) ^ 3. If S3 ^ 0, then there exists w G S such that w2 £ A. 

P r o o f . Let 5 be a finite archimedean semigroup with zero such that index(S) ^ 
3. Suppose that S3 ^ 0. Then there exists x,y,z G S such that xyz ^ 0. We may 
assume that x, y, and z are distinct. Indeed, if not, by renaming elements we obtain 
w,u G S with w2u 7-= 0 or w2 £ A. We will show that there is w G {x, y, z} such that 
w2 £ A. We let n denote the order of 5 and use mathematical induction. 

Case 1. n = 3. Suppose that the order of S is 3. We have distinct x,y,z G S 
such that xyz ^ 0. Therefore, x,y,z G S \ {0}, contrary to 0 G S and | 5 | = 3. Thus, 
S3 = 0. This case is complete. 

Case 2. n = 4. Suppose that the order of S is 4. We have distinct x,u ,2 G S 
such that xyz 7-= 0. Now, | 5 | = 4 implies that S = {x,y,z,0}. Therefore, we have 
xyz G {0, x, y, z}. In any case, Lemma 3.1 yields that xyz = 0, a contradiction. Thus, 
5 3 = 0. This case is complete. 

Case 3. n = 5. Suppose that the order of 5 is 5. We have distinct x,y,z G S such 
that xyz 7-- 0. Then x,y,z G S\A. Since \S\ = 5, we obtain that S = {0,x,y, z,xyz}. 
By Lemma 3.2, xyz G A. Now, by Lemma 3.1 we have that xy £ {x,y} and by 
assumption we have that xy £ {0,xyz} C A. Hence, xy = z. Likewise, xz = y and 
1/2: = x. Thus, x,y,z G Hx. However, JF = As by Proposition 3.6. Therefore, we 
have a contradiction. Hence, for any semigroup of order 5 with index(S) ^ 3, S3 = 0. 
This case is complete. 

Case 4- n — 6. Suppose that the order of 5 is 6. We have distinct x,y,z G 5 such 
that xyz ^ 0. Then x,y,z G S\A. By Lemma 3.2, there exists a nonzero annihilator 
u G S. By Lemma 3.3, S is an ideal extension of Z\{0^} by IV = {0^, u} where Z is an 
archimedean semigroup with zero of order 5 and jN is a null (or zero) semigroup. Now, 
\S\ = 6 implies that S = {0s,x,y,x,u,v}. Thus, Z = {0z,x, y, z,v}. We consider 
the product xyz G Z. By the preceding case, xyz = 0z G Z. Thus, xyz = O5 G S, a 
contradiction. Hence, x, y, and 2: cannot be distinct. Whence, by renaming elements, 
we obtain w,u G 5 with iv2H ^ 0, that is, w2 £ A. This case is complete. 

Case 5. n = k. Suppose that the order of S is k. We have distinct x,y,z G S such 
that xyz ^ 0. Assume that there exists w G {x,y,z} such that w2 £ A. This is our 
inductive hypothesis. 

Case 6. n = k + 1. Suppose that the order of S is k + 1. We have distinct 
x,y,z G S such that xyz 9-- 0. Then x,y,z G S \ A. By Lemma 3.2, there exists 
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a nonzero annihilator u G 5. By Lemma 3.3, 5 is an ideal extension of Z \ {Oz} 

by N = {Oz,u} where Z is an archimedean semigroup with zero of order k and IV 

is a null (or zero) semigroup. Then x,y,z £ A(S) implies tha t x,y,z G Z. Now, 

xyz ^ Os implies tha t xyz ^ Oz as a product in Z. By inductive hypothesis, there 

exists w G {x,y,z} such tha t w2 £ A(Z). Therefore, w2 £ A(S). Hence, the general 

case is complete. 

Therefore, the lemma is established for all finite archimedean semigroups. • 

T h e o r e m 3.8 . Let 5 be an archimedean semigroup with zero. Then 5 3 = 0 if 

and only if 5 is an m-semigroup and index(5) ^ 3. 

P r o o f . Let 5 be an archimedean semigroup with zero. Suppose tha t 5 is an 

m-semigroup and index(5) ^ 3. Suppose that 5 3 ^ 0. Then there exists x,y,z G 5 

such tha t xyz ^ 0. We have that x,y, and z are distinct by Corollary 2.6. Consider 

the subsemigroup T = (x,y,z) — {x,x2,xy,xz,y,y2,z,z2,yz,0} of 5 . Then F is a 

finite archimedean semigroup with zero, index(F) ^ 3, and T is an m-semigroup. By 

Lemma 3.7, T 3 = 0. Then xyz G F3 implies that xyz — 0, a contradiction. Hence, 

5 3 = 0, as desired. The converse is immediate from Corollary 2.10. • 

E x a m p l e 3 .9 . This is an example to show that the product of m-semigroups is 

not an m-semigroup in general. Let 5 = {0, a, b, c, d, e} with multiplication given by: 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 a 
0 0 0 a a b 
0 0 0 a a b 
0 0 a b b c 

Then 5 is an archimedean m-semigroup . We consider the archimedean semigroup 

with zero 5 x 5. To see that 5 x 5 is not an m-semigroup, we consider F = AsxS, 

the diagonal of 5. Then F is a subsemigroup of 5 x 5. Now, (c,e) • (d,d) • (e,e) = 

(c,e) • (b,b) = (0,a) $ T. Hence, ( 5 x S)lT2 g F and 5 x 5 is not an m-semigroup. 

P r o p o s t i o n 3 .10 . Let {Sa: a G 1} be a family of archimedean semigroups with 

zero such that index(5 a ) ^ 3 for all a G I. Let 5 = \~\{Sa: a G / } with coordinate-

wise multiplication. Then index(5) ^ 3, and 5 is an m-semigroup if and only if 5 a 

is an m-semigroup for each a G I. 

P r o o f . Let { 5 a : a G I} be a family of archimedean semigroups with zero such 

tha t index(5 a ) ^ 3 for all a G I. Let 5 = Y[{S«: ° G O- T h e n f o r e a c h x e S^ 
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x3 = 0 since x a
3 = Oa for each a G I. Hence, index(5) ^ 3. Suppose that 5 is an 

m-semigroup. Then by Lemma 1.3, Sa — iza[S] is an m-semigroup for each a G L 

Conversely, suppose each Sa is an m-semigroup. Therefore, for each a € I, Sa
3 = 

0 a . Let T be a subsemigroup of 5. Let Ta = na[T] for each a G I. Then Ta is a 
subsemigroup of Sa for each a G I. Since each Sa is an m-semigroup, we have that 
Sa

xTa
2 C T a , for each ae I. 

Let x G 5 1 and y,z €T. Then a: = (xa),y = (ya), and z = (za), where # a G 5 a 

and y a , z a G Ta for each a G I. Now, xuz = (xaHa2:a) = (0a) = 0 G T. Thus, 
5*T2 C T, and 5 is an m-semigroup. • 

4 . TOPOLOGICAL RESULTS 

The following results are topological analogues of previous results. 
We say that a topological semigroup 5 is an m-semigroup provided that for every 

closed subsemigroup T of 5, there exists a closed ideal J of 5 such that T is a closed 
ideal of J, or equivalently (for a compact semigroup 5), T is a closed ideal of S1TS1. 

Suppose 5 is a topological semigroup, and let a G 5. In the topological setting, 
the standard notation for the set of positive integral powers of a is 6(a) = {an: 
n G N}. The topological closure of 6(a), T(a) = 6(a), is called the monothetic 
subsemigroup of 5 generated by a. If 5 = T(a) for some a G 5, then 5 is called a 
monothetic semigroup. If T(a) is a compact monothetic semigroup, then its minimal 
ideal M(T(a)) is a compact abelian group and F(a) = 6(a) U M(r(a)) . Furthermore, 
M(r(a)) consists of the cluster points of T(a). We define the monothetic index of 
the element a as follows: 

f min{n eM:ane M(r(a))}, if 6(a) n M(T(a)) ?- 0, 
mi (a) = < 

I oo, otherwise. 

The monothetic index of a semigroup 5 is defined to be mi(5) = max{mi(a): a e S} 
if this maximum exists. Otherwise, mi(5) = oo. 

Lemma 4 .1. Let S be a compact semigroup and let T be a closed subsemigroup 

of 5. Then there exists a closed ideal J of 5 such that T is a closed ideal of J if and 

only ifT is a closed ideal ofS^S1. 

Lemma 4.2. If 5 is a compact m-semigroup, then every closed subsemigroup of 
5 is an m-semigroup. 

Lemma 4.3. Let S be a compact m-semigroup. Let <D: 5 —> 5 be a continuous 

homomorphism from 5 onto a semigroup 5. Then 5 is a compact m-semigroup. 
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Example 3.13 shows that arbitrary products need not preserve compact m-
semigroups. Proposition 4.7 shows that the product of commutative topological 
semigroups Sa with mi(5a) ^ 3 is a compact m-semigroup if and only if each 5 a is 
a compact m-semigroup. 

Theorem 4.4. Let 5 be a compact m-semigroup. Then mi(S) ^ 5 and E(S) = 
{0}. 

P r o o f . Let 5 be a compact m-semigroup. Then 5 has a compact group minimal 
ideal M(S). We claim that M(S) = {0}. We first show E(S) = {0}. Let e e E. 
Then T = {e} is a closed subsemigroup of 5. Since 5 is a compact m-semigroup, 
/ 5 i T 5 i ) i . T . ( S i r 5 i ) i c T. Hence, (S1eS1)1e(SleS1)1 = e. Thus, 

xe = xe2 e (S1eS1)1e(S1eSl)i = e, 

ex = e2x G (S1eS1)1e(S1eSi)1 = e, 

for all x G 5, and e is a zero for 5. Thus, E(S) = {0}. Now, we have that M(S) is a 
compact group containing a zero. Hence, M(S) = {()}. 

Let a £ S. We claim that mi(a) ^ 5. We have that 0(a) = {an: n G N} is a 
subsemigroup of 5, and T(a) = 0(a) is a closed and therefore compact subsemigroup 
of 5. Certainly, 0(a2) = {a2k: k G r\J} is a subsemigroup of 0(a). Thus, V(a2) is 
a closed subsemigroup of V(a). By Lemma 4.2, we have that T(a) is a compact m-
semigroup. Therefore, [ r (a) 1 r (a 2 ) r (a) 1 ]V r (a 2 ) - [ r (a) 1 r (a 2 ) r (a) 1 ] 1 C T(a2). Hence, 

a5 = aa2a2 G [ r (a) i r (a 2 ) r (a) 1 ] 1 • T(a2) • [ r (a) 1r(a 2)r(a) 1] 1 

CT(a2) =0 (a 2 )UM(r ( a ) ) . 

Since a5 0 0(a2), we conclude that a5 G M(T(a)) = {0}. Thus, 0(a) = {a, a2, a3, a4, 

a5 = 0} and 0(a) n M(r(a)) ^ 0. We therefore obtain that 

mi(a) = min{n G N: an G M(r(a))} = min{n G N: an G {0}} ^ 5. 

Since mi(a) ^ 5 for all a G 5, we have that mi(5) ^ 5 . D 

For a compact m-semigroup 5, the concepts of index and monothetic index are 
equivalent. Indeed, let 5 be a compact m-semigroup. Then by Theorem 4.4, E(S) = 

0 and mi(5) ^ 5. Therefore, we have that M(S) = 0. Thus for a G 5, we see that 
mi(a) = min{n E N : a n G M(T(a))} = min{n G N: a'7 = 0} = index(a). 

Corollary 4.5. Suppose S is a compact m-semigroup. Then 5 is periodic and 

E(S) = 0. 
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Theorem 4.6. Let S be a compact archimedean semigroup with zero. Then 

S3 =- 0 if and only if S is an m-semigroup and mi(S) ^ 3. 

Propostion 4.7. Suppose {Sa : a G I} is a family of compact archimedean semi

groups with zero such that mi(Sa) ^ 3 for all a G I. If S = Y[{S<*'- a G I} with 

coordinate-wise multiplication, then S is compact and mi(S) ^ 3. Moreover, S is an 

m-semigroup if and only if Sa is an m-semigroup for each a € I. 
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