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GRAPHS S(n, k) AND A VARIANT OF THE TOWER 

OF HANOI PROBLEM 

SANDI KLAVŽAR and UROŠ MlLUTINOVIC, Maribor 

(Received July 25, 1994) 

Summary. For any n ^ 1 and any k ^ 1, a graph S(n, k) is introduced. Vertices of S(n, k) 
are n-tuples over {1, 2 , . . . , k} and two n-tuples are adjacent if they are in a certain relation. 
These graphs are graphs of a particular variant of the Tower of Hanoi problem. Namely, 
the graphs S(n, 3) are isomorphic to the graphs of the Tower of Hanoi problem. It is proved 
that there are at most two shortest paths between any two vertices of S(n,k). Together 
with a formula for the distance, this result is used to compute the distance between two 
vertices in O(n) time. It is also shown that for k ^ 3, the graphs S(n,k) are Hamiltonian. 

1. INTRODUCTION 

In Lipscomb [10, 11] a relation ~ is introduced on the set of infinite sequences with 
values from an arbitrary set. This relation is defined in order to obtain some universal 
topological spaces. A natural question arises whether the relation ~ restricted to the 
finite case yields any interesting structure. This is indeed used in Milutinovic [13, 14] 
to obtain some more topological results on universal spaces. Direct connections with 
the Sierpiiiski gasket (triangular Sierpihski curve) are established in [12, 13, 14]. 

We use a slightly modified relation ~ to define a class of graphs S(n,k). The 
set of vertices of S(n,k) is the Cartesian product of n sets {1, 2 , . . . , k}, while the 
edges are defined according to the relation ~. There are several classes of graphs 
defined on the Cartesian product of sets and/or using certain relations to define 
edges. Vertices of the most important graph products are Cartesian products of 
vertices of the factor graphs, see Feigenbaum and Schaffer [4], or Imrich and Izbicki 
[9] for the definitions. Among Cartesian products of graphs, Hamming graphs play 
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a very special role, cf. Bandelt, Mulder and Wilkeit [1], or Wilkeit [15]. Note that 
hypercubes are binary Hamming graphs. The edges of Hamming graphs are defined 
with a particular relation, Hamming distance, among the corresponding tuples. We 
may henceforth consider the graphs S(n,k) as being of "Hamming type". 

In our investigation of these graphs we came across the well-known Tower of Hanoi 
problem. Although the problem is more than 100 years old [2], only recently a 
correct treatment of regular states was given by Hinz [5]. In fact there were several 
approaches before based on the wrong assumption that the largest disk moves at 
most once. We will not going into details here. We only refer to the papers [5] 
and [6] of Hinz for the large bibliography on the topic, historical overview, correct 
treatment and an algorithmic aspect of the problem. 

The present paper is organized as follows. In the next section we define graphs 
S(n,k). It is shown that the graphs S(n,k) are graphs of a variant of the Tower 
of Hanoi problem and that the graphs S(n, 3) are isomorphic to the graphs of the 
Tower of Hanoi problem. We also demonstrate that graphs S(n, k) are Hamiltonian 
for k ^ 3. In Section 3 the shortest path problem is studied. We first prove a 
formula for the distance between any pair of vertices. It is also proved that there are 
at most two shortest paths between any pair of vertices. These two results enable us 
to compute the distance between any two vertices of S(n,k) in 0(n) time. Finally 
we explicitly construct all the shortest paths. 

2. GRAPHS S(n,k) AND THE TOWER OF HANOI 

All graphs considered in this paper are finite undirected graphs without loops and 

multiple edges. For a graph G let V(G) and E(G) denote its vertex set and edge 

set, respectively. As usual, the distance between vertices u and v of a graph G is the 

shortest path distance and will be denoted by d(u,v). 
For any k ^ 1 and any n ^ 1 we define a graph S(n, k) as follows. Its vertex set is 

V(S(7i,k)) = {l,2,...,k}n 

and two different vertices I = (ii ,^2,.. . , in) and J = (ji,j2,• • • Jn) are adjacent if 

I ~ J, where 
I ~J <=*3he {1,2,....-/i} 

such that 

i) Vf, t <h => it =jt, 

ii) ih^jh, 

iii) V/, t > h = » it = jh & jt = ih-
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We point out that h may equal ?̂ , in which case the condition iii) is formally true 
being empty. In the rest of the paper we will write i\i>i.. .in instead of (z'i, 22, • • •, in) 

for brevity. 

We use the notation S(n, k) because our original motivation is related to Sierpiriski. 

For any n ^ 1, S(n, 1) is isomorphic to the one vertex graph K\ and for any 
n ^ 1, 5(n,2) is isomorphic to the path on 2n vertices P>2». Hence these paths 
play an analogous role among graphs S(n, k) as hypercubes among the Hamming 
graphs. Furthermore, for any k ^ 1, 5(1, fc) is the complete graph on fc vertices. 
More interesting graphs appear when fc ^ 3 and n ^ 2. For instance, the graph 
5(3,4) is shown on Fig. 1. 
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Figure 1. The graph 5(3,4) 
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The problem of the Tower of Hanoi (the problem of TH for short) is well-known, 
thus we will not repeat the definition here, see for instance Hinz [5, 7]. The problem 
with three pegs is well understood. However, if we have more that three pegs it is 
still an open problem to determine the minimum number of moves needed to transfer 
n disks from one peg to another, cf. Hinz [7]. 

Consider the following variant of the TH with n disks and fc pegs. Regular and 
perfect states are the same as in the classical problem: a state is regular if no larger 
disk lies on a smaller one, and a regular state with all disks on a single peg is called 
perfect. Legal moves are defined as follows. Suppose we have a regular state in which 
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the t topmost disks on a peg i are the t smallest disks. Then if the (t + l)-st smallest 
disk is on a peg j / i we are allowed to switch the t disks from the peg i with the 
disk on the peg j (see Fig. 2). Besides such switches the only other legal moves are 
arbitrary moves of the smallest disk. Let us henceforth call this variant of the TH 
the switching Tower of Hanoi or STH for short. 

Note that a switch preserves regular states and that the switching operation is 
reversible. Therefore we can define the (undirected) graph of STH as usual: its 
vertices are regular states and two vertices are adjacent if we can move from one 
state to the other by a legal move. Then we have 

Theorem 1. Let n ^ 1 and k ^ 1. Then the graph of STH with n disks and k 

pegs is isomorphic to the graph S(n,k). 

P r o o f . It is obvious that regular states of STH bijectively correspond to the 
sequences 

iii2...in e {l ,2, . . . ,A:} n , 

according to the interpretation that ij = h means that the j-th largest disk is on the 
peg h. Recalling the definition of ~ we then easily see that two vertices of the graph 
of STH are adjacent if and only if the corresponding sequences are in the relation ~. 

• 

Figure 2. A legal move1 

Theorem 1 in particular implies that STH is also defined for two pegs, which is 
not the case with the classical problem. In addition, as S(n,2) is a path, there is 
exactly one (shortest) path between any two regular states of STH with two pegs. 

The interpretation of vertices as sequences used in the proof of Theorem 1 is just 
opposite to the one used in [3, 5, 7] for the interpretation of the TH (see the proof of 
Theorem 2). Since legal moves are quite different, the corresponding graphs of TH 
and STH would be expected to differ (even with the reinterpretation of the vertices 
of the TH graph by switching the order among the disks). This is in general indeed 
the case. However, to our surprise we get the same graphs in the case k = 3. 

Theorem 2. For any n ^ 1, the graph S(n,3) is isomorphic to the graph of the 

TH with n disks. 
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P r o o f . Let THn be the graph of the TH with n disks and three pegs. Its 
vertices are sequences iii2...in £ { l ,2 ,3} n , according to the interpretation that 
ij = h means that the j-th smallest disk is on the peg h, cf. [5, 7]. 

By induction on n we construct isomorphisms fn: S(n,3) —> THn. For n = 1 
both graphs are complete graphs on three vertices. 

Let n ^ 2 and consider a partition of V(S(n, 3)) into sets V\, V2 and V3, where Vi 

consists of all vertices beginning with i, i = 1, 2, 3. Then for any i and j , i 7-- j there 
is exactly one edge between Vi and V}, i.e. the edge between the vertices ijj ... j and 
jii.. .i. We will call such an edge a bridging edge. 

In a similar way consider a partition of V(THn) into sets VVi, VV2 and JV3, where 
Wi consists of all vertices ending with i, i = 1, 2, 3. Then for any i and j , i ^ j there 
is exactly one bridging edge between W\ and Wj, i.e. the edge between the vertices 
fc . . . kkj and fc . . . fcfci, k ^ i, k ^ j . 

Then we may isomorphically map Vi onto Wi, using fn_i and an appropriate au­
tomorphism (induced by a permutation of the set {1, 2, 3}) of THn_i for adjustment, 
in such a way that the ends of the bridging edges are mapped onto the corresponding 
ends of the bridging edges. Considering the three maps as one map from V(S(n, fc)) 
onto V(THn) yields the map fn. • 

It is interesting to observe that, given any regular state of STH, we can return to 

it in such a way that we visit every regular state exactly once. In other words: 

Proposi t ion 3. For any n ^ 1 and any fc ^ 3 the graph S(n, fc) is Hamiltonian. 

P r o o f . For n = 1 the proposition is trivial since 5(1, fc) is a complete graph. 
Let 7i ^ 2 and consider the sequence of paths P\, F_,..., Pk, where Fi is a path 
between the vertices lfcfc...fc and 122.. . 2, Pk between the vertices fc(fc — 1) 
(fc — 1 ) . . . (fc — 1) and fcll... 1, and for i = 2 , 3 , . . . , fc — 1, Pi is a path between the 
vertices i(i — \)(i — 1 ) . . . (i — 1) and i(i + l)(i + 1 ) . . . (i + 1). We claim that the paths 
Pi can be constructed in such a way that they include all the vertices beginning with 
i, i = 1, 2 , . . . ,fc. 

To prove the claim it is enough to see that for any i, j and g, j ^ g, there is a 
path between ijj ... j and igg... a which goes through all vertices beginning with 
i. Obviously that reduces the induction argument to the statement that jj ... j and 
99 - • • 9, j 7̂  9, m a y be connected in S(n, fc) by a path going through all vertices 
(for all n). Without loss of generality assume j = 1 and g = fc. By the induction 
hypothesis we may find a path from 1 1 . . . 1 to 12. . .2 through all vertices beginning 
with 1. Add the edge between 12 . . . 2 and 2 1 . . . 1 to the path. By the same argument 
we may find a path from 2 1 . . . 1 to 23 .. . 3 through all vertices beginning with 2. 
Continue this procedure until (fc — l)fc . . . fc is joined to fc(fc — 1) . . . (fc — 1) and a path 
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from k(k - 1 ) . . . (k - 1) to kk... k through all vertices beginning with k is added at 
the end. 

It follows that the paths Hi, P2,..., Pk form a Hamiltonian cycle. • 

3 . SHORTEST PATHS IN S(n, fc)-GRAPHS 

Define 
i ± h 

0; i = j . 

(The symbol has been chosen in this way, since rho graphically resembles the Kro-
necker's delta symbol put upside down.) In addition, let 

where the right-hand side term is a binary number, rlios representing its digits. Also, 

let V{ be the set of vertices of S(n, k) consisting of all vertices beginning with i. 

Lemma 4. Let I = ii...i and J = jiJ2-—jn be vertices of S(n,k). Then 
d(I, J) = ^ / . . . . ^ and there is exactly one shortest path between I and J. In 
particular, for i ^ j , d(ii... i, jj ... j) = 2n — 1. 

P r o o f . By induction on n. The statement is trivial for n = 1. 

Let n ^ 2. 
If i = 2\ then by the induction hypothesis, the shortest path inside V{ has the 

length ^ / 2 , . . . j 7 l = ^/i,...,j„ • Consider now a path Q between I and J which is not 

completely in V{. Let g, g ^ i, be such that the vertex gi... i is the last vertex of Q 

not belonging to V{. Then Q contains a subpath from ig... g to I m V\ which has 
by induction length at least 2n'1 - 1 ^ &j2,...,jn- Therefore |Q| > &j2j...jn. 

Let i ^ j \ . Then by the induction hypothesis, among all paths between I and 
J containing the edge between iji .. .ji and j\i... i, there is a unique shortest one. 
Its length is (2n~l - l) + l + #j2i_Jn = &ju...,jn ^ 2n - 1. Consider a path Q 

between I and J containing an edge between the vertices ig.. .g and gi.. .i, where 
g is chosen as above. Then \Q\ ^ (2n~l - I) + 1 + (2'1"1 - 1) + 1 = 2n. Thus Q is 
not a shortest path. 

Note finally that there is only one shortest path in both cases. • 

Theorem 5. Let I = i\i2 .. .in and J = j\h • • -jn be vertices of S(n,k) such 

that ii = ji, ..., ii-i = je-i ajid it ^ jt, i ^ 1. Tijen d(I, J) = 1 for i = n, and 

otherwise, d(I, J) is equal to 

™n W+1,...,i„ + 1 + ^!:+1,...,jl.. ^ + . . - . * . + l + 2'l~t + &L>,..,i» I h * ^3i)-
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P r o o f . By induction on n. If n = 1 then I = 1 and d(I, J) = 1 as claimed. 
By a similar argument as in Lemma 4 we first note that it suffices to consider paths 

in the subgraph of 5(n, k) induced by the vertices beginning with i\ . . . ii-\. Omitting 
ii .. .ii-\ from the vertices gives a natural isomorphism between the subgraph and 
S(n — £ + V k). If £ > 1 then the theorem holds by the induction hypothesis. Hence 
it remains to prove the statement for I — 1. 

Let n ^ 2. For brevity let i\ = i and j \ — j . Consider a shortest path Q 
among those paths between I and J which have vertices only from V* U Vj. Then, by 
Lemma 4, \Q\ = &i2 iri + 1 + ^/2,...,j„ > because Q must contain the edge between 
the vertices ij ... j and ji... i. Also by the lemma, Q is unique. We will call such a 
path the direct path between I and J. 

Consider now a shortest path Q' among the paths between I and J with vertices 
only from Vi U Vj U V^, /i ^ i, j where QnVh ^ 9. Since <2' must contain the edges 
between ih ... /i and hi.. .i, and between /ij . . . j and jh.. .h, Lemma 4 implies 
|Q'| = ^2,.. ,in + 1 + ( 2 n _ 1 - 1) + 1 + .̂72,...,.?-. • Furthermore, Lemma 4 also implies 
uniqueness of Qr (for a fixed h). We call such a path the Vh-path between I and J. 

Clearly, for the direct path Q we have \Q\ < 2n and thus the distance between I and 
J is strictly less than 2n . But since any path containing also vertices from Vg and Vh, 

where i, j , /z and g are pairwise different, has length at least 2 n _ 1 + 2 n - 1 + 1 = 2n + 1 , 
the theorem follows. • 

From the computational point of view, Theorem 5 can be used to compute d(I', J) 
in 0(nk) time. The next theorem will enable us to improve this complexity 

Theorem 6. There are at most two shortest paths between any two vertices of 
5(n, k). 

P r o o f . Let I = i\i2 . . . in and J = J1J2 • • • j n be vertices of 5(n, k) and assume 

without loss of generality that i\ ^ j \ . For brevity let i\ = i and j i = j . Note that 

the proof of Theorem 5 implies that the length of the direct path between I and J 
i s ^l,...,i7l + * + «^j2,...,j«' w h i l e t h e l e n g t h o f t h e V^-path is ^£,...,-» + X + 2 n _ 1 + 
^ j 2 , . - . , j „ f o r a n y ft ^ *'•?• 

We distinguish several cases. 

Case 1: i2 = i,j2 = j -
Any V^-path is of length at least 2 n _ 2 + 1 + 2 n _ 1 + 2 n _ 2 , because Qh,i2 = Qh,j2 — V 

Since the direct path is of length at most 2n - 1, it is the unique shortest path in 
this case. 

Case 2: i2 = j . Any V^-path is of length at least 2n~2 + 2 n _ 1 + 1, because Qhj2 = 1. 
Since Qjyi2 = 0, the direct path is of length at most (2n~2 - 1) + 1 + (2 n _ 1 - 1). Hence 
it is again the unique shortest path between I and J. 
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The case j 2 = i is treated analogously 

Case 3: i2 = i, j 2 = h, h ^ i,j. Let g ^ i, j , h. Then g(jM = ggj2 = 1. As in Case 1 

it follows that the length of the V^-path is at least 2Tl + 1. Thus a shortest path can 

only be the direct path or the V^-path. (Consider for example vertices 113 and 233 

of 5(3,4) on Figure 1 to see that both paths may be shortest.) 

The case j 2 = j and i2 = h is treated analogously. 

Case 4'- h = 72 = h, h 7- i,j. This case can be treated exactly as the previous 
one. (Consider for example vertices 133 and 231 of 5(3,4) in Figure 1 to see that 
the direct path and the V^-path may have equal length. Also consider vertices 122 
and 322 to see that the V^-path may be shorter than the direct one.) 

Case 5: i2 = g, j 2 = h, i, j , g and h are pairwise different. Let / 7- i,j,g, h. Then 

as in the previous two cases we get that the V/-path cannot be a shortest path. 

The length of the direct path is equal to 

•^k...,»„ + 1 + Kh i. = 2"_1 + H .",. + - + ̂ 3,....j„' 

which is in turn equal to 2 n _ 1 plus the length of the direct path between U3 .. .in 

and jj3 . . . j n in S(n - 1, k). 

The length of the V^-path is equal to 

^ 3 , . . . , » B + 1 + 2 ? l _ 1 + ^L,..Jr,. = 2 n _ 1 + &L..A,, + X + 2 U _ 2 + &L~Jn< 

which is equal to 2 n - 1 plus the length of the V^-path l^etween U3 ... in and jj% ... j n 

in S(n — l,k). An analogous statement holds for the Vy-path. 

This proves that shortest paths between igi3 .. . in and JI1J3 ... j n in S(n, k) cor­
respond to shortest paths between U3 .. .in and jj'3 . . . j n in the graph S(n — 1, k). 

These paths can only be the direct path, the V^-path, or the Vj3-path. Hence 
if {2*3,73} 7- {g,h}, at most two paths among the direct path, the V^-path and 
the V^-path, may be the required shortest paths in S(n,k). If {13,73} = {g*h} 

we may use the initial argument once again. Finally, if {it,jt} = {g,h} holds for 
t = 3, 4,. . ., n — 1, shortest paths between igi3 . . . in and 7/173 . . . j n in S(n, k) corre­
spond to shortest paths between iin and 77*n in 5(2, A:). In 5(2, k) the direct path 
between iin and jjn is of length Qijn + Qj^n -f 1 ^ 3. The length of the V^-path is 
Qhj„. + Qh,i„ + 21 + 1 ^ 3. Clearly, if the V/^-path is a shortest path then its length 
must be equal to 3, which is possible only if in = j„ = h. Analogously we see that 
the Vp-path may be a shortest path only if in — j n = g. We conclude that at most 
two of these three paths may be shortest paths. • 
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The proof of Theorem 6 in particular shows that d(I, J), where again without loss 
of generality ii ^ ji, from Theorem 5 is obtained as minimum of 

^ i 2 , . . . , i T l -T L-r ^ j 2 , . . . , j „ 

and 

m i n { ^ („ + 1 + 2"-1 + ^ . . . ^ | h € {i2,j2} \ { i i , j i}}-

This yields 

Corollary 7. The distance between any two vertices of S(n, k) can be computed 

in 0(n) time. 

When we know the distance between two vertices we can also easily find all shortest 
paths, i.e. one or two of them. To see this it is enough to construct a shortest path 
between I = iii2 . . . in and J = i\ji ... j \ of length &*£ in • Indeed, using such 
paths together with the corresponding bridging edges gives shortest paths between 
the original vertices. 

Consider a sequence O of vertices starting with I and ending with J where the 

next term is obtained from the previous one analogously to the way one represents 

addition of 1 in binary notation. The beginning of O~ thus is 

l\ . . . ln — 2ln — 2^n — \^ni 

il . . . i n _ 3 i n _ 2 i n - l i l , 

il . . . i n _ 3 i n _ 2 i l i n - l , 

il . . .Zn-3^n-2I lJl , 

h • • -in-3Jlin-2in-2, • • • 

In the case when two consecutive terms of the above list are equal we of course omit 
the redundant one. That means that if it = je then there are 2n~e such redundant 
terms. Thus a is indeed the shortest path between I and J of the desired length. 

Note that the shortest path between ii... i and jj .. .j, i / j , is obtained exactly 
by adding 1 in binary notation if we replace i by 0 and j by 1. Moreover, this 
describes the path S(n,2). 

To conclude the paper we remark that in view of Theorem 2, Theorems 5 and 6 
(in the case k = 3) offer an alternative approach to the classical TH problem. 

Acknowledgement. We are grateful to Ciril Pezdir who turned our attention to 
the Tower of Hanoi problem. 
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