Czechoslovak Mathematical Journal

Miroslav Fiedler; Vlastimil Pták

Diagonal blocks of two mutually inverse positive definite block matrices

Czechoslovak Mathematical Journal, Vol. 47 (1997), No. 1, 127-134

Persistent URL:
http://dml.cz/dmlcz/127344

Terms of use:

© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DIAGONAL BLOCKS OF TWO MUTUALLY INVERSE POSITIVE DEFINITE BLOCK MATRICES

Miroslav Fiedler, ${ }^{1}$ Vlastimil Pták, Praha

(Received October 14, 1994)

1. Introduction and preliminaries

In 1964, the first named author gave [2] a complete characterization of ordered $2 n$-tuples of positive numbers

$$
a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}
$$

with the following property: There exists a positive definite matrix A of order n such that its diagonal entries are a_{1}, \ldots, a_{n} and such that the diagonal entries of A^{-1} are b_{1}, \ldots, b_{n}.

The result consists of two conditions:
$\mathrm{C} 1^{\circ} \quad a_{i} b_{i} \geqslant 1, i=1, \ldots, n$;
$\mathrm{C} 2^{\circ} \quad 2 \max _{i=1, \ldots, n}\left(\sqrt{a_{i} b_{i}}-1\right) \leqslant \sum_{i=1}^{n}\left(\sqrt{a_{i} b_{i}}-1\right)$.
In the present paper we intend to treat the same problem in the case of block matrices.

The condition $\mathrm{C} 1^{\circ}$ which is a restatement of a generalized Hadamard inequality has a complete analogy in the block case. In the absence of commutativity, it turns out that the notion of the spectral geometric mean recently introduced by the authors [3] has an interesting application: the spectral geometric means of the corresponding diagonal blocks of A and A^{-1} have to be greater than or equal to identity matrices of appropriate sizes in the Loewner ordering.

The generalization of condition $\mathrm{C} 2^{\circ}$ is more complicated. We have succeded to present a complete characterization for the case that the number of block rows n is two. For the case $n>2$ we give a necessary condition and a sufficient condition.

[^0]For the purposes of this paper, it will be convenient to introduce a terminological convention.

Consider two n-tuples of square matrices

$$
\left(A_{1}, \ldots, A_{n}\right), \quad\left(B_{1}, \ldots, B_{n}\right)
$$

such that, for each j, the matrix B_{j} is of the same order as A_{j}.
We shall say the completion problem for A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} has a solution if the following condition is satisfied:

There exists a positive definite matrix A whose diagonal blocks are A_{1}, \ldots, A_{n} and such that the diagonal blocks of A^{-1} are B_{1}, \ldots, B_{n}.

We shall need the following two basic lemmata:

Lemma 1.1. Given nonsingular square matrices M_{1}, \ldots, M_{n} of appropriate orders the completion problem for

$$
M_{1} A_{1} M_{1}^{*}, \ldots, M_{n} A_{n} M_{n}^{*}, M_{1}^{*-1} B_{1} M_{1}^{-1}, \ldots, M_{n}^{*-1} B_{n} M_{n}^{-1}
$$

has a solution if and only if the completion problem for

$$
A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}
$$

has a solution.
Proof. If M is the block-diagonal matrix $\operatorname{diag}\left(M_{1}, \ldots, M_{n}\right)$ and if A solves the second problem then clearly $M A M^{*}$ solves the first and conversely.

Lemma 1.2. Let A and B be positive definite matrices of the same order. Then there exists a nonsingular matrix M and a diagonal matrix D such that

$$
M A M^{*}=M^{*-1} B M^{-1}=D
$$

The diagonal entries of the matrix D are the positive square roots of the eigenvalues of $A B$.

Proof. Define the matrix Q by

$$
Q=\left(A^{-\frac{1}{2}}\left(A^{\frac{1}{2}} B A^{\frac{1}{2}}\right)^{\frac{1}{2}} A^{-\frac{1}{2}}\right)^{\frac{1}{2}}
$$

where, for a positive definite matrix $P, P^{\frac{1}{2}}$ means the (unique) positive definite square root of P. It is easily checked that

$$
\begin{equation*}
Q A Q=Q^{-1} B Q^{-1} \tag{1}
\end{equation*}
$$

Let

$$
\begin{equation*}
Q A Q=U D U^{*} \tag{2}
\end{equation*}
$$

be the spectral decomposition of $Q A Q, D$ being the diagonal matrix of the eigenvalues and U a unitary matrix of the eigenvectors. Since by (1)

$$
U D^{2} U^{*}=Q A B Q^{-1}
$$

the diagonal entries of D are as asserted. If we define the matrix M by

$$
M=U^{*} Q
$$

it is immediate by (2) and (1) that the relations in the theorem are satisfied.

2. Results

We shall consider n by n Hermitian matrices partitioned into m block rows and m block columns. We shall assume that the partitioning is symmetric, corresponding to the decomposition $N=N_{1} \cup \ldots \cup N_{m}$ of the set $N=\{1, \ldots, n\}$ where the cardinalities $\left|N_{j}\right|=n_{j}$ need not be equal. In fact, we shall assume that N_{1} is the set of the first n_{1} indices, N_{2} the set of the next n_{2} indices etc. so that we can write, say, $A=\left(A_{i k}\right)$ where $A_{i k}$ is an $n_{i} \times n_{k}$ submatrix of A. We shall now define the block quasi-Hadamard product $A \circ B$ of two such Hermitian block matrices $A=\left(A_{i k}\right)$ and $B=\left(B_{i k}\right)$ as the (again Hermitian) m by m matrix with the entries

$$
\begin{equation*}
(A \circ B)_{i k}=\operatorname{tr} A_{i k} B_{k i}, \quad i, k=1, \ldots, m . \tag{3}
\end{equation*}
$$

(Observe that this quasi-Hadamard product for the case of 1 by 1 blocks is the usual Hadamard product of A and B^{*}.)

We shall express now the quadratic form corresponding to $A \circ B$ in terms of the matrices A and B as follows. Given a vector $x=\left(x_{1}, \ldots, x_{m}\right)^{T}$ we denote by X the diagonal matrix

$$
X=\operatorname{diag}\left(x_{1} I_{1}, \ldots, x_{m} I_{m}\right)
$$

where I_{j} stands for the identity matrix of order n_{j}.

Lemma 2.1. In the notation from above,

$$
\begin{equation*}
((A \circ B) x, x)=\operatorname{tr} A X B X^{*}, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
(A \circ B) e=\left(\operatorname{tr}(A B)_{11}, \ldots, \operatorname{tr}(A B)_{m m}\right)^{T} \tag{5}
\end{equation*}
$$

where $e=(1, \ldots, 1)^{T}$.
Proof. We have

$$
\begin{aligned}
\operatorname{tr} A X B X^{*} & =\operatorname{tr} \sum_{i, k}(A X)_{i k}\left(B X^{*}\right)_{k i} \\
& =\operatorname{tr} \sum_{i, k}\left(A_{i k} x_{k}\right)\left(B_{k i} x_{i}^{*}\right) \\
& =\sum_{i, k} x_{i}^{*} x_{k} \operatorname{tr} A_{i k} B_{k i} \\
& =((A \circ B) x, x) .
\end{aligned}
$$

The proof of (5) is immediate.
In the same notation as above, denote by M the diagonal matrix

$$
M=\operatorname{diag}\left(n_{1}, \ldots, n_{m}\right)
$$

Theorem 2.2. Let A be a positive definite block matrix. Then the matrix

$$
\begin{equation*}
P=A \circ A^{-1}-M \tag{6}
\end{equation*}
$$

is positive semidefinite and satisfies

$$
\begin{equation*}
P e=0 \tag{7}
\end{equation*}
$$

Proof. Since A is positive definite there exists a nonsingular upper triangular matrix T such that $A=T^{*} T$. We have thus by (4)

$$
\begin{aligned}
\left.\left(A \circ A^{-1}\right) x, x\right) & =\operatorname{tr} A X A^{-1} X^{*} \\
& =\operatorname{tr} T^{*} T X T^{-1} T^{-1 *} X^{*} \\
& =\operatorname{tr}\left(T X T^{-1}\right)\left(T X T^{-1}\right)^{*} \\
& =\sum_{i, k=1}^{n}\left|\left(T X T^{-1}\right)_{i k}\right|^{2} \\
& \geqslant \sum_{i=1}^{n}\left|\left(T X T^{-1}\right)_{i i}\right|^{2} \\
& =\sum_{j=1}^{m} n_{j}\left|x_{j}\right|^{2} \\
& =(M x, x) .
\end{aligned}
$$

Also,

$$
\left(A \circ A^{-1}\right) e=M e
$$

by (5) which implies (7).
Let us return now to the completion problem for block positive definite matrices.We shall first prove:

Theorem 2.3. Let $A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{m}$ be positive definite matrices such that for each $j=1, \ldots, m$, both A_{j} and B_{j} are of the same order n_{j}. For each $j=1, \ldots, m$, denote by D_{j} the diagonal matrix whose diagonal entries are the positive square roots of the eigenvalues of $A_{j} B_{j}$. Then the completion problem $\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{m}\right)$ has a solution if and only if the completion problem $\left(D_{1}, \ldots, D_{m}, D_{1}, \ldots, D_{m}\right)$ has a solution.

Proof. Follows from Lemmata 1.1 and 1.2.

Theorem 2.4. Let $A=\left(A_{i k}\right)$ be a positive definite block matrix with m block rows, let $A^{-1}=\left(B_{i k}\right)$. Then:
1° for each $j=1, \ldots, m$, all eigenvalues of $A_{j j} B_{j j}$ are greater than or equal to one;
$2^{\circ} 2 \max _{j=1, \ldots, m} \sqrt{\operatorname{tr} A_{j j} B_{j j}-n_{j}} \leqslant \sum_{j=1, \ldots, m} \sqrt{\operatorname{tr} A_{j j} B_{j j}-n_{j}}$.
Proof. 1° follows from Theorem 2.3 and $\mathrm{C} 1^{\circ}$. To prove 2°, we shall apply the idea of [1] to the matrix P from Theorem 2.2. Since P is positive semidefinite with row sums zero, it is the Gram matrix of a system of m vectors, say u_{1}, \ldots, u_{m} whose sum is zero and thus form a closed polygon. Therefore the length of the largest vector, $\max _{k} \sqrt{\left(u_{k}, u_{k}\right)}$, does not exceed the sum of the remaining lengths. Since $\left(u_{j}, u_{j}\right)=\operatorname{tr} A_{j j} B_{j j}-n_{j}$ in our notation, 2° follows.

Remark 2.5. Let us mention that the condition 1° can be equivalently formulated in other ways, e.g. that the matrix $A^{\frac{1}{2}} B A^{\frac{1}{2}}$ is greater than or equal to the identity matrix in the Loewner ordering, or, that the spectral geometric mean of the matrices A and B introduced in [3], which is the common value in (1) has this property.

Remark 2.6. Using Theorem 2.3, the above completion problem simplifies in the sense that just conditions about the diagonal entries of the matrices D_{i}, i.e. about the square roots of the eigenvalues of $A_{i} B_{i}$ (or, equivalently, $B_{i} A_{i}$) are to be found.

Let us denote the diagonal entries of D_{j} by $d_{1}^{(j)}, \ldots, d_{n_{j}}^{(j)}, j=1, \ldots, m$. Theorem 2.4 then rephrases as follows:

Theorem 2.7. A necessary condition for the numbers $d_{k}^{(j)}$ that the completion problem $D_{1}, \ldots, D_{m}, D_{1}, \ldots, D_{m}$ be solvable is:
1° all the numbers $d_{k}^{(j)}$ satisfy

$$
\begin{aligned}
d_{k}^{(j)} \geqslant 1, \quad k & =1, \ldots, n_{j}, \quad j=1, \ldots, m ; \\
2^{\circ} \quad 2 \max _{j=1, \ldots, m} \sqrt{\sum_{k=1}^{n_{j}}\left(d_{k}^{(j)}-1\right)} & \leqslant \sum_{j=1}^{m} \sqrt{\sum_{k=1}^{n_{j}}\left(d_{k}^{(j)}-1\right)}
\end{aligned}
$$

To find a sufficient condition for the numbers $d_{k}^{(j)}$, observe that by $\mathrm{C} 1^{\circ}$ and $\mathrm{C} 2^{\circ}$ which are (necessary and) sufficient for the case $n_{1}=\ldots=n_{m}=1$, the condition $\mathrm{C} 2^{\circ}$ reads:

C $2^{\prime \circ} 2 \max _{k=1, \ldots, m}\left(d_{1}^{(k)}-1\right) \leqslant \sum_{k=1}^{m}\left(d_{1}^{(k)}-1\right)$.
Theorem 2.8. Let $D_{j}, j=1, \ldots, m$, be diagonal matrices with corresponding diagonal entries $d_{1}^{(j)}, \ldots, l_{n_{j}}^{(j)}, j=1, \ldots, m$. The completion problem for $D_{1}, \ldots, D_{m}, D_{1}, \ldots, D_{m}$ has a solution if all the numbers $d_{k}^{(j)}$ are greater than or equal to one and there exists for each j an ordering of the $d_{k}^{(j)}$'s and a system of eventual gaps such that in the array

$$
\begin{array}{cccccccc}
\ldots & d_{i_{1}}^{(1)}, & \ldots & \ldots & d_{i_{2}}^{(1)}, & \ldots & \ldots & d_{i_{1}}^{(1)}, \\
\ldots & \ldots & d_{k_{1}}^{(2)}, & \ldots & \ldots & d_{k_{2}}^{(2)}, & \ldots, & d_{k_{i_{2}}}^{(2)}, \\
\ldots & \ldots \\
. & \cdot & \cdot & \cdot & \cdot & \ldots . & \cdot & . \\
\ldots & d_{l_{1}}^{(m)}, & \ldots & d_{l_{2}}^{(m)}, & \ldots, & d_{l_{n}, \ldots}^{(m)}, & \ldots & \ldots \\
\ldots
\end{array}
$$

each column (the gaps are not considered) satisfies the condition $\mathrm{C} 2^{\prime \circ}$.
Proof. By the result [2], there exist solutions for the completion problem corresponding to each column of the presented array. We assume that its dimension is in each column equal to the number of the $d_{k}^{(j)}$,s in that column. If we then reorder simultaneously the rows and columns of the direct sum of these solutions starting first with the diagonal entry in the first row of the array in the original ordering (if there is not a gap), continuing with the second row of the array in the original ordering etc. and ending with the last row in the original ordering, we obtain a solution of the problem $D_{1}, \ldots, D_{m}, D_{1}, \ldots, D_{m}$.

Example 2.9. For $n_{1}=4, n_{2}=4, n_{3}=3$, let

$$
\begin{array}{llll}
7, & 5, & 4, & 3, \\
5, & 3, & 2, & 2, \\
8, & 6, & 2, &
\end{array}
$$

be the array of Theorem 2.8. The third column and the fourth column do not satisfy the condition $\mathrm{C} 2^{\prime \circ}$. However, if we perform appropriate permutations in each row to obtain (with just one gap in the last row) the array

$$
\begin{array}{llll}
7, & 4, & 3, & 5, \\
2, & 3, & 2, & 5, \\
8, & 6, & 2, &
\end{array}
$$

then all columns satisfy this condition (even with equality).
Let, say, $A=\left(a_{i k}\right)$ be a 3-by-3 matrix which completes the first column, $B=\left(b_{i k}\right)$ the second column, $C=\left(c_{i k}\right)$ the third and $D=\left(d_{i k}\right)$ a 2-by- 2 matrix completing the fourth column. Then the following 11-by-11 matrix (zeros are not marked) solves the problem:
$\left(\begin{array}{ccccccccccc}7 & & & & & & a_{12} & & a_{13} & & \\ & 5 & & & d_{12} & & & & & & \\ & & 4 & & & l_{12} & & & & b_{13} & \\ & & & 3 & & & & c_{12} & & & c_{13} \\ & d_{12} & & & 5 & & & & & & \\ & & b_{12} & & & 3 & & & & & \\ a_{12} & & & & & & 2 & & & & \\ & & & c_{12} & & & & 2 & & & c_{13} \\ a_{13} & & & & & & & & 8 & & \\ & & b_{13} & & & & & & & 6 & \\ & & & c_{13} & & & & c_{23} & & & 2\end{array}\right)$.

Before we state the last theorem let us make the following observation:
Remark 2.10. For two numbers p_{1}, p_{2}, the inequality

$$
2 \max _{i=1,2} p_{i} \leqslant \sum_{i=1}^{2} p_{i}
$$

holds if and only if $p_{1}=p_{2}$. Thus in this case, the solution of the 2×2 problem for $p_{1}, p_{2}, p_{1}, p_{2}$ exists if and only if $p_{1}=p_{2}$ and $p_{1} \geqslant 1$; indeed, the solution is $P=\left(\begin{array}{cc}p_{1} & \sqrt{p_{1}^{2}-1} \\ \sqrt{p_{1}^{2}-1} & p_{1}\end{array}\right)$ since $P^{-1}=\left(\begin{array}{cc}p_{1} & -\sqrt{p_{1}^{2}-1} \\ -\sqrt{p_{1}^{2}-1} & p_{1}\end{array}\right)$.

This enables us to prove that the sufficient condition in Theorem 2.8 is also necessary if $m=2$.

Theorem 2.11. Let A_{1}, B_{1} be positive definite matrices of the same order and let A_{2}, B_{2} be positive definite matrices of the same order. Then the completion
problem $A_{1}, A_{2}, B_{1}, B_{2}$ has a solution if and only if all the eigenvalues of both matrices $A_{1} B_{1}$ and $A_{2} B_{2}$ are greater than or equal to one and those greater than one in $A_{1} B_{1}$ coincide with those of $A_{2} B_{2}$ (including multiplicities).

Proof. Let first the completion problem for $A_{1}, A_{2}, B_{1}, B_{2}$ have a solution, let

$$
A=\left(\begin{array}{cc}
A_{1} & A_{12} \\
A_{12}^{*} & A_{2}
\end{array}\right), \quad A^{-1}=\left(\begin{array}{cc}
B_{1} & B_{12} \\
B_{12}^{*} & B_{2}
\end{array}\right)
$$

be this solution. Then

$$
\begin{aligned}
& A_{1} B_{1}+A_{12} B_{12}^{*}=I_{1}, \\
& B_{2} A_{2}+B_{12}^{*} A_{12}=I_{2}
\end{aligned}
$$

which implies that the matrices $A_{1} B_{1}-I_{1}$ and $B_{2} A_{2}-I_{2}$ have the same non-zero eigenvalues including multiplicities. In the notation of Theorem 2.7 this means that those numbers $d_{k}^{(1)}$ which are greater than one coincide with such numbers $d_{j}^{(2)}$ including multiplicities.

Conversely, let this last condition be satisfied. Observe that in such case, the sufficient condition of Theorem 2.8 is fulfilled.

Remark 2.12. The problem of necessary and sufficient conditions for the block case and $m>2$ remains open.

References

[1] M. Fiedler: Über eine Ungleichung für positiv definite Matrizen. Math. Nachrichten 23 (1961), 197-199.
[2] M. Fiedler: Relations between the diagonal elements of two mutually inverse positive definite matrices. Czechoslovak Math. J. 14(89) (1964), 39-51.
[3] M. Fiedler and V. Pták: A new positive definite geometric mean of two positive definite matrices. Linear Algebra Appl. 251 (1997), 1-20.

Authors' addresses: Miroslav Fiedler, Academy of Sciences of the Czech Republic, Institute of Computer Science, Pod vodárenskou věží 2, 18207 Praha 8, Czech Republic; Vlastimil Pták, Academy of Sciences of the Czech Republic, Mathematical Institute, Žitná 25, 11567 Praha 1, Czech Republic.

[^0]: ${ }^{1}$ Research supported by grant CiA AV 130407.

