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Abstract. Reaction-diffusion systems are studied under the assumptions guaranteeing dif­
fusion driven instability and arising of spatial patterns. A stabilizing influence of unilateral 
conditions given by quasivariational inequalities to this effect is described. 
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INTRODUCTION 

Let us consider a bounded domain in Uk with a lipschitzian boundary T and real 
differentiable functions / , g on (R2. We will study reaction-diffusion systems 

(RD) ut =diAiz + / (u ,v) , 

vt = d2 Av + g(u, v) on [0, +00) x tt 

with positive parameters d\, d2. Let Tp, rNr, Tu be pairwise disjoint subsets of T, 
meas(r \ V-p U T^ U Tu) = 0, measTp > 0. Suppose that u, v are nonnegative 
constants, f(u,v) = g(u,v) = 0. Particularly, u, v is a constant solution of (RD) 
with boundary conditions 

/ .- i^\ _ T-, du dv ^ _ _ 
(CC) u = u, v = v on Vx>, — = - - = 0 on T^r U Tu. 

on on 
The research is supported by the grant No. 11958 of the Academy of Sciences of the 
Czech Republic 

469 



Simultaneously, we will consider unilateral conditions of the type 

(UC) 

u = u, v = v on Гp, 
дu дv ^ 
- = - = 0 on Г*, 
дv 
дn 

u(x)-ӣ+ I Ф(x,y)^(y)dГ(y)j^-=0 on ГŁ 

= 0, u(x)^u-J *(x,y)?£(y)ar(y), ^ 0 , 

•J *(x,y)?£(y)dr(y))-

where $ E C 2 ( r ) , $ ^ 0 (see Remark 1.1 for details). We will always suppose that 

(SIGN) 6n > 0, 612 < 0, 621 > 0, 62 2 < 0, bn + 622 < 0, det6 i j > 0 

where 6n = §£(u,i5), b12 = ^(u,v), 62i = fj(u,£), 622 = §£(**,v)- This condition 
corresponds to a class of activator-inhibitor (or prey-predator) systems. Our aim is 
to show a certain stabilizing influence of unilateral conditions of the type (UC) to the 
following effect (diffusion driven instability) known for the classical problem (RD), 
(CC) under the assumption (SIGN): The constant solution [u, v] is stable as a solution 
of the corresponding problem without any diffusion but as a solution of (RD), (CC) 
it is stable only for some [di, d2] £ U\ (domain of stability) and unstable for the 
other [di,G?2] € R+ (domain of instability). See Fig. 1, Proposition 1.1 and references 

therein. Spatially nonconstant stationary solutions (spatial patterns) bifurcate from 

u, v at the border between the domain of stability and instability while bifurcation 

is excluded in the domain of stability. We will prove that bifurcation of stationary 

solutions of the unilateral problem (RD), (UC) is excluded not only in the domain of 

stability (corresponding to (RD), (CC)) but also in a part of the domain of instability 

(see Theorem 1.1). This means that if a unilateral condition is prescribed for the 

activator (or prey) then the bifurcation can occur in a certain sense later than in the 

classical case (see Interpretation). This can be understood as a stabilizing effect of 

unilateral conditions given for the activator. 

In the sequel, we will suppose without loss of generality u = v = 0. Then the 

stationary problem corresponding to (RD), (UC) can be formulated in the weak 

sense as a quasivariational inequality 

u,v eH, u € Ku, 

(I) (d\u - bnAu - b\2Av + N\(u,v),<p - u) > 0 for all </? G Ku, 

d2u - 621 Au - b22Av + N2(u,v) = 0 

where 

(A) A: V -> V is a completely continuous symmetric positive operator 
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in a suitable Hilbert space V (see Weak Formulation 1 A), (HI is a suitable subspace 

ofV, 

(N) Nj: V x V -> V (j = 1,2) are completely continuous operators satisfying 

Urn « = , , 
||«/||->o HUII 

and JCu, it G 0-0 is a system of closed convex sets in V satisfying certain assumptions 
(see Weak Formulation 1.2). The main result will be formulated for such abstract 
problems. The inequality (I) will be compared with the corresponding system of 
equations 

(E) diu - bnAu - bi2Av-\-Ni(u,v) = 0, 

d2v — b2iAu — b22Av -I- N2(u,v) = 0 

which can represent the weak formulation of the stationary problem corresponding 
to (RD), (CC) (see Weak Formulation 1.1). In fact, the corresponding linearized 
systems 

u,v e H ,u E Ku, 

( I I ) (d\u — buAu - b\2Av, <p - u) ^ 0 for all <p £ Ku, 

d2v — b2\Au — b22Av = 0 

and 

(EL) diu - bnAu - bi2Av = 0, 

d2v — b2\Au — b22Av = 0 

will play an essential role. Of course, the problem ( I I ) is nonlinear again. 
Notice that a result of the type mentioned was briefly explained in [5] for a special 

case of unilateral conditions described by variational inequalities and generalized in 
[8] for conditions described by inclusions. The conditions (UC) with $ = 0 are in­
cluded in [5], [8] but the general case ($ ^ 0) is contained neither in [5] nor in [8]. 
(On the other hand, conditions given by inclusions cannot be described by quasi-
variational inequalities in general.) The opposite, destabilizing effect of unilateral 
conditions given by quasivariational inequalities for the function v describing the 
inhibitor (predator) was described in [6]. There it is proved that if such a unilat­
eral condition is prescribed for v then stationary spatially nonhomogeneous solutions 
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bifurcate already in the domain of stability of the constant solution of (RD), (CC) 
where the bifurcation for (RD), (CC) is excluded. In terms of an interpretation, it 
means that if a unilateral condition is prescribed for the inhibitor then the bifurca­
tion arises in a certain sense sooner than in the case of classical boundary conditions 
(see Weak Formulation 1.2, Motivation of Unilateral Conditions and Interpretation). 
An analogous result for the case of variational inequalities was proved in [1], [13] and 
generalized to inclusions in [7]. A certain destabilizing effect of unilateral conditions 
given by variational inequalities for the inhibitor in terms of loss of stability of the 
trivial solution of the linearized unilateral problem was proved in [2], [3], [13]. 

Analogously as in the case of bifurcation problems for inequalities, one of the basic 
dificulties in the study of bifurcations of (I) is that the "linearization" ( I I ) of the 
problem (I) is a strongly nonlinear problem. 

1. GENERAL REMARKS 

For simplicity, it will be always supposed that u = v = 0. 

Nota t ion . 

IR+—the set of all positive reals, R+ = IR+ x [R+, 

q > 2—a given real number such that W^O.) C Lq(Q), i.e. q < ^~ o r Q arbitrary if 

k ^ 3 or k = 2, respectively, 

V = {cp e Hl(fl); (D = 0 on Tp in the sense of traces} (H1^) is the usual Sobolev 

space), 

H£(fl) = {</> E H1^); Ap e Lq.(Sl)} where \ + ± = 1, 

H = .ff£(fi)nv, 
(<̂ 5 ijj) — J^ \7ip\7\j) dx, H^ll2 = (<£, <p,)—the inner product and the norm on V (which 

is equivalent to the usual norm on V under the assumption measTp > 0), 

M = ( J o d V ^ d a ; ) * + ( / „ |A9|"* d z ) ^ - t h e norm on H, 

A, Nj—operators introduced in Weak Formulation 1.1 (see also Lemma 1.1), 

U = [u, v]—elements of V x V, AU = [Au, Av] for U = [u, v] G V x V, 

(U,W) = (u,w) + (v,z), IIUH2 = | H 2 + IMI2 for U = [u,v], W = [w,z] e V x V, 

lUlp = |u|I2 + | v p for U = [u,v] e H x H, 

Hi(V), H~i(T)—the space of traces of functions from HX(H) and its dual space 

(see [9]), 

$(x,y)—a given smooth nonnegative function on F x T—Remark 1.1, 

Ku (u e H)—a system of closed convex sets introduced in Weak Formulation 1.2, 

—>, —- —strong convergence, weak convergence, 
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Kj, ej (j = 1,2,...)—the characteristic values and characteristic vectors of the op­

erator _4, i.e. eigenvalues and eigenvectors of -Au = Xu with (CC) (see Weak 

Formulation 1.1), 

Cj
E = {d= [dud2] G R*.; d2 = £111$. + ^ f } , j = 1,2,3,. . .-hyperbolas from 

Fig. 1, 

* . k C % CE 1 ^'d(s) 

DUL''I 
Л 1 

/ Ds 

^ ^ C E 

/ Ds 

0 *<*. 

F ig . l 

CE—the envelope of the hyperbolas CE, j = 1,2,3,... (see Fig. 1), 

Ds—domain of stability—the set of all d G R_j_ lying to the right from CE (see 

Fig. 1), 
£)[/—domain of instability—the set of all d € R+ lying to the left from CE (see 

Fig. 1), 
C? = {d= [di,d2] G C E ^ d2 ^ R}, 

C*(e) = {d= [di,d2] e Du;r^d2^ R, dist(d,C^) < e}, 
EB(d) = {U G V x V; (EL) is fulfilled}, £S(A) = {u G V; (2.5) is fulfilled}, 
critical point of (EL)—a parameter d G R+ for which (EL) has a nontrivial solution, 
critical point of ( I I ) — a parameter d G R+ for which ( I I ) has a nontrivial solution, 
bifurcation point of (E) or (I)—a parameter d° G IR+ such that in any neighbourhood 

of [d°,0,0] in tR2_ x V x V there exists [d,U] = [d,u,v], ||U|| 7- 0 satisfying (E) or 

(I), respectively, 
bifurcation point of (2.7) or (2.8)—a parameter SQ G IR such that in any neighbour­

hood of [50,0,0] in IR x V x V there exists [5, U] = [s, u, v], ||U|| 7- 0 satisfying (2.7) 

or (2.8), respectively. 
Of course, any bifurcation point of (E) is simultaneously a critical point of (EL) . 

Similarly for (I), ( I I ) (see Lemma 1.2). 
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Weak Formulation 1.1. Set 

ni(u,v) = bnu + bi2v - f(u,v), n2(u,v) = b2iu + b22v - g(u,v) 

and suppose that 

(1.1) \nj(u,v)\ ^ c(l + H 9 " 1 + lUI^1), j = 1,2 

with < 7 > 2 o r 2 < < 7 < -2k- in the case k = 2 or k > 2, respectively. Then the 
Nemyckij operator u,v -» nj(u,v) of Lq into Lq* is continuous. Define operators A: 
V -> V, Nj: V x V - • V (j = 1, 2) by 

( A M , ^ ) = u(fdx for all u,(p eV, 
Jn 

(Nj(U),(f) = / nj(w,v)(Ddx for all U = [u,v] E V x V, <D G V, j = 1,2. 
Jft 

Then (A) and (N) follow from the compactness of the imbedding V C Lq and the 
continuity of the Nemyckij operator of Lq(ft) into Lg*(H), - + 4r = 1 (see Lemma Al 
and Consequence Al in Appendix for details). The system of operator equations (E) 
is the weak formulation of the stationary problem 

(RDS) diAu + / ( ix , t ; )=0, 

d2Av + g(u,v) = 0 

with the classical boundary conditions (CC). Further, 

(EP) diu - bnAu - h2Av + XAu = 0, 

d2v — b2iAu — b22Av + XAv = 0 

is the weak formulation of the eigenvalue problem 

(RDA) di Au + bnu + bi2v = Xu, 

d2Av + b2iu + b22v = Xv 
with (CC) describing the stability of the trivial solution of (RD), (CC) (see e.g. [14]). 

Remark 1.1. For any u E H^ ($1) we can define the normal derivative | ^ at 
T as a functional from H--" (F) such that the Green formula holds and the mapping 
u -» | ^ of H^ (ft) into H"i(V) is continuous (see Lemma A2 in Appendix for 
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details). Consider a nonnegative function $ on T x T which can be extended onto 

l l x i l such that 

($) $ G C2(n x ft), $(x,y) = 0 for all x,yervxT. 

i 

Particularly, $(#,-) € W2
2 (^) f° r a n y ^ £ F and the boundary conditions (UC) for 

u, v G H can be understood in the sense of functionals | ^ , | ^ G H~2 (V). Particu­

larly, integrals are understood as the duality between H^(r) and H~-"(r), | ^ ^ 0 

on T^ means J r |^<Ddr ^ 0 for all (/? G H5(r) satisfying </? ^ 0 on T^, cp = 0 on 

Yx> U T^, the last condition in (UC) (with u = v = 0) means 

/ u(x)+ / Ф ^ ^ ^ Ы d Г Ы 
jг,, . jг„ on 

^ O r ) d Г ( : r ) = 0. 

(Note that clearly / г Ф(-,y)^(y) dГ(y) Є # г ( Г ) under our assumption.) 

Weak Formulat ion 1.2. For any м Є Н, define a closed convex set Ku in V 

by 

Ku = UeV; <p(x)ž-f Ф(x,y)^(y)dГ(y)onГu\ 

where Ф is from Remark 1.1 and the integral is understood as the duality between 

H (Г) and H~2(Г) (see Remark 1.1). It is natural to introduce a weak solution 

of the problem (RDs), (UC) (with ӣ = v = 0) as a solution of the quasivariational 

inequality (I). It is easy to see that such a solution u,v satisfies (RDs) a.e. on Гž and 

the boundary conditions (UC) are fulfilled in the sense of Remark 1.1. Particularly, 

І ^ O o n Г м . 

By using Weak Formulation 1.2 and Remark 1.1 (see also Lemma A2 in Appendix) 

it is easy to see that the sets Ku satisfy the following conditions: 

(0) if u,v satisfy (I) with some [dьdг] Є IRj then 0 Є Ku, 

(НK) if u Є (гO, t > 0 then u Є Ku if and only if tu Є Ktu, 

(CK) if un Є 0-0, ҷ>n Є KUn, un —- u in 0-0, ҷ>n —- ҷ> in V then ҷ> Є Ku, 

(AK) if un,u Є (rÐ, un —- u in lrfl, ҷ> Є Ku, 

then there exist ҷ>n Є KUn, ҷ>n —> ҷ> in V. 

(We can choose ҷ>n = ҷ> + fn — f where 

fn(x) = J Ф(x,y)-^( î ,)dГ(j/), f(x) = J Ф(x,y)^(y)dT(y), 
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/ n -+ / in V under the assumption ($)) . 

oo 

Proposition 1.1. Let (SIGN) hold and let measTp > 0. Then \J C3
E is the set 

3 = 1 

of all critical points of (EL) . Particularly, there are no bifurcation points of (E) in 

Ds- If d G Ds then all eigenvalues of (EP) (i.e. of (KD\), (CC)j have negative real 

parts. If d G D\j then there exists at least one positive eigenvalue. 

Ifd G CE for s = j , . . . , j + f c -1 (i.e. either k is the multiplicity of the eigenvalue K,J, 

CE = . . . = C3
E , ord is in the intersection of two different hyperbolas CE, CE and 

k is the sum of the multiplicities oft^j, m) then EB(d) = Lin{[d2^~b-2 es, e , , ] } ^ " 1 . 
Particularly, the trivial solution of (RD), (CC) is stable and unstable for d G Ds 

and d G D\j, respectively. 

P r o o f . For the special case fc = 1 see e.g. [10], for the general case see [3]. See 
also Weak Formulation 1.1. • 

Observation 1.1. For any w G l , denote by Pu the projection onto the closed 
convex set Ku in V, i.e. 

Puz G Ku, \\Puz - z\\ = min ||<D - z\\ for all u G H, z G V. 

It is well-known and easy to see that for any v G H and z G V, Pvz is the only 

element from Kv satisfying 

(Pvz — z,y - Pvz) ^ 0 for all y G Kv 

(see e.g. [15]). Further, Ptvtz = tPvz for all v G H, z G V, t > 0. 

Observation 1.2. According to Observation 1.1, the problem (I) and ( I I ) is 
equivalent to 

diu- PdlU(buAu-\-bi2Av - Ni(u,v)) = 0, 

d2v - b2\Au - b22Av + N2(u, v) = 0 

and 
d\u - PdlV (bnAu + bi2-4U) = 0, 

d2v - b2\Au - b22Av = 0, 

respectively. 

Lemma 1.1. The operators A and Nj are completely continuous as the mappings 

H -> H and H x H -> H, respectively. IfUn = [un, vn] -+ 0, Wn = [wn, zn] = p ^ | - -
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W = [w,z] in H, dn = [<%,<%] -+ d = [di,d2] then 

^ « [ K ) " 1 (6n-4ti;n + &i2-4*n - ^ l ^ i ^ ) ] "+ Pw[dTl(bnAw + b12Az% 

b21Awn + b22Azn - N 2 ^ n ) -+ b21Aw + b22Az in H. 

Proof . We will prove only the first convergence in (1.2), the proof of the other 
assertions is simpler. Set 

yn = PWn [(df)-i (bnAwn + b12Azn - Nl{^n))] • 

It follows from Observation 1.1 that 

(yn - K ) _ 1 (hiAwn + b12Azn - N l ^ n ) ) , V - yn\ ^ 0 for all V € KWn. 

Choosing ip = yn±ip with an arbitrary <D G V(Q) we obtain 

J Vj/„V^ - (di)-1 (bnwn + b12zn - " ' j ^ j ^ y d - = 0 for all <p 6 V(Sl), 

i.e. 

n1(un,vn)\ (1-3) Дy„ = Ю " 1 (bnwn + b12zn ш 
in the sense of distributions and, as a result of (1.1), Ayn G Lg*(ft) (see Weak 
Formulation 1.1). Hence, yn G HI. Let -0 G Kw be fixed. It follows from (AK) that 
there exist ijjn G KWn such that Vn —r ^ m V. Put 

z„ = K ) - 1 (bnAwn + b12Azn - Nli£jn)) • 

It follows from (A), (N) that xn -» x = elf ̂ bn-Aiv + b12Az) in V. We get 

Ikn ~ Vn\\ = \\xn ~ PwnXn\\ ^ \\xn ~ l/>n\\ 

and therefore yn = (yn — xn) + xn is bounded in V. Thus we can suppose yn —- y in 
V and we obtain 

\\x - 3/|| < liminf \\xn - yn\\ ^ limsup \\xn - yn\\ ^ \\x - ip\\. 
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We have yn = PWnxn G KWn, (CK) implies y G Kw and therefore the last inequality 

holding for any ip G Kw means y = Pwx. Setting ip = y, the last inequality gives 

xn — Vn -> x — y, i.e. yn -> y in V. Analogously as (1.3) above we obtain 

(1.4) Ay = -d-l(blxw + b12z) G L,*(ft). 

It follows from (1.1) that nijfc''i|| -> 0 in Lg*(ft) (see Lemma Al in Appendix for 

detailes). Hence, (1.3), (1.4) gives Ayn -> Ay in Lq* (ft) and finally yn -> y in H. D 

Remark 1.2. If dn,Un satisfy (I), dn -> d, \\Un\\ -> 0 then also | |U n | -> 0. 

In other words, if d is a bifurcation point in the sense of our definition (i.e. with 

respect to the norm || • ||) then it is simultaneously a bifurcation point with respect 

to the norm ||| • |||. Otherwise we would have dn = [dn,dn],Un = [wn^n] satisfying 

(I), dn -> d, \\Un\\ -> 0, | |Un | ^ e > 0. Setting Wn = [wn,zn] = j - ^ r we would have 

HIV̂nHI —•> oo. Dividing (I) by ||Un||, we would obtain analogously as in the proof of 

Lemma 1.1 that 

A (jn\-l(U , U rii(un,Vn)\ 

Awn = (dn) \buwn + bi2^n -—-|—J 

A (An\-l(u J U n2(un,Vn)\ Azn = (d2) [b21Wn + b22^n 7—r J 

in n. But the right hand side should be bounded in Lq*(Vt) (see Lemma Al in 

Appendix for details), i.e. Awn, Azn should be bounded in Lq* (ft), i.e. Wn bounded 

in 0-0, which is a contradiction. 

Lemma 1.2. Let (SIGN) be fulfilled. Then any bifurcation point (f of (I) is 

simultaneously a critical point of ( I I ) . 

P r o o f . Let dP = [dj, d^] be a bifurcation point of (I). According to Remark 1.2 

and Observation 1.2, there exist dn = [dn,dn], Un = [un,vn] such that dn -> d°, 

| | U n | > 0 , | | | U n | ^ 0 , 

un,vn eM, un G KUn, 

dnun - P d n U n (bnAun + bi2-4Un - Ni(un,vn)) = 0, 

d2vn - b21Aun - b22Avn + N2(un,vn) = 0. 

We can suppose p ^ - | --- W = [w,z] in (HI. Dividing the last equations by d n | |U n | , 

dnIIUnll, using Lemma 1.1 and (HK) we obtain p ^ | -> w, p?j-| -> z in H, 

-гt; i W,Z Є M, W Є Kг 

đì™ - PĄWІЬЦAW + b12Az) = 0, 

<£z - b21Aw - b22Az = 0. 
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Hence, dP is a critical point by Observation 1.2. 

2. MAIN RESULTS 

We will always have in mind operators, spaces and convex sets from Weak Formu­
lations 1.1 and 1.2. Hence, solutions of the quasivariational inequality (I) or ( I I ) are 
weak stationary solutions of (RD), (UC) or of the corresponding linearized system 
with (UC). In fact, however, we could formulate our results for general Hilbert spaces 
HI C V, operators A, N and systems of closed convex sets Ku,u G HI such that the 
conditions (A), (N), (0), (HK), (CK), (AK) are fulfilled and that the assertion of 
Lemma 1.1 holds. 

If d G CE is such that there is U = [u, v] G EB(d) satisfying u G Ku, \\U\\ ^ 0 then 
d is simultaneously a critical point of ( I I ) and it can be also a bifurcation point of 
(I). We are interested in cases when this situation is excluded and therefore we shall 
deal with critical points d of (EL) satisfying the condition 

(2.1) if U = [u,v] G EB(d), IIUH 7- 0 then u <£ Ku. 

(Note that clearly U G H x HI for any U G EB(d).) 

Observation 2 .1 . Consider the situation from Weak Formulations 1.1 and 1.2. 
If u changes its sign on Tu for any [u,v] G EB(d) then the condition (2.1) is fulfilled. 
Indeed, if [u,v] G EB(d) then | ^ = 0 on Tu and the assertion follows. 

Observat ion 2.2. If (2.1) holds for some dP G CJ
E then it holds for all d G 

CE\ |J CE where I is the set of all indices of all hyperbolas which do not coincide with 
eei 

CE, i.e. it holds for all d G CE possibly with the exception of the intersection points 
with the other hyperbolas (see Proposition 1.1 and Fig. 1). Indeed, Proposition 1.1 
gives EB(d) = Lm{[d^-h^es,es]y^krl for all d G Cj

E \ IJ Ce
E where k is the 

21 s J eei 
j+fc- i 

multiplicity of Kj and therefore (2.1) for such d means u £ Ku for any u = ~~ cses, 
s=j 

cs G IR, and our assertion follows. For d G CJ
E D CE, CE ^ CJ

E, j < £ we have 
EB(d) = Lm{[d*K*~bi2 es, e8]}it!j~l where k is the sum of the multiplicities of Kj, KI 
by Proposition 1.1. Similarly as above, it follows that (2.1) is fulfilled for d = d if 
and only if it holds for all d G CE U CE. Analogously for the case j > £. 

In general, it follows from Proposition 1.1 and the assumption (HK) that it is 
sufficient to know eigenvectors of the operator A (i.e. of —A with (CC) in case of 
the operator from Weak Formulation 1.1) for verifying the condition (2.1). 

479 



Theorem 2.1. Suppose that (SIGN) holds and measTD > 0. Then there is no 

critical point of (IL) in Ds. If (2.1) is fulfilled for all d G Cf with someO <r ^ R then 

there exists e > 0 such that there is no critical point of ( I I ) in C^(e). Particularly, 

there is no bifurcation point of (I) in C^(s) U Ds-

Remark 2.1. Recall that if 5 is a linear completely continuous symmetric 

operator in a real Hilbert space V and if 

Am = max (Sep, ip) > 0 
M = -

then Am is the greatest eigenvalue of 5 and u ^ 0 is a corresponding eigenvector if 

and only if ^jffi = Am. 

P r o o f of T h e o r e m 2.1. First, let d = [d\,d2] G CE be fixed and consider 

the problem 

u,v G D-0, u G Ku, 

(2.2) (Xu - b\\Au - b12Av, <p - u) ^ 0 for all (p G KTU, 

cfô  — b2\Au — b22Av = 0 

with the only parameter A. Under the conditions (A), (SIGN), the existence of the 

%Ay
lto(l-% inverse (/ — ^p--4) to (J - ^-A) in V is ensured and the last equation in (2.2) is 

equivalent to 

(2.3) ^h-^AY'^Au. 
V d2 / d2 

Substituting into the inequality in (2.2) we obtain 

(2.4) (An - Su, if - u) ^ 0 for all <p G Ku 

where 

SU = ЬПAU+Ь-^A(І-ЏAY Au 
d2 \ а2 / 

bl2b21 , /> _ _2 

I2 ^ <^2 

is a linear completely continuous symmetric operator in V. Analogously, the system 

of equations 

Xu - b\\Au - b\2Av = 0, 

d2v - b2\Au - b22Av = 0 
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is equivalent to 

(2.5) Xu - Su = 0 

with (2.3). 
Let [A,d2] be a critical point of ( I I ) , i.e. there exists a nontrivial u G HI satisfying 

(2.4), u G Ku. We can suppose \\u\\ = 1 in view of the condition (HK) and set 
(D = 0 in (2.4) in view of the condition (0). Hence, A -̂  (Su,u). It follows from 
Proposition 1.1 and the above considerations that Am = d\ is the greatest eigenvalue 
of the operator S and this together with Remark 2.1 gives A ^ di. The point 
[d\, d2] G CE was arbitrary and it follows that there is no critical point of ( I I ) in Ds-

Further, let us show that 

(2.6) if d = [di,d2] G C^ and [A,d2] is a critical point of ( I I ) then A < di . 

We already know that A ̂  d\ under the assumptions of (2.6). Suppose that A = di, 
i.e. d = [di,d2] G C^ is a critical point of ( I I ) . Then there is U = [u,v], \\U\\ ^ 0 
satisfying ( I I ) , that means also (2.3), (2.4) hold with A = di . Particularly, u G Ku 

and the assumption (2.1) implies [u,v] £ Es(d), that means u £ Es(d\) according to 
the above considerations. Remark 2.1 implies (Su,u) < d\ (because (Su,u) attains 
its maximum only at eigenvectors of 5). Simultaneously, setting </? = 0 in (2.4) we 
obtain 

4 (u,u) ^ (Su,u), 

which is a contradiction. Hence, (2.6) is proved. 
Suppose that the assertion of Theorem 2.1 is not true. It follows from (2.6) that 

then there exist dn = [dn,dn] G Du and Un = [un,^n] € M such that d2 G [r, R], 

dn^dPe C?, | |Un | = 1, Un - - U = [u,v] in H-

un - PUn[(dn)~l(blxAun - b12Avn)] = 0, 

d2vn - bi2-4un - b22Avn = 0. 

(see also Observation 1.2). Lemma 1.1 (for N = 0) implies that Un -> U in H, 
| U | = 1. The limiting process and Observation 1.2 give ( I I ) with d = dP. That 
means d° G C? is a critical point of ( I I ) , which contradicts (2.6). The last assertion 
of Theorem 2.1 follows from Lemma 1.2. • 

Prom the point of view of an interpretation, it is natural to consider a curve d: 
(R —> 1R̂_ and bifurcation problems 

(2.7) di(s)u - bnAu- b12Av + N\(u,v) = 0, 

d2(s)v - b2iAu - b22Av + N2(u,v) = 0 
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and 

u,v G (HI, u € Ku, 

(2.8) {d1(s)u - bnAu - b12Av + Ni(u,v),(D - u) ^ 0 for all <D G Kw, 

^2(5)^ - b21Au - b22Av + N2(u,v) = 0 

with a single parameter s G (R. (See also Interpretation.) 

Consequence 2 .1 . Suppose that (SIGN) holds and measTp > 0. Consider 

a curve d: U —•> R+ such that d(s) G Ds for s < so, d(s) G L>.y for s > s0, 
d(so) = d° G C E - Then there is no bifurcation point of the inequality (2.8) in 

(-00, so). IfdP satisfies (2.1) then there exists e > 0 such that there is no bifurcation 

point of (2.8) in (-00, so + e). 

P r o o f . The first assertion follows directly from Theorem 2.1. Let dP satisfy 
(2.1) and suppose by way of contradiction that there exist bifurcation points sn of 
(2.8), sn ^ s0, sn -j> s0. Then [d1(sn),d2(sn)] are critical points of ( I I ) by Lemma 1.2 
and the same considerations as in the last part of the proof of Theorem 2.1 imply 
that dP is a critical point of ( I I ) , which contradicts Theorem 2.L D 

Motivation of Unilateral Conditions. The unilateral condition in (UC) 
can describe for instance a semipermeable membrane allowing the flux through the 
boundary only in one direction, or some other kind of regulation by a certain source. 
Consider that a reaction described by our system takes place in a domain Q, which is 
embedded in a reservoir with fixed concentrations u, v of the activator and inhibitor. 
None of these substances can cross the part I V of the boundary, both substances 
can flow through Tx> in both directions. The part Tu represents a semipermeable 
membrane allowing the flux of the activator only inwards 0 and no flux of the 
inhibitor through the boundary The case $ = 0 corresponds to the situation when 
the concentration of u (activator or prey) outside Q is precisely u and the natural 
flux into the domain balances the concentration in Q near Tu in case of its decrease 
in Q,. An increase of the concentration of the activator in ft is not influenced by 
the concentration in the reservoir because the flux outwards ft is not allowed. The 
case $ ^ 0 corresponds to an analogous situation but with the concentration in the 
reservoir depending on the amount of the material just flowing into Q, (cf. [11], where 
existence results for some other problems with boundary conditions of this type are 
given). If $(x,y) = $(y) then the concentration in the whole reservoir remains 
homogeneous and depends only on the flux throug the whole Tu- (This corresponds 
to an "infinite diffusion" of the activator in the reservoir.) But we can describe also 
the case when the flux at a given point x G Tu influences the concentration only 
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in a neigbourhood of x. We can choose $ such that §(x,y) > 0 for y only from a 

neighbourhood of x and $(x,y) = 0 elsewhere, or such that $(x,y) is small if y is 

far from x in some sense. 

Interpretation. The changing of the diffusion parameters along a given curve 
d: IR+ -> (R+ going from the domain of stability Ds to the domain of instability 
D\j can correspond to a development of the system described by our equations. The 
simplest example is the curve d\(s) = d^s~x, d2(s) = d^s~x which can correspond 
to a growth of the domain f£, s being proportional to the size of fi. (This can be 
shown by a simple substitution.) Particularly, if dP £ CE, d(s) £ D$ for s < SQ = 1 
then the constant solution * of the problem 

ut = di(s)Au + /(tt,i;), 

v* = d2(s)Av + g(u,v) 

with (CC) is stable and no bifurcation can occur as far as s < So (see Proposition 1.1), 
i.e. for domains of size less than a certain critical size. The stability of the constant 
solution is lost when the critical size of the domain is reached and simultaneously 
stationary spatially nonhomogeneous solutions (spatial patterns) bifurcate from the 
constant solution under certain additional assumptions (e.g. odd multiplicity of the 
corresponding eigenvalue—see e.g. [10]). 

The sense of Theorem 2.1 (or Consequence 2.1) is that if the activator (prey) is 
regulated by the unilateral condition under consideration then (under certain as­
sumptions) spatial patterns can arise only later from the point of view of the devel­
opment of the system (e.g. from the point of view of the growth of the domain) than 
in the case of the corresponding classical problem (RD), (CC). On the other hand, it 
is proved in [6] that if the inhibitor (predator) is regulated by a unilateral condition 
then spatial patterns arise already in the domain of stability, i.e. sooner from the 
point of view of the development, e.g. already for smaller domains ft than for (RD), 
(CC). 

APPENDIX 

Lemma A l . If (1.1) holds and Un = [un,vn] -> 0 in V then n'\"£\\n) -+ 0 in 

Lq+. Particularly, ifUn = [un,vn] £ (HI, Un -» 0 in (HI then M ^ ' m ^ -> 0 in Lq* • 

Consequence A l . Under the assumption (1.1) the condition (N) is fulfilled. 

* which is supposed to be zero in our mathematical considerations 
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P r o o f . Let e > 0 be arbitrary, let C\ be the constant of the imbedding W\ (ft) C 
Lg(ft). It follows from the definition of rij (Weak Formulation 1.1) that there exists 
6 > 0 such that 

(Al) if M*-1 4- M*-1 < (5 then ? i - M <C - . 

The continuity of the imbedding VVJ c L^ implies that pJSp jr̂ -n- are bounded in 
L9(ft) and it follows that there is £ > 0 such that 

(A2) if N Cft, measjN < £ 

t h e n ^ ( ^ + l)'* / ( K ( x ) r i
 + K ( x ) r i y ' d x < £ 

J/V ^ IIUnll ' 

where c is from the assumption (1.1). The Jegorov theorem ensures the existence of 
N C ft such that 

(A3) meas N < f, Un -> 0 uniformly on ft \ N 

and therefore there is n0 such that 

(A4) \un(x)\q~l + lUn(^)!9"1 < (5 for all x G ft \ N, n ^ n0. 

Introduce the sets 

N,n = {x € ft; K W I 9 " 1 + \vn(x)\q~l > 6). 

Writing ! * j ^ = ^ ^ { x ) \ l - ( - jH^( - ) l for x such that \un(x)\ + K ( s ) | > 0 
we obtain by (Al) 

We have JVj1 C N for all rc ^ no by (A4). Hence, we obtain by using (1.1), (A2) that 

(A6) f / n j ( u n , i ; n ) y - f (cjl + frnjxW-1 +\vn(x)\i-1)y* 

. f (cjs-1 + i)(K(-T)rx + K (x ) r ' ) y - A„ , _ 
*y**v iiU„n ) d x < £ -

But s > 0 was arbitrarily small and therefore our assertion follows from (A5), (A6). 

• 
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Further, let T0 be the unique linear continuous mapping of Hx(ft) onto the space 

of traces 11- (V) of functions from H1(Q) such that T0u is the restriction of u to V 

for u G C(ft) n H1^) (see e.g. [9]). 

Lemma A2. There is a uniquely defined continuous mapping Tn: H^ (ft) -> 

H-i(T) such that Tnu = | ^ ifue Cx(ft) and 

(A7) / Aucpdx = / TnuT0ipdT - f VuV<pdx for all u G H% (ft), <p e Hx(ft) 
Jn Jr JQ 

where the integral over T is understood as the value (Tnu,T0ip) 1 of the functional 

Tnu G H~i(F) at T0<D G Hi(T). We can write f̂  instead ofTnu. 

P r o o f . There exists a linear continuous mapping tp —> dp of H 2 (r) into H1 (ft) 
such that T0<£ = <p for all (D G H^(r) (see [9]). Hence, for any u G H^ (ft), we can 
define Tnu by 

/ Tnu<p d T = (Tnu,ip)i = / VuV^dx-f / Aw^da; 
Jr 2 Jn Jfi 

f o r a l l u G H f (ft), (DGH^(T). 

It follows from the continuity of the imbedding H*(ft) C Lq*(ft) that 

||Tnix|| 1 = sup (Tnu,ip)i ^C sup ( / VuV</?d:r+ / Auipdx 
H \M\H±<i 2 H i f ^ i W Q Jn > 

^ C sup ( / |Vix|2 dx) ( f I V(^|2 dx 
ll^ilHi<i L W n J \JQ J 

+ (^j^Au\«uxy (^j^\*dxy <tc\\u\\H£. 

This means that the linear mapping T n : H^ (ft) -» H~i(T) is continuous. D 
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