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Abstract. Reaction-diffusion systems are studied under the assumptions guaranteeing dif-
fusion driven instability and arising of spatial patterns. A stabilizing influence of unilateral
conditions given by quasivariational inequalities to this effect is described.
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INTRODUCTION

Let us consider a bounded domain in R* with a lipschitzian boundary I' and real
differentiable functions f, g on R2. We will study reaction-diffusion systems

(RD) us = diAu + f(u,v),
vy = doAv + g(u,v) on [0,+00) X Q

with positive parameters d;, dz. Let I'p, 'z, I'y be pairwise disjoint subsets of T,
meas(I' \I'p Uy UTy) = 0, measI'p > 0. Suppose that @, U are nonnegative
constants, f(@,7) = g(@,d) = 0. Particularly, @, ¥ is a constant solution of (RD)
with boundary conditions

ou Ov

(CC) u=ﬂ,v=170n1"13,%=%=OonI‘NUFu.

The research is supported by the grant No. 11958 of the Academy of Sciences of the
Czech Republic
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Simultaneously, we will consider unilateral conditions of the type

( u=4, v=7U on [p,

ou Ov
o 0 on [y,
(UC) | v _ ou

=0, u(x)>u—/ru<1><zy)§ W), 2o,

\

0
(u(m) - a+/ &(z, y)—(y ) dL(y )) “®) _ 0 on Ty
Tu
where ® € C%(T"), ® > 0 (see Remark 1.1 for details). We will always suppose that
(SIGN) bi1 >0, b1z <0, bgy >0, baz <0, byy +b22 <0, detd;; >0

where by, = au 97 (@, D), by = —L(u 0), bay = —-‘L(u 0), bog = %{—(ﬁ,ﬁ). This condition
corresponds to a class of activator-inhibitor (or prey-predator) systems. Our aim is
to show a certain stabilizing influence of unilateral conditions of the type (UC) to the
following effect (diffusion driven instability) known for the classical problem (RD),
(CC) under the assumption (SIGN): The constant solution [&, 7] is stable as a solution
of the corresponding problem without any diffusion but as a solution of (RD), (CC)
it is stable only for some [di, d;] € Ry (domain of stability) and unstable for the
other [d,dz] € RZ (domain of instability). See Fig. 1, Proposition 1.1 and references
therein. Spatially nonconstant stationary solutions (spatial patterns) bifurcate from
i, U at the border between the domain of stability and instability while bifurcation
is excluded in the domain of stability. We will prove that bifurcation of stationary
solutions of the unilateral problem (RD), (UC) is excluded not only in the domain of
stability (corresponding to (RD), (CC)) but also in a part of the domain of instability
(see Theorem 1.1). This means that if a unilateral condition is prescribed for the
activator (or prey) then the bifurcation can occur in a certain sense later than in the
classical case (see Interpretation). This can be understood as a stabilizing effect of
unilateral conditions given for the activator.

In the sequel, we will suppose without loss of generality @ = ¢ = 0. Then the
stationary problem corresponding to (RD), (UC) can be formulated in the weak
sense as a quasivariational inequality

u,v € H, u € K,,
) (dyu — by1 Au — bi2 Av + Ny (u,v), —u) 2 0 for all p € K,
dou — by1 Au — bag Av + Nz('ll.,v) =0

where

(A) A:V — V is a completely continuous symmetric positive operator
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in a suitable Hilbert space V (see Weak Formulation 1.1), H is a suitable subspace
of V,

(N) N;: VxV =YV (j=1,2) are completely continuous operators satisfying

IN; ()|
im ———— =0,
-0 ||U|

and K,, u € H is a system of closed convex sets in V satisfying certain assumptions
(see Weak Formulation 1.2). The main result will be formulated for such abstract
problems. The inequality (I) will be compared with the corresponding system of
equations

(E) diu — b1 Au — b2 Av + Ny (u, ’U) =0,
dov — bgy Au — bya Av + NQ(’LL,U) =0

which can represent the weak formulation of the stationary problem corresponding
to (RD), (CC) (see Weak Formulation 1.1). In fact, the corresponding linearized
systems

u,v € H,u € I(,,
(I.) (diu — bi1 Au — by Av,p —u) > 0 for all p € K,
dz’U - b21Au - bzzAU =0

and

(EL) dlu - b11Au - ble’U = 0,
d2v - bglA’U, - bng’U =0

will play an essential role. Of course, the problem (Ij,) is nonlinear again.

Notice that a result of the type mentioned was briefly explained in [5] for a special
case of unilateral conditions described by variational inequalities and generalized in
[8] for conditions described by inclusions. The conditions (UC) with & = 0 are in-
cluded in [5], [8] but the general case (® # 0) is contained neither in [5] nor in [8].
(On the other hand, conditions given by inclusions cannot be described by quasi-
variational inequalities in general.) The opposite, destabilizing effect of unilateral
conditions given by quasivariational inequalities for the function v describing the
inhibitor (predator) was described in [6]. There it is proved that if such a unilat-
eral condition is prescribed for v then stationary spatially nonhomogeneous solutions
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bifurcate already in the domain of stability of the constant solution of (RD), (CC)
where the bifurcation for (RD), (CC) is excluded. In terms of an interpretation, it
means that if a unilateral condition is prescribed for the inhibitor then the bifurca-
tion arises in a certain sense sooner than in the case of classical boundary conditions
(see Weak Formulation 1.2, Motivation of Unilateral Conditions and Interpretation).
An analogous result for the case of variational inequalities was proved in [1], [13] and
generalized to inclusions in [7]. A certain destabilizing effect of unilateral conditions
given by variational inequalities for the inhibitor in terms of loss of stability of the
trivial solution of the linearized unilateral problem was proved in [2], [3], [13].

Analogously as in the case of bifurcation problems for inequalities, one of the basic
dificulties in the study of bifurcations of (I) is that the “linearization” (Ij,) of the
problem (I) is a strongly nonlinear problem.

1. GENERAL REMARKS

For simplicity, it will be always supposed that @ = ¢ = 0.
Notation.

R4 —the set of all positive reals, R% = R} x Ry,

q > 2—a given real number such that W3 () C L,(Q), i.e. ¢ < % or q arbitrary if
k > 3 or k = 2, respectively,

V = {p € H(Q); ¢ = 0 on I'p in the sense of traces} (H'(f) is the usual Sobolev
space),

HE(Q) = {p€ H'(Q); Ap € Lo (Q)} where L + L =1,

H=HL(Q)NV,

(p,¥) = [ VeV daz, [|¢l*> = (¢, ¢,)—the inner product and the norm on V (which
is equivalent to the usual norm on V under the assumption measI'p > 0),

Il = (5 (1992 dz)? + (f,, |Ap]*" dz) ™ —the norm on H,

A, N;—operators introduced in Weak Formulation 1.1 (see also Lemma 1.1),

U = [u,v]—elements of V x V, AU = [Au, Av] for U = [u,v] € V x V,

(U, W) = (u,w) + (v, 2), |U||*> = ||ul|® + ||v||? for U = [u,v], W = [w,2] € V x V,

1UI? = JJull? + [lvll? for U = [u,v] € H x H,

H2 ('), H2(I')—the space of traces of functions from H*(Q) and its dual space
(see [9]),

®(z,y)—a given smooth nonnegative function on I' x '—Remark 1.1,

K. (u € H)—a system of closed convex sets introduced in Weak Formulation 1.2,

—, = —strong convergence, weak convergence,

472



Kj, €j (j = 1,2,...)—the characteristic values and characteristic vectors of the op-
erator A, i.e. eigenvalues and eigenvectors of —Au = Au with (CC) (see Weak
Formulation 1.1),

. K2 .
CL = {d = [d,d2] € RZ; dy = %’J—, + %}, j = 1,2,3,.. —hyperbolas from
Fig. 1,
% ey, d
A ch Ch eed(s)

0 “dy
Fig. 1

CEg—the envelope of the hyperbolas C{;, j=1,2,3,... (see Fig. 1),

Ds—domain of stability—the set of all d € R% lying to the right from Cg (see
Fig. 1),

Dy—domain of instability—the set of all d € R% lying to the left from Cg (see
Fig. 1),

C,R = {d= [dl,d2] € CE; r S d2 S R},

CE(e) = {d = [d1,ds] € Dy; r < d2 < R, dist(d,Cg) < ¢},

Ep(d) ={U € V x V; (EL) is fulfilled}, Es(\) = {u € V; (2.5) is fulfilled},

critical point of (Ey)—a parameter d € R? for which (EL) has a nontrivial solution,

critical point of (IL)—a parameter d € R% for which (IL) has a nontrivial solution,

bifurcation point of (E) or (I)—a parameter d° € R% such that in any neighbourhood
of [d°,0,0] in RZ x V x V there exists [d, U] = [d, u,v],||U]|| # 0 satisfying (E) or
(I), respectively,

bifurcation point of (2.7) or (2.8)—a parameter so € R such that in any neighbour-
hood of [s9,0,0] in R x V x V there exists [s,U] = [s,u,v)], ||U]| # 0 satisfying (2.7)
or (2.8), respectively.
Of course, any bifurcation point of (E) is simultaneously a critical point of (Er,).

Similarly for (I), (I.) (see Lemma 1.2).
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Weak Formulation 1.1. Set
n1(u,v) = biiu + bizv — f(u,v), n2(u,v) = bar1u + bayv — g(u,v)
and suppose that

(1.1) I (u,v)] < e(1+ |ul®™! + [v]?7h), j=1,2

with ¢ > 2 or 2 < ¢ < Z; in the case k = 2 or k > 2, respectively. Then the

Nemyckij operator u,v — n;(u,v) of L, into L4~ is continuous. Define operators A:
VoV, N;: VxV =V (j=1,2)by

(Au,p) = / updz for all u,p € V,
Q

(N;(U),¢) = / nj(u,v)pdz foralU =[u,v] € VxV, o€V, j=1,2.
Q

Then (A) and (N) follow from the compactness of the imbedding V C L, and the

continuity of the Nemyckij operator of Lq(2) into Lg. (), %+ q—l,— =1 (see Lemma A1l

and Consequence Al in Appendix for details). The system of operator equations (E)
is the weak formulation of the stationary problem

(RDs) diAu + f(u,v) =0,
daAv + g(u,v) =0

with the classical boundary conditions (CC). Further,

(EP) diu — b1 Au — bigAv + AAu = 0,
dov — byt Au — bgg Av + AAv =0

is the weak formulation of the eigenvalue problem

(RDA) diAu + byiu + biav = Au,
doAv + baiu + bagv = Av

with (CC) describing the stability of the trivial solution of (RD), (CC) (see e.g. [14]).

Remark 1.1. For any u € HZ‘ (f2) we can define the normal derivative g_:t at

T as a functional from H~2 (T') such that the Green formula holds and the mapping
u — %i- of HZ’ (92) into H‘%(I‘) is continuous (see Lemma A2 in Appendix for
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details). Consider a nonnegative function ® on I' x I' which can be extended onto
Q0 x 2 such that

(®) ®cC?(xQ), ®(x,y)=0foral z,y € T'p xT.

Particularly, ®(z,) € Wzé (T) for any z € T’ and the boundary conditions (UC) for

u,v € H can be understood in the sense of functionals g—:‘L, g—:’l € H-3(I). Particu~

larly, integrals are understood as the duality between H % (T") and H -3 (1), 3 a
on I'yy means fr Swpdl’ > 0 for all ¢ € Hz(F) satisfying ¢ > 0 on I'y, ¢ = 0 on
I'p UTy, the last condltlon in (UC) (with @ = 0 = 0) means

/Fu [u(x)+/ru<1>(x y)a (y)dI'(y )]g—( )dD(z) = 0.

ote that clearly SY)5-(y y)e oz under our assumption.
Note that clearly [;. ®(-,y)3%(y)dI'(y) € H*(I) und ion.)
Weak Formulation 1.2. For any u € H, define a closed convex set K, in V

by
K. = {w €V; p@) > - /P 2(z,4) oo () dI'(y) on ru}

where @ is from Remark 1.1 and the integral is understood as the duality between
Hi(T) and H-%(T) (see Remark 1.1). It is natural to introduce a weak solution
of the problem (RDs), (UC) (with @ = @ = 0) as a solution of the quasivariational
inequality (I). It is easy to see that such a solution u, v satisfies (RDs) a.e. on 2 and
the boundary conditions (UC) are fulfilled in the sense of Remark 1.1. Particularly,
g—z > 0on Fu.

By using Weak Formulation 1.2 and Remark 1.1 (see also Lemma A2 in Appendix)
it is easy to see that the sets I, satisfy the following conditions:

(0) if u, v satisfy (I) with some [d;,dz] € R then 0 € K,
(HK) ifueH, t>0then u € K, if and only if tu € Ki,,
(CK) ifu, €H, oo € Ky,, up = uin H, p, = ¢ in V then p € K,
(AK) ifun,u € H, up ~uin H, ¢ € K,,
then there exist ¢, € K,,, ¢n = @ in V.

(We can choose ¢, = ¢ + f, — f where

@) = [ #en R A6, f@)= [ #0530,

Ty
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fn — f in V under the assumption (9)).

Proposition 1.1. Let (SIGN) hold and let measT'p > 0. Then |J CJ is the set
j=1
of all critical points of (Ey). Particularly, there are no bifurcation ]points of (E) in
Dgs. Ifd € Dg then all eigenvalues of (EP) (i.e. of (RD,), (CC)) have negative real
parts. If d € Dy then there exists at least one positive eigenvalue.

Ifde Cg fors =j,...,j+k—1 (ie. either k is the multiplicity of the eigenvalue k;,
Cl=..= C’?’k—l, ord is in the intersection of two different hyperbolas C}',;, C% and
k is the sum of the multiplicities of k;, k¢) then Eg(d) = Lin{[ﬁﬁgfﬁzes, es]}i':?_l.

Particularly, the trivial solution of (RD), (CC) is stable and unstable for d € Dg
and d € Dy, respectively.

Proof. For the special case k =1 see e.g. [10], for the general case see [3]. See
also Weak Formulation 1.1. O

Observation 1.1. For any u € H, denote by P, the projection onto the closed
convex set K, in 'V, i.e.

P,z € Ky, ||Puz— 2| = 116111? llo — z|| for all u € H,z € V.
PEK.

It is well-known and easy to see that for any v € H and z € V, P,z is the only
element from K, satisfying

(Pyz—z,y—Py,z) 20 forall ye€K,

(see e.g. [15]). Further, Ptz =tP,zforallve H,z€ V,¢t>0.

Observation 1.2.  According to Observation 1.1, the problem (I) and (Ip,) is
equivalent to

diu — Pdlu(bllAU + b1gAv — Nl(u,v)) =0,
dav — bgy Au — bag Av + No(u,v) =0

and
diu — Pa,y (b11Au + b2 Av) =0,

dQ’U - b21AU - b22A1) = 0,

respectively.

Lemma 1.1. The operators A and N; are completely continuous as the mappings
H — H and H x H — H, respectively. If U, = [un,vn] = 0, Wy, = [Wn, 2n] = W%?W -
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W = [w,z) in H, d, = [d?,d}] — d = [dy,dy] then

N ny n —
P, [(d?)‘l (bqun +bipAz, — _%WL))] — Py[d (b1 Aw + bypAz)],
(1.2) "
bar Awn, + by Azy — &W — byt Aw + bap Az in H.

Proof. We will prove only the first convergence in (1.2), the proof of the other
assertions is simpler. Set

Un = P, [(@0)™ (br1Awn + biz Az, - __Nllﬁ';}:"rn) )].

It follows from Observation 1.1 that

N (uny 'Un)

<yn —( ?)_1 (bllAwn + b12Az, — 10 m

),w—yn> >0foraly € K,,.

Choosing ¥ = y, £ ¢ with an arbitrary ¢ € D(Q2) we obtain

[ 9596 = (@7 (brrn + brzzn = “HE Yoo = 0 for all € D),
o 10
i.e.
P  na(un, )
(1.3) Ayn = (d1) 7 (buawn + bizzn 0 )

in the sense of distributions and, as a result of (1.1), Ay, € Lg(R2) (see Weak
Formulation 1.1). Hence, y, € H. Let ¢ € K,, be fixed. It follows from (AK) that
there exist ¥, € K,, such that ¥,, = ¢ in V. Put

_ Ni(un,vn
Tn = (df) ! (bqun + bioAz, — W)

It follows from (A), (N) that z, = z = dy}(b;; Aw + by3Az) in V. We get
lzn = ynll = |20 — Pu,Znll < |20 — ¥nll

and therefore y, = (yn — Z») + T, is bounded in V. Thus we can suppose y, — ¥ in
V and we obtain

lz — yll < liminf ||z, — yn|| < limsup [|zn — yall < ||z = |-
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We have y, = P, z, € K,,, (CK) implies y € I{,, and therefore the last inequality
holding for any ¢ € K,, means y = P,z. Setting ¢ = y, the last inequality gives
Tpn —Yn > T — Y, i.e. y, = y in V. Analogously as (1.3) above we obtain

(1.4) Ay = —dy (buw + b122) € Ly ().

It follows from (1.1) that "lmlg;’ﬁl’" — 0in Lg.(f2) (see Lemma Al in Appendix for

detailes). Hence, (1.3), (1.4) gives Ay, — Ay in Ly () and finally y, > yin H. O
Remark 1.2. If d,,U, satisfy (I), d» — d,||U.|| = O then also |U,]] — 0.
In other words, if d is a bifurcation point in the sense of our definition (i.e. with
respect to the norm || - ||) then it is simultaneously a bifurcation point with respect
to the norm || - ||. Otherwise we would have d, = [d},d}],U, = [un,vs] satisfying
(D), dn = d, IUall = 0, JUn]| > € > 0. Setting W, = [wn, 2n] = 2 we would have
IWnll = oo. Dividing (I) by ||U,||, we would obtain analogously as in the proof of
Lemma 1.1 that
_ 11 (Un, Vn)
Aw, = (d7) 7 (br1wn + bizzn — — s
(@) (buten + bz = =)
112(Un,1)n))
U]
in 2. But the right hand side should be bounded in L4 () (see Lemma Al in

Appendix for details), i.e. Aw,, Az, should be bounded in L, (), i.e. W, bounded
in H, which is a contradiction.

Az, = (d7)™! (b21wn + ba2zn —

Lemma 1.2. Let (SIGN) be fulfilled. Then any bifurcation point d° of (I) is
simultaneously a critical point of (Iy,).

Proof. Letd® = [df,d)] be a bifurcation point of (I). According to Remark 1.2
and Observation 1.2, there exist d" = [d},d}], U, = [un,v,] such that d® — d°,
IU-0l > 0, |U.Il = O,

Un,Un € [H]7 Un (S I{u,n
d?un - Pd;'u" (bllAun + b12AUn - Nl (Un,’l)n)) = 07
d;vn - bzlA’U,n — b22A'Un + Ng(un,vn) =0.
We can suppose “g W= [w,2] in H. Dividing the last equations by df|Ux||,
d3[|Ux ||, using Lemma 1.1 and (HK) we obtain 72 = w, gz = 2 in H,
w,z €H, wel,,
d(l)w - Pd(‘lw(bllAw + blez) =0,
dgz — b21Aw - b22AZ =0.
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Hence, d° is a critical point by Observation 1.2.

2. MAIN RESULTS

We will always have in mind operators, spaces and convex sets from Weak Formu-
lations 1.1 and 1.2. Hence, solutions of the quasivariational inequality (I) or (Ir,) are
weak stationary solutions of (RD), (UC) or of the corresponding linearized system
with (UC). In fact, however, we could formulate our results for general Hilbert spaces
H C V, operators A, N and systems of closed convex sets K,,u € H such that the
conditions (A), (N), (0), (HK), (CK), (AK) are fulfilled and that the assertion of
Lemma 1.1 holds.

If d € Cg is such that there is U = [u, v] € Eg(d) satisfying u € K, ||U|| # 0 then
d is simultaneously a critical point of (I;,) and it can be also a bifurcation point of
(I). We are interested in cases when this situation is excluded and therefore we shall
deal with critical points d of (E;,) satisfying the condition

(2.1) if U = [u,v] € Eg(d), ||U|| # 0 then u ¢ K,,.

(Note that clearly U € H x H for any U € Eg(d).)

Observation 2.1. Consider the situation from Weak Formulations 1.1 and 1.2.
If u changes its sign on I'y for any [u,v] € Ep(d) then the condition (2.1) is fulfilled.
Indeed, if [u,v] € Ep(d) then %’f = 0 on I'yy and the assertion follows.

Observation 2.2.  If (2.1) holds for some d° € Ciﬁ then it holds for all d €

Cg\ U C% where I is the set of all indices of all hyperbolas which do not coincide with
€€l

Cﬁ;, i.e. it holds for all d € Cfg possibly with the exception of the intersection points
with the other hyperbolas (see Proposition 1.1 and Fig. 1). Indeed, Proposition 1.1

gives Ep(d) = Lin {[%25=%2¢,, ¢,] i::_l for all d € C4 \ U C% where k is the
eel
j+k—1
multiplicity of x; and therefore (2.1) for such d meansu ¢ K, foranyu = . cses,
=j
¢s € R, and our assertion follows. For d € CL N C%, Ch # CL, j < £ we have
Ep(d) = Lin{[‘—iﬁﬁﬂes, es]}i’:"f_l where £ is the sum of the multiplicities of k;, &¢
by Proposition 1.1. Similarly as above, it follows that (2.1) is fulfilled for d = d if
and only if it holds for all d € C% U C%. Analogously for the case j > £.

In general, it follows from Proposition 1.1 and the assumption (HK) that it is
sufficient to know eigenvectors of the operator A (i.e. of —A with (CC) in case of
the operator from Weak Formulation 1.1) for verifying the condition (2.1).
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Theorem 2.1. Suppose that (SIGN) holds and measT'p > 0. Then there is no
critical point of (I,) in Ds. If (2.1) is fulfilled for alld € CE with some0 < r < R then
there exists € > 0 such that there is no critical point of (I,) in CE(¢). Particularly,
there is no bifurcation point of (I) in CE(e) U Ds.

Remark 2.1. Recall that if S is a linear completely continuous symmetric
operator in a real Hilbert space V and if

Am = max (Sp, ) >0
llell=1

then A,, is the greatest eigenvalue of S and u # 0 is a corresponding eigenvector if
and only if Sl%l;l = Am.

Proof of Theorem 2.1. First, let d = [d;,d2] € Cg be fixed and consider
the problem

u,v € H, u € K,
(2.2) (M — by Au — by Av,p —u) 2 0 for all p € K,
d2’U - b21AU - b22AU =0

with the only parameter A\. Under the conditions (A), (SIGN), the existence of the
inverse (I — %izzzA)_1 to (I — 22 A) in V is ensured and the last equation in (2.2) is

equivalent to

ba2 ,\1b2s
(2.3) v = (1 - d—zA) o Au.

Substituting into the inequality in (2.2) we obtain

(2.4) (M — Su,p—wu) 20forall p € K,
where biah ) .
_ 12b21 b2 T
Su = budu+ = A(I 5 A)  Au

is a linear completely continuous symmetric operator in V. Analogously, the system
of equations

Au — bnAu - b12A'U = 0,
d2U - bzlAU - b22A‘U =0
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is equivalent to
(2.5) A —-Su=0

with (2.3).

Let [A, d2] be a critical point of (Ir,), i.e. there exists a nontrivial u € H satisfying
(2.4), v € K,. We can suppose ||u|]| = 1 in view of the condition (HK) and set
¢ = 0in (2.4) in view of the condition (0). Hence, A < (Su,u). It follows from
Proposition 1.1 and the above considerations that A, = d; is the greatest eigenvalue
of the operator S and this together with Remark 2.1 gives A < d;. The point
[d1,d2] € Cg was arbitrary and it follows that there is no critical point of (Ir,) in Ds.

Further, let us show that

(2.6) if d = [d,dg] € CF and [\, dy)] is a critical point of (I,) then \ < d;.

We already know that A < d; under the assumptions of (2.6). Suppose that A\ = dj,
i.e. d = [d1,d2] € CE is a critical point of (I.). Then there is U = [u,v], [|U|| # 0
satisfying (I), that means also (2.3), (2.4) hold with A\ = d;. Particularly, u € K,
and the assumption (2.1) implies [u,v] ¢ Ep(d), that means u ¢ Eg(d;) according to
the above considerations. Remark 2.1 implies (Su,u) < d; (because (Su,u) attains
its maximum only at eigenvectors of S). Simultaneously, setting ¢ = 0 in (2.4) we
obtain
‘1 (u, U> < (Su’u) )

which is a contradiction. Hence, (2.6) is proved.

Suppose that the assertion of Theorem 2.1 is not true. It follows from (2.6) that
then there exist d® = [d},d}] € Dy and U, = [un,v,] € H such that d} € [r, R],
d*— d® € CE, Ul =1,U, = U = [u,v] in H,

Unp — Pu,. [(d?)—l(bllAun - bl2Avn)] = O,

d;‘vn - bleun - bngvn =0.
(see also Observation 1.2). Lemma 1.1 (for N = 0) implies that U, — U in H,
Ul = 1. The limiting process and Observation 1.2 give (I,) with d = d°. That

means d° € CE is a critical point of (Ir,), which contradicts (2.6). The last assertion
of Theorem 2.1 follows from Lemma 1.2. O

From the point of view of an interpretation, it is natural to consider a curve d:
R — R2 and bifurcation problems

(2.7) di(s)u — b1 Au — by Av + Nj(u,v) =0,
dz(s)v - bnAu - bzzA'U + N2(U,U) =0

481



and

u,v € H, ue Ky,
(2.8) (d1(s)u — b1 Au — bi2Av + Ni(u,v), o —u) 2 0 for all p € K,,
da(s)v — bay Au — bag Av + Na(u,v) =0

with a single parameter s € R. (See also Interpretation.)

Consequence 2.1. Suppose that (SIGN) holds and measI'p > 0. Consider
a curve d: R = R% such that d(s) € Ds for s < so, d(s) € Dy for s > s,
d(so) = d° € Cg. Then there is no bifurcation point of the inequality (2.8) in
(=00, 80). If d° satisfies (2.1) then there exists € > 0 such that there is no bifurcation
point of (2.8) in (—o0, so + €).

Proof. The first assertion follows directly from Theorem 2.1. Let d° satisfy
(2.1) and suppose by way of contradiction that there exist bifurcation points s, of
(2.8), sn = S0, Sn = So. Then [d1(sn), d2(sn)] are critical points of (Ir,) by Lemma 1.2
and the same considerations as in the last part of the proof of Theorem 2.1 imply
that d° is a critical point of (I1,), which contradicts Theorem 2.1. O

Motivation of Unilateral Conditions.  The unilateral condition in (UC)
can describe for instance a semipermeable membrane allowing the flux through the
boundary only in one direction, or some other kind of regulation by a certain source.
Consider that a reaction described by our system takes place in a domain  which is
embedded in a reservoir with fixed concentrations i, ¢ of the activator and inhibitor.
None of these substances can cross the part I'ys of the boundary, both substances
can flow through I'p in both directions. The part [y represents a semipermeable
membrane allowing the flux of the activator only inwards 2 and no flux of the
inhibitor through the boundary. The case ® = 0 corresponds to the situation when
the concentration of u (activator or prey) outside Q is precisely @ and the natural
flux into the domain balances the concentration in €2 near I'y; in case of its decrease
in . An increase of the concentration of the activator in © is not influenced by
the concentration in the reservoir because the flux outwards 2 is not allowed. The
case ¢ # 0 corresponds to an analogous situation but with the concentration in the
reservoir depending on the amount of the material just flowing into © (cf. [11], where
existence results for some other problems with boundary conditions of this type are
given). If ®(z,y) = ®(y) then the concentration in the whole reservoir remains
homogeneous and depends only on the flux throug the whole I';s. (This corresponds
to an “infinite diffusion” of the activator in the reservoir.) But we can describe also
the case when the flux at a given point x € I'yy influences the concentration only
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in a neigbourhood of . We can choose ® such that ®(z,y) > 0 for y only from a
neighbourhood of z and ®(z,y) = 0 elsewhere, or such that ®(z,y) is small if y is
far from z in some sense.

Interpretation. The changing of the diffusion parameters along a given curve
d: Ry — R? going from the domain of stability Ds to the domain of instability
Dy can correspond to a development of the system described by our equations. The
simplest example is the curve d;(s) = ds™1, da(s) = d3s~! which can correspond
to a growth of the domain 2, s being proportional to the size of Q. (This can be
shown by a simple substitution.) Particularly, if d° € Cg, d(s) € Dg for s < so = 1
then the constant solution * of the problem

ug =dy (S)Au + f(’ll,,’l)),
v = dy(5) A0 + g(u,v)

with (CC) is stable and no bifurcation can occur as far as s < sg (see Proposition 1.1),
i.e. for domains of size less than a certain critical size. The stability of the constant
solution is lost when the critical size of the domain is reached and simultaneously
stationary spatially nonhomogeneous solutions (spatial patterns) bifurcate from the
constant solution under certain additional assumptions (e.g. odd multiplicity of the
corresponding eigenvalue—see e.g. [10]).

The sense of Theorem 2.1 (or Consequence 2.1) is that if the activator (prey) is
regulated by the unilateral condition under consideration then (under certain as-
sumptions) spatial patterns can arise only later from the point of view of the devel-
opment of the system (e.g. from the point of view of the growth of the domain) than
in the case of the corresponding classical problem (RD), (CC). On the other hand, it
is proved in [6] that if the inhibitor (predator) is regulated by a unilateral condition
then spatial patterns arise already in the domain of stability, i.e. sooner from the

point of view of the development, e.g. already for smaller domains €2 than for (RD),
(CQC).

APPENDIX

Lemma Al. If(1.1) holds and U, = [un,v,] = 0 in V then Elﬁ‘&"ﬂ—"l'"—) — 0 in

Lq-. Particularly, if Un = [un,vs] € W, U = 0 in 1 then Zifsrse) — 0 in L.

Consequence Al. Under the assumption (1.1) the condition (N) is fulfilled.

* which is supposed to be zero in our mathematical considerations
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Proof. Lete > 0be arbitrary, let ¢; be the constant of the imbedding W} () C
L,(2). Tt follows from the definition of n; (Weak Formulation 1.1) that there exists
6 > 0 such that
nj (S’t) < i
sl +1t] = e

(A1) if [s|97 + |t|7! < & then

The continuity of the imbedding W} C L, implies that ﬁ:—n, n—,‘}f‘—" are bounded in
L,(92) and it follows that there is £ > 0 such that
(A2) if NCQ, measN < ¢

' : @)
then ¢4 (671 +1)? / [un(2)] L dr<e
n @) ) A )

where c is from the assumption (1.1). The Jegorov theorem ensures the existence of
N C Q such that

(A3) meas N < ¢, U, — 0 uniformly on Q\ N

and therefore there is ng such that

(A4) [un(z)|97 + |n(2)]97t < é forall z € Q\ N, n > no.
Introduce the sets

Ni ={z € Jun(@)|"™" + Jva(2)|]*~" > 6}

Writing '—ll—ﬁiu":r'l’"—) = ﬁ%%’ﬂfﬂ for  such that |u,(z)| + |vn(z)| > 0

we obtain by (A1)

1 1
nj(Un, v)\7 |\ _ € [un(@)| + [on(@)[\7" |\ &
s ([ (@) )F (] (uialt ity )
49 (o 0T U )
We have N C N for all n > ng by (A4). Hence, we obtain by using (1.1), (A2) that
(A6) / ("—j(“"’”"))q‘dm</
wp U (O] v

<.
N

But € > 0 was arbitrarily small and therefore our assertion follows from (AS5), (A6).
O

e+ [ua(@)|7! + [oa(@)|* 1)\
( A ) as

n
)

(0(5‘1 + 1) (Jun (@)1~ + [vn (@)|*7)
1Tl

)q' dzr < e.

n
L)
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Further, let Ty be the unique linear continuous mapping of H'(Q) onto the space
of traces H%(T') of functions from H(f) such that Tou is the restriction of u to T
for u € C(Q) N HY(N) (see e.g. [9]).

Lemma A2. There is a uniquely defined continuous mapping T, : HZ' Q) -
H~%(T) such that T,u = 8¢ ifu € C'({) and

(A7) / Aupdz = / ThuTpedl —/ VuVydz for all u € HZ‘ (Q), p€ H'(N)
Q r Q

where the integral over T' is understood as the value (Th,u,Top)1 ! of the functional
T,ue H™% (T) at Top € Hz(T'). We can wnte * instead of Tnu

Proof. There exists a linear continuous mapping ¢ — @ of H2(T') into H(Q)
such that Top = ¢ for all p € H2(T') (see [9]). Hence, for any u € HX (), we can
define T, u by

/T,mgodl’: (Tnu,qp% /Vchpd$+/ Aupdz
r

for alluEHA (), <p€H2(1").

It follows from the continuity of the imbedding H*'(2) C L4+ () that

||Tnu[|H_% = sup (Thu,p)r <C sup (/ VuVLﬁdx+/ Augbdrc)
2 Q Q

llell 3 <t (IS
H

1 1
2 2
<C sup K/ |Vu|2d:c) </|V¢|2dz)
18l ;1 <1 Q
o\ AN ‘
([ 1 ae)” ([ joiras) | <Clullyg

This means that the linear mapping T, : HK () - H-3(T") is continuous. O
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