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ON LIPSCHITZ CONDITIONS FOR ORDINARY DIFFERENTIAL

EQUATIONS IN FRÉCHET SPACES

Gerd Herzog, Karlsruhe

(Received July 11, 1995)

Abstract. We will give an existence and uniqueness theorem for ordinary differential equa-
tions in Fréchet spaces using Lipschitz conditions formulated with a generalized distance
and row-finite matrices.

MSC 2000 : 34G20

1. Introduction

Let K = � or � and F be a vector space over K. A mapping ‖ · ‖ : F → [0,∞)�
is called a polynorm on F if ‖ · ‖n is a seminorm on F for each n ∈ � and ‖x‖ = 0 if
and only if x = 0. Inequalities between elements of �� are intended componentwise.
We have:

(a) ‖x‖ � 0, x ∈ F .

(b) ‖x+ y‖ � ‖x‖+ ‖y‖, x, y ∈ F .

(c) ‖λx‖ = |λ| ‖x‖, x ∈ F , λ ∈ K.

(
F, ‖·‖

)
is a Fréchet space if the locally convex topology induced by the seminorms

‖ · ‖n, n ∈ �, is complete. A polynorm is a generalized distance (e. g. according

to Schröder [12]), and this concept allows to study Lipschitz mappings on F with
generalized Lipschitz constants which are row-finite matrices. In this paper we want

to study Lipschitz conditions for ordinary differential equations in Fréchet spaces
continuing the work of Lemmert [9]. For related concepts see also [2], [3] and [11].
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2. Row-finite and column-finite matrices

We consider the Fréchet space
(
�
� , ‖ ·‖

)
, ‖x‖ =

(
|xn|

)∞
n=1
and its topological dual

space

� � =
{
y ∈ �

� : at most finitely many yn are different from zero
}

together with the duality

〈x, y〉 =
∞∑

n=1

xnyn, (x, y) ∈ �
� × � � .

A matrix L = (lij)i,j∈�, lij ∈ � , is called row-finite if every row is in � � . Cor-

respondingly, L is called column-finite if every column is in � � . The row-finite
matrices are exactly the continuous endomorphisms of � � , and the column-finite

matrices are exactly the endomorphisms of � � . If L is row-finite, then the matrix
�L is column-finite, and it holds that 〈x,�Ly〉 = 〈Lx, y〉, (x, y) ∈ �

� × � � .

A column-finite matrix L is called locally algebraic if for every y ∈ � � there is a

polynomial p ∈ � [λ] \ {0} such that p(L)y = 0.

The spectrum σ of a row-finite resp. column-finite matrix L is defined as

σ(L) = {λ ∈ � : L− λI is not invertible}.

It holds that σ(L) = σ
(�L

)
�= ∅ and that either σ(L) or � \σ(L) is at most countable

(see e. g. [7], [13]). For the following proposition compare [5], [7], [8], [13] and [14].

Proposition 1. Let L = (lij)i,j∈�, lij ∈ � , be row-finite. Then the following

assertions are equivalent:

1. �L is locally algebraic.

2. σ(L) is at most countable.

3. lim sup
k→∞

k
√
|〈Lkx, y〉| < ∞, (x, y) ∈ �

� × � � .

4. For every entire function f(z) =
∞∑

k=0
akzk it holds that

∞∑
k=0

akLkx converges in

�
� for all x ∈ �

� (by that a row-finite matrix is defined which is denoted by

f(L) and σ(f(L)) is at most countable).

5. The initial value problem x′(t) = Lx(t), x(0) = x0 is uniquely solvable in � �

for every x0 ∈ �
� (the solution is eLtx0, t ∈ �).
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3. Lipschitz conditions

Let
(
F, ‖ · ‖

)
be a Fréchet space, f : [0, T ]× F → F continuous and x0 ∈ F . We

consider the initial value problem

(1)

{
x′(t) = f

(
t, x(t)

)
, t ∈ [0, T ],

x(0) = x0.

Furthermore, let f satisfy the Lipschitz condition

(2)
∥∥f(t, u)− f(t, v)

∥∥ � L
∥∥u− v

∥∥, (t, u), (t, v) ∈ [0, T ]× F.

Here L is a row-finite matrix with nonnegative entries. Condition (2) in general
implies neither uniqueness nor existence of solutions of (1) even in the case that the

right-hand side in (1) is linear (see [4], [5], [8] and [10]). Lemmert [9] proved the
following theorem.

Theorem 1. If σ(L) is at most countable then (1) is uniquely solvable for every
x0 ∈ F .

If f is bounded, i. e. there is a b ∈ [0,∞)� such that
∥∥f(t, x)

∥∥ � b, (t, x) ∈ [0, T ]×F ,

we have

Theorem 2. If

(3) lim sup
k→∞

k

√〈
Lkb, y

〉
< ∞, y ∈ [0,∞)�,

then (1) is uniquely solvable for every x0 ∈ F .

Condition (3) is satisfied, for example, if Lb � cb for some c � 0 (see Deimling [1],
p. 86 and [11]).
We will now generalize these theorems in the following way (for another general-

ization of Theorem 2 see [6]).
Let g, h : [0, T ]× F → F be continuous and f = g + h. Furthermore, let g and h

satisfy a Lipschitz condition of the form (2) with L1 and L2 as Lipschitz matrices,
and let h be bounded by b ∈ [0,∞)�. Then we have

Theorem 3. If σ(L1) is at most countable and

(4) lim sup
k→∞

k

√〈
(eTL1L2)keTL1b, y

〉
< ∞, y ∈ [0,∞)�,

then (1) is uniquely solvable for every x0 ∈ F .
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Remarks.
1) f is satisfying (2) with L = L1 + L2.
2) If L2 = 0, (4) is satisfied, and we have Theorem 1.
3) If L1 = 0, (4) is condition (3) of Theorem 2.

4) eTL1 is a row-finite matrix with nonnegative entries.
5) To check condition (4), it is sufficient to show (4) for y = en, n ∈ �; en ∈ � �

denotes the vector with 1 in the n-th coordinate and 0 elsewhere.
6) Condition (4) holds e. g. if, for some c � 0, (eTL1L2)eTL1b � ceTL1b, which is

implied by

(5) L2eTL1b � cb.

7) If L1 and L2 commute, condition (4) reduces to

lim sup
k→∞

k

√〈
Lk
2b, y

〉
< ∞, y ∈ [0,∞)�,

for the following reason: Since �eTL1 is locally algebraic, the subspace U =
span

{�ekTL1b : k ∈ �0
}
of � � is finite-dimensional. For every y ∈ [0,∞)� there is

γ > 0 and z ∈ [0,∞)� such that �ekTL1y � γkz, k ∈ �, which implies

lim sup
k→∞

k

√〈
Lk
2b,

�e(k+1)TL1y
〉

� γ lim sup
k→∞

k

√〈
Lk
2b, z

〉
.

We will use the following propositions to prove Theorem 3:

Proposition 2. Let A = (aij)i,j∈� be a real row-finite quasimonotone matrix

(i. e. aii ∈ �, i ∈ � and aij � 0, i, j ∈ �, i �= j) with σ(A) at most countable.
If u : [0, T )→ �

� is continuous, right-hand side differentiable and

{
u′+(t) � Au(t), t ∈ [0, T ),
u(0) � 0,

then u(t) � 0, t ∈ [0, T ).

For the proof of this Proposition see Lemmert [9], p. 1387.

Proposition 3. Let σ(L1) be at most countable, u ∈ C1([0, T ], F ), and v ∈
C([0, T ], F ) such that ∥∥u′(t)

∥∥ � L1
∥∥u(t)

∥∥+
∥∥v(t)

∥∥.

Then
∥∥u(t)

∥∥ � etL1
∥∥u(0)

∥∥+
∫ t

0
e(t−s)L1

∥∥v(s)
∥∥ ds, t ∈ [0, T ].

98



�����. The function δ : [0, T ] → [0,∞)�, δ(t) =
∥∥u(t)

∥∥ is right-hand side
differentiable on [0, T ) and

δ′+(t) �
∥∥u′(t)

∥∥ � L1δ(t) +
∥∥v(t)

∥∥.

According to Theorem 1, the initial value problem

{
z′(t) = L1z(t) +

∥∥v(t)
∥∥, t ∈ [0, T ],

z(0) =
∥∥u(0)

∥∥

is uniquely solvable on [0, T ], and the solution is

z(t) = etL1
∥∥u(0)

∥∥+
∫ t

0
e(t−s)L1

∥∥v(s)
∥∥ ds.

Therefore

(z − δ)′+(t)

� L1z(t) +
∥∥v(t)

∥∥− L1δ(t)−
∥∥v(t)

∥∥

= L1(z − δ)(t), t ∈ [0, T )

and z(0)− δ(0) = 0. According to Proposition 2, this implies that z(t)− δ(t) � 0 on
[0, T ] which is

δ(t) � etL1
∥∥u(0)

∥∥+
∫ t

0
e(t−s)L1

∥∥v(s)
∥∥ds.

�

����� �� ������� 3. Let u1 ∈ C1([0, T ], F ), u1(0) = x0. Since σ(L1) is at

most countable, there is, according to Theorem 1, a sequence (uk)∞k=1 in C1([0, T ], F )
such that

{
u′k+1(t) = g

(
t, uk+1(t)

)
+ h

(
t, uk(t)

)
, t ∈ [0, T ], k ∈ �,

uk+1(0) = x0.

It holds that

∥∥u′k+1(t)− u′k(t)
∥∥ � L1

∥∥uk+1(t)− uk(t)
∥∥ +

∥∥h(t, uk(t))− h(t, uk−1(t))
∥∥,

t ∈ [0, T ], k � 2. From Proposition 3 we get

∥∥uk+1(t)− uk(t)
∥∥ �

∫ t

0
eTL1

∥∥h(s, uk(s))− h(s, uk−1(s))
∥∥ ds,
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t ∈ [0, T ], k � 2. Therefore

(6)
∥∥uk+1(t)− uk(t)

∥∥ � eTL1L2

∫ t

0

∥∥uk(s)− uk−1(s)
∥∥ ds,

t ∈ [0, T ], k � 2, and

(7)
∥∥u3(t)− u2(t)

∥∥ � 2T eTL1b, t ∈ [0, T ].

Successive application of inequality (6) and (7) leads to

∥∥uk+1(t)− uk(t)
∥∥ � 2T k−1

(k − 2)!
(
eTL1L2

)k−2
eTL1b, t ∈ [0, T ], k � 2.

Condition (4) implies the convergence of
∞∑

k=2

2T k−1

(k−2)! (e
TL1L2)k−2eTL1b in � � .

Therefore (uk)∞k=1 is a Cauchy sequence in the Fréchet space
(
C([0, T ], F ), ||| · |||

)
,

|||u||| =
(
max

t∈[0,T ]

∥∥u(t)
∥∥

n

)∞
n=1
, and x = lim

k→∞
uk is a solution of (1): It holds that

∥∥∥∥x(t) − x0 −
∫ t

0
g
(
s, x(s)

)
+ h

(
s, x(s)

)
ds

∥∥∥∥

�
∥∥x(t) − uk+1(t)

∥∥+
∥∥∥∥
∫ t

0
g
(
s, uk+1(s)

)
+ h

(
s, uk(s)

)
− g

(
s, x(s)

)
− h

(
s, x(s)

)
ds

∥∥∥∥
� |||x− uk+1|||+ TL1|||x− uk+1|||+ TL2|||x− uk||| → 0

in � � as k → ∞, t ∈ [0, T ].
Now let x1, x2 ∈ C1([0, T ], F ) be solutions of (1). With a similar calculation as

above we get

∥∥x1(t)− x2(t)
∥∥ � 2T k−1

(k − 2)!
(
eTL1L2

)k−2
eTL1b, t ∈ [0, T ], k � 2.

Since the right-hand side of this inequality tends to 0 in �
� as k → ∞, we have

x1 = x2 and therefore the solution of (1) is unique. �

The solution of (1) is continuously depending on x0. The following theorem holds.

Theorem 4. Let σ(L1) be at most countable and provide (4). If (xk)∞k=1 is a

sequence in C1([0, T ], F ) such that

lim
k→∞

xk(0) = x0 and x′k(t) = f
(
t, xk(t)

)
, t ∈ [0, T ], k ∈ �,

then (xk)∞k=1 is tending to the solution of (1) in
(
C([0, T ], F ), ||| · |||

)
.
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�����. Let x be the solution of (1). It holds for every k ∈ � that

∥∥x′k(t)− x′(t)
∥∥ � L1

∥∥xk(t)− x(t)
∥∥+

∥∥h(t, xk(t))− h(t, x(t))
∥∥, t ∈ [0, T ].

From Proposition 3 we get

∥∥xk(t)− x(t)
∥∥ � eTL1

∥∥xk(0)− x0
∥∥+ eTL1L2

∫ t

0

∥∥xk(s)− x(s)
∥∥ ds

and ∥∥xk(t)− x(t)
∥∥ � eTL1

∥∥xk(0)− x0
∥∥+ 2T eTL1b, t ∈ [0, T ].

Therefore,

|||xk − x||| �
( m∑

j=0

T j(eTL1L2)j

j!

)
eTL1

∥∥xk(0)− x0
∥∥+ 2T

m+1

m!

(
eTL1L2

)m
eTL1b,

m ∈ �0 .
Now let y ∈ [0,∞)�. It holds that

lim sup
k→∞

〈
|||xk − x|||, y

〉
�

〈
2T m+1

m!
(eTL1L2)meTL1b, y

〉
, m ∈ �0 .

Condition (4) implies the convergence of the right-hand side of this inequality to zero
as m →∞. Therefore, lim

k→∞
xk = x in

(
C([0, T ], F ), ||| · |||

)
. �

4. Examples

1) We consider
(
�
� , ‖ · ‖

)
, ‖x‖ =

(
|xn|

)∞
n=1
, f(t, x) = g(t, x) + h(t, x) with

g(t, x) =
(
tnxn arctan(xn)

)∞
n=1

, h(t, x) =
(
αn arctan(t

nxn+1)
)∞
n=1

,

(t, x) ∈ [0, T ]× �
� , where α = (αn)∞n=1 ∈ (0,∞)�. We can choose

L1 = diag

(
�+ 1
2

T n

)

and

L2 =




0 α1T 0 0 . . .

0 0 α2T
2 0 . . .

0 0 0 α3T
3 . . .

...
...

...
...


 .

σ(L1) is at most countable and σ(L2) is uncountable (see e. g. [7]).

101



Now,

L2e
TL1 = L2 diag

(
e
�+1
2 T n+1

)

=




0α1T e
�+1
2 T 300 . . .

00α2T 2e
�+1
2 T 40 . . .

000α3T 3e
�+1
2 T 5 . . .

...
...
...
...


 .

Furthermore,
∥∥h(t, x)

∥∥ � b :=
�

2
α.

Now assume αn+1T
ne

�+1
2 T n+2 � c, n ∈ �, for some c > 0. Then

L2eTL1b =
(
�

2
αnαn+1T

ne
�+1
2 T n+2

)∞
n=1

� c
(
�

2
αn

)∞
n=1
= cb.

Then (5) holds and, according to Theorem 3, (1) is uniquely solvable for every
x0 ∈ �

� .

Remark that L = L1 + L2 is a Lipschitz matrix for f in (2) and that σ(L) is

uncountable. Hence Theorem 1 is not applicable. Since f is not bounded in �� , also
Theorem 2 is not applicable.

2) We consider
(
C([1,∞),�

)
, ‖·‖), ‖x‖ =

(
max

s∈[n,n+1]

∣∣x(s)
∣∣
)∞

n=1
, f(x) = g(x)+h(x)

with (
g(x)

)
(s) = x(s+ 1)max

{
sin(�s), 0

}
,

(
h(x)

)
(s) = arctan

(
x(s+ 1)

)
max

{
sin(�(s+ 1)), 0

}
,

s ∈ [1,∞), (t, x) ∈ [0, T ]× C([1,∞),�).
We can choose

L1 =




0 0 0 0 0 0 . . .

0 0 1 0 0 0 . . .

0 0 0 0 0 0 . . .

0 0 0 0 1 0 . . .

0 0 0 0 0 0 . . .
...
...
...
...
...
...




and

L2 =




0 1 0 0 0 0 . . .

0 0 0 0 0 0 . . .

0 0 0 1 0 0 . . .

0 0 0 0 0 0 . . .

0 0 0 0 0 1 . . .
...
...
...
...
...
...




.

In this example, σ(L1) = σ(L2) = {0}, but σ(L1+L2) = � (cf. [7]), and L21 = L22 = 0.
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We have

L2eTL1 = L2(I + TL1) = L2 + TL2L1 =




0 1 T 0 0 0 0 . . .

0 0 0 0 0 0 0 . . .

0 0 0 1 T 0 0 . . .

0 0 0 0 0 0 0 . . .

0 0 0 0 0 1 T . . .
...
...
...
...
...
...
...




,

and it holds that
∥∥h(x)

∥∥ � b :=
(
�

4

(
1 + (−1)n+1

))∞
n=1
.

Therefore L2eTL1b = Tb. Hence (5) is satisfied and, using Theorem 3, the initial

value problem (1) is uniquely solvable for every x0 ∈ C([1,∞),�).
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