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LOCAL PROPERTIES OF ACCESSIBLE INJECTIVE

OPERATOR IDEALS
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Abstract. In addition to Pisier’s counterexample of a non-accessible maximal Banach
ideal, we will give a large class of maximal Banach ideals which are accessible. The first
step is implied by the observation that a “good behaviour” of trace duality, which is canon-
ically induced by conjugate operator ideals can be extended to adjoint Banach ideals, if and
only if these adjoint ideals satisfy an accessibility condition (theorem 3.1). This observation
leads in a natural way to a characterization of accessible injective Banach ideals, where we
also recognize the appearance of the ideal of absolutely summing operators (prop. 4.1). By
the famous Grothendieck inequality, every operator from L1 to a Hilbert space is absolutely
summing, and therefore our search for such ideals will be directed towards Hilbert space
factorization—via an operator version of Grothendieck’s inequality (lemma 4.2). As a con-
sequence, we obtain a class of injective ideals, which are “quasi-accessible”, and with the
help of tensor stability, we improve the corresponding norm inequalities, to get accessibility
(theorem 4.1 and 4.2). In the last chapter of this paper we give applications, which are
implied by a non-trivial link of the above mentioned considerations to normed products of
operator ideals.

Keywords: accessibility, Banach spaces, conjugate operator ideals, Hilbert space factor-
ization, Grothendieck’s inequality, tensor norms, tensor stability
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1. Introduction

Given Banach spaces E, F and a maximal Banach ideal (A, A), we are interested
in reasonable sufficient conditions on E, F and (A, A) such that (A, A) is acces-
sible. In general it is a nontrivial subject to prove accessibility of maximal Banach
ideals since non-accessibility can only appear on Banach spaces without the metric

approximation property, and in 1992, Pisier made use of such a Banach space (the
Pisier space P ) to construct a non-accessible maximal Banach ideal (cf. [3], 31.6).
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On the other hand, accessible Banach ideals allow a suggestive (algebraic) calculus

which leads to further results concerning the local structure of operator ideals (e.g. a
transfer of the principle of local reflexivity from the operator norm to suitable ideal
norms A (cf. [3], [11] and [12]).
This paper is mainly devoted to the description of a large class of maximal injective

Banach ideals which are totally accessible. We will see a deep interplay between
conjugates of Banach ideals, Hilbert space factorization, Grothendieck’s inequality

and tensor stable quasi-Banach ideals. We only deal with Banach spaces and most
of our notations and definitions concerning Banach spaces and operator ideals are

standard and can be found in the detailed monographs [3] and [13]. However, if
(A,A) and (B ,B) are given quasi-Banach ideals, we will use the shorter notation
(Ad,Ad) for the dual ideal (instead of (Adual,Adual)) and the abbreviationA 1

= B for
the equality (A,A) = (B ,B). The inclusion (A,A) ⊆ (B ,B) is often shortened by

A
1
⊆ B, and if T : E −→ F is an operator, we indicate that it is a metric injection by

writing T : E
1

↪→ F . Each section of this paper includes the more special terminology
which is not so common.

2. On tensor norms and associated Banach ideals

At first we recall the basic notions of Grothendieck’s metric theory of tensor prod-

ucts (cf., eg., [3], [4], [6], [9]), which will be used throughout this paper. A tensor
norm α is a mapping which assigns to each pair (E, F ) of Banach spaces a norm

α(·;E, F ) on the algebraic tensor product E ⊗F (shorthand: E⊗αF and E⊗̃αF for
the completion) such that

(i) ε � α � π,

(ii) α satisfies the metric mapping property: If S ∈ L(E, G) and T ∈ L(F, H), then
‖S ⊗ T : E ⊗α F −→ G⊗α H‖ � ‖S‖ ‖T ‖.

Well-known examples are the injective tensor norm ε, which is the smallest one, and
the projective tensor norm π, which is the largest one. For other important examples

we refer to [3], [4], or [9]. Each tensor norm α can be extended in two natural ways.
For this, denote for given Banach spaces E and F

FIN(E) := {M ⊆ E | M ∈ FIN} and COFIN(E) := {L ⊆ E | E/L ∈ FIN},

where FIN stands for the class of all finite dimensional Banach spaces. Let z ∈ E⊗F .

Then the finite hull
→
α is given by

→
α(z;E, F ) := inf{α(z;M, N) | M ∈ FIN(E), N ∈ FIN(F ), z ∈ M ⊗N}
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and the cofinite hull
←
α of α is given by

←
α(z;E, F ) := sup{α(QE

K ⊗QF
L(z);E/K, F/L) | K ∈ COFIN(E), L ∈ COFIN(F )}.

α is called finitely generated if α =
→
α, cofinitely generated if α =

←
α (it is always

true that
←
α � α � →

α). α is called right-accessible if
←
α(z;M, F ) =

→
α(z;M, F )

for all (M, F ) ∈ FIN×BAN, left-accessible if ←α(z;E, N) =
→
α(z;E, N) for all

(E, N) ∈ BAN×FIN, and accessible if it is right- and left-accessible. α is called

totally accessible if
←
α =

→
α. The injective norm ε is totally accessible, the projective

norm π is accessible—but not totally accessible, and Pisier’s counterexample implies

the existence of a (finitely generated) tensor norm which is neither left- nor right-
accessible (see [3], 31.6). There exists a powerful one-to-one correspondence between

finitely generated tensor norms and maximal Banach ideals which links thinking in
terms of operators with “tensorial” thinking and which allows to transfer notions

in the “tensor-language” to the “operator-language” and conversely. We refer the
reader to [3] and [11] for detailed informations concerning this subject.

Let E, F be Banach spaces and z =
n∑

i=1
ai ⊗ yi be an element in E′ ⊗ F . Then

Tz(x) :=
n∑

i=1
〈x, ai〉yi defines a finite operator Tz ∈ F (E, F ) which is independent of

the representation of z in E′ ⊗ F . Let α be a finitely generated tensor norm and
(A,A) be a maximal Banach ideal. α and (A,A) are said to be associated, notation:

(A,A) ∼ α (shorthand: A ∼ α, resp. α ∼ A)

if for all M, N ∈ FIN
A(M, N) =M ′⊗αN

holds isometrically: A(Tz) = α(z;M ′, N).

Besides the maximal Banach ideal (L, ‖ · ‖) ∼ ε we will mainly be concerned with

(I, I) ∼ π (integral operators), (L2,L2) ∼ w2 (Hilbertian operators), (D2,D2)
1
=

(L∗2,L∗2) ∼ w∗2 (2-dominated operators), (Pp,Pp) ∼ gp\ = g∗q (absolutely p-summing

operators), 1 � p � ∞, 1p +
1
q = 1, (L∞,L∞)

1
= (P∗1 ,P∗1) ∼ w∞ and (L1,L1)

1
=

(P∗d1 ,P∗d1 ) ∼ w1. Since it is important for us, we recall the notion of the conjugate
operator ideal (cf. [5], [8]): let (A,A) be a quasi-Banach ideal. Let A∆(E, F ) be

the set of all T ∈ L(E, F ) for which

A∆(T ) := sup{tr(TL) | L ∈ F(F, E),A(L) � 1} < ∞.

Then a Banach ideal is obtained. It is called the conjugate ideal of (A,A).
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(A,A) is called right-accessible, if for all (M, F ) ∈ FIN×BAN, operators T ∈
L(M, F ) and ε > 0 there are N ∈ FIN(F ) and S ∈ L(M, N) such that T = JF

NS

and A(S) � (1 + ε)A(T ). It is called left-accessible, if for all (E, N) ∈ BAN×FIN,
operators T ∈ L(E, N) and ε > 0 there are L ∈ COFIN(E) and S ∈ L(E/L, N) such

that T = SQE
L and A(S) � (1 + ε)A(T ). A left- and right-accessible ideal is called

accessible. (A,A) is totally accessible, if for every finite rank operator T ∈ F(E, F )

between Banach spaces and ε > 0 there are (L, N) ∈ COFIN(E) × FIN(F ) and
S ∈ L(E/L, N) such that T = JF

NSQE
L and A(S) � (1 + ε)A(T ). Every injective

quasi-Banach ideal is right-accessible (every surjective ideal is left-accessible) and,
if it is left-accessible, it is totally accessible. A finitely generated tensor norm is

right-accessible (resp. left-accessible, accessible, totally accessible) if and only if its
associated maximal Banach ideal is.

3. Accessible conjugate operator ideals

Let (A, A) be a p-Banach ideal (0 < p � 1).1 Suppose A is right-accessible. If
we apply the cyclic composition theorem (see [3], 25.4) to A ◦ L

1
⊆ A, it follows that

A∗ ◦ A
1
⊆ I . If A is totally accessible, an easy calculation shows that A∗ 1= A�. For

p = 1, these properties of A characterize accessibility in the following sense:

Theorem 3.1. Let (A,A) be a Banach ideal. Then (A∗�,A∗�) is always right-

accessible. (A,A) is right-accessible if and only if A∗ ◦ A
1
⊆ I. If in addition (A,A)

is maximal then (A,A) is totally accessible if and only if A∗ 1= A�.

�����. To prove the right-accessibility of A∗�, we may assume that A is
maximal (cf [13], 9.3). Let α ∼ A be associated and (M, F ) ∈ FIN×BAN. Then
α∗ ∼ A∗ . The representation theorem for minimal operator ideals (see [3], 22.2)
gives

Amin(M, F )
1
=M ′⊗αF

1
↪→ (F⊗αtM ′)′′.

Since α is finitely generated, the representation theorem for maximal operator ideals

(see [3], 17.5) yields
(F⊗αtM ′)′ ∼= A∗(F, M).

On the other hand, by canonical trace duality, it follows that

A∗�(M, F )
1

↪→ (A∗(F, M))′.

1Most of the results in this paragraph first appeared in the author’s doctoral thesis (see
[11]). However, we now are using different proofs which give a better insight into the
underlying structures.
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Hence Amin(M, F )
1
= A∗�(M, F ). Since Amin is always right-accessible (see [3],

25.3), A∗� is right-accessible. Let (A, A) be an arbitrary Banach ideal such that
A∗ ◦ A

1
⊆ I. First we show that for all (M, F ) ∈ FIN×BAN, operators T ∈ L(M, F )

A∗�(T ) � A(T )

Let L ∈ F (F, M). Then | tr(TL)| = | tr(LT idM )| � I(LT )·‖ idM ‖ � A∗(L)·A(T )·1.
Hence A∗�(T ) � A(T ). Since A is normed, A(S) = A∗∗(S) = A∗�(S) for all
elementary operators S—between finite dimensional spaces—(cf. [13], 9.2.2), and it
follows that A is right-accessible. Now let (A, A) be a Banach ideal such that it
is maximal and A∗ 1= A�. Let α ∼ A be associated, E, F be Banach spaces and
z ∈ E ⊗F . Let w := jE ⊗ idF (z) and Tw the associated operator in F (E′, F ). Since
α is finitely generated, the above mentioned representation theorem for maximal
operator ideals and a simple application of the Hahn-Banach theorem give

α(z;E, F ) = αt(zt;F, E)

= sup{|〈zt, ϕ〉| | ϕ ∈ B(F⊗αtE)′}
= sup{| tr(STw)| | S ∈ BA∗(F,E′)}
= sup{| tr(STw)| | S ∈ BA�(F,E′)}.

Hence α(z;E, F ) � A(Tw) =
←
α(z;E, F ) (this equality follows from the embedding

lemma (see [3], 17.6)). Therefore α ∼ A is totally accessible, and the proof is finished.
�

Given an arbitrary maximal Banach ideal (A, A) we have shown that A� is right-
accessible. The natural question whether A� is left -accessible is still open and leads
to interesting results concerning the local structure of A.2 It is even true that A�
is left-accessible if and only if the weak A-local principle of reflexivity holds (i.e.,
in this case it is possible to transfer the estimation for the operator norm ‖ · ‖ to
the ideal norm A (see [11] and [12] for further details)). The dual ideal Ad is also a

maximal Banach ideal and therefore Ad� is right-accessible. Since A�d
1
⊆ Ad� we

obtain that both A�d and A�dd are accessible. These considerations imply a slight

generalization of ([3], 25.11) which does not assume accessibility-conditions:

Proposition 3.1. Let (A,A) be Banach ideal and E, F be Banach spaces. If E′

or F has the approximation property, then

(Asur)min(E, F )
1
= (Amin)sur(E, F )

2Note that we cannot use the preceeding proof to verify the left-accessibility of the con-
jugate ideal, since for all (M, F ) ∈ FIN× BAN, we have (M⊗αtF ′)′ ∼= A∗(M, F ′′).
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and

(Ainj)min(E, F )
1
= (Amin)inj(E, F ).

�����. It is sufficient to prove the first isometric equality (for Asur) since the
second one can be proved analogously. Let B ∈ {A,A∗�dd}. By assumption B is a
normed operator ideal and therefore B∗∗ 1= Bmax (see [13], 9.3.1). Using known hull
operations (cf. [13], 8.7 and 9.3) it follows that

(Bsur)min 1= (B∗∗sur)min
1
= (Asur)min

and

(Bmin)sur 1= (B∗∗min)sur 1= (Amin)sur.
In particular these equalities are true for B := A∗�dd. Since B is accessible (in
particular right-accessible), the claim follows by ([3], 25.11). �

So far we have seen that conjugates of maximal Banach ideals play a key role

in the investigation of accessibility. Their appropriateness will be strenghtened by
illuminating accessibility via a calculus derived from specific quotient ideals which

are canonical extensions of conjugate ideals and which appear in a natural manner
by theorem 3.1. Let (A, A) be a p-Banach ideal (0 < p � 1).
We put:3

(A�,A�) := (I ◦ A−1, I ◦A−1) and (A	,A	) := (A−1 ◦ I ,A−1 ◦ I)

and omit the proof of the simple but useful

Lemma 3.1.
(i) A

1
⊆ A	� and A

1
⊆ A�	,

(ii) A�
1
⊆ A	

1
⊆ A∗ and A�

1
⊆ A�

1
⊆ A∗ ,

(iii) if A
1
⊆ B then B	

1
⊆ A	 and B�

1
⊆ A�.

For p = 1, theorem 3.1 therefore implies that A is right-accessible if and only if
A∗ 1= A�. If A∗� is left-accessible or A maximal, then the left-accessibility of A
is equivalent to the statement A∗ 1= A	. Note that A� 1

= A	 if A is injective and
A� 1
= A� if A is surjective (see [8], 2.6). Since A� and A∗ coincide on the space of

all elementary operators it follows that alwaysA�∗ 1= A∗∗, hence A	∗ 1= A∗∗. There-
fore, if A is a maximal Banach ideal, then lemma 3.1 implies that A 1

= A	∗ 1= A	�
and we have obtained the:

Corollary 3.1. Let (A,A) be a maximal Banach ideal. Then (A	 ,A	) is right-
accessible. If A� is left-accessible, then (A� ,A�) is left-accessible.
3 In [11], I ◦ A−1 was abbreviated as Aε and A−1 ◦ I as Aε.
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Now we turn our attention to injective maximal Banach ideals; in particular we

are interested in aspects concerning the left-accessibility of those ideals.

4. Totally accessible injective operator ideals

Let (A, A) be a maximal Banach ideal and (Ainj, Ainj) the injective hull of (A,
A). Let α ∼ A be associated. Then α\ ∼ Ainj and \α∗ ∼ Ainj ∗. Since \α∗ ∼ \A∗
and \L 1

= L∞ it follows that

Ainj ∗ 1= \A∗ 1= (A∗ ◦ \L)reg 1= (A∗ ◦ L∞)reg ∼ \α∗

is the adjoint of Ainj, hence a maximal Banach ideal (see [3], 25.9). In particular we
obtain L∞

1
= (L∞ ◦L∞)reg (since P1

1
= L∗∞ is injective) and I

1
= (P1 ◦L∞)reg (since

Linj∞
1
= L (cf. [3], 20.14)) which implies that both (L∞ ◦L∞)reg and (P1 ◦L∞)reg are

normed operator ideals—a fact which is not obvious.

Lemma 4.1. Let (A,A) be a p-Banach ideal (0 < p � 1) and (B ,B) be a q-

Banach ideal (0 < q � 1). If (A,A)
1
⊆ (Add,Add) then

A ◦ Breg
1
⊆ (A ◦ B)reg.

�����. Let E, F be Banach spaces, ε > 0 and T ∈ A ◦ Breg(E, F ). Then there
are a Banach space G and operators R ∈ A(G, F ) and S ∈ Breg(E, G) such that T =

RS and A(R)Breg(S) < (1+ ε)(A ◦B)reg(T ). Hence jF T = R′′jGS ∈ A ◦ B(E, F ′′)
and A ◦B(jF T ) � A(R′′)Breg(S) < (1 + ε)(A ◦B)reg(T ). �

Now we have prepared all tools to prove

Proposition 4.1. Let (A,A) be a maximal Banach ideal. Then the following
statements are equivalent:

(a) A ◦ A∗
1
⊆ P1,

(b) Ainj is totally accessible.

�����. Let (a) be valid. To prove (b), it is enough to show that Ainj ∗ is right
accessible. Since P1 is right-accessible, theorem 3.1 implies A ◦ A∗ ◦ L∞

1
⊆ I and

hence A∗ ◦ L∞
1
⊆ A	. Since L∞

1
= (L∞ ◦ L∞)reg, it follows by lemma 4.1 that

A∗ ◦ L∞
1
⊆ (A∗ ◦ L∞ ◦ L∞)reg

1
⊆ (A	 ◦ L∞)reg. Hence

Ainj ∗ 1= (A	 ◦ L∞)reg.
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Now we apply theorem 3.1 to the Banach ideal (A	 ◦ L∞)reg: since A is assumed
to be a maximal Banach ideal and L∞ is right-accessible, A	 ◦ L∞ =: B is also
right-accessible. Hence B∗ ◦ B

1
⊆ I and therefore

(Breg)∗ ◦ Breg
1
⊆ B∗ ◦ Breg

1
⊆ (B∗ ◦ B)reg

1
⊆ I .

In other words: (Breg)∗ 1
= (Breg)�. Since Breg 1

= Ainj ∗ is normed, theorem 3.1
implies that Ainj ∗ is right-accesible. Now let Ainj be totally accessible, hence left-
accessible. Then Ainj ◦Ainj ∗

1
⊆ I and therefore A◦A∗ ◦L∞

1
⊆ A ◦Ainj ∗

1
⊆ I . Hence

A ◦ A∗
1
⊆ L�∞

1
= L∗∞

1
= P1. �

We don’t know if there exists a maximal Banach ideal A such that Ainj is totally
accessible and A ◦ A∗

1

� I (hence A is not left-accessible).

Corollary 4.1. Let (A,A) be a maximal Banach ideal. Then A ◦ L∞ is left-
accessible and

A ◦ L∞ ◦ A∗
1
⊆ I .

If A ◦ L∞ is right-accessible, then A∗inj is totally accessible.

�����. Since A ◦ L∞
1
⊆ (A ◦ L∞)reg

1
= \A, and A ◦ L∞ coincides with

(A ◦ L∞)reg on the space of all elementary operators, A ◦ L∞ is left-accessible and

A ◦ L∞ ◦ A∗
1
⊆ (A ◦ L∞) ◦ (A ◦ L∞)∗

1
⊆ I .

Now let A ◦ L∞ be right-accessible. We have to show that

A∗ ◦ A
1
⊆ P1.

But this follows from A∗ ◦ A ◦ L∞
1
⊆ (A ◦ L∞)∗ ◦ (A ◦ L∞)

1
⊆ I . �

Now we will recognize that prop. 4.1 leads to interesting consequences concerning
the characterization of a class of injective maximal Banach ideals which are totally

accessible. Since P1 is included, Grothendieck’s inequality in operator form implies a
non-trivial relation to L2 and L1 in the following sense (with Grothendieck constant
KG):

Lemma 4.2. L2 ◦ L1 ⊆ P1 and P1(T ) � KG · (L2 ◦ L1)(T ) for all T ∈ L2 ◦ L1.
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�����. Let E, F be Banach spaces, ε > 0 and T ∈ L2 ◦ L1(E, F ). Then there

exists a Banach space G and operators R ∈ L2(G, F ), S ∈ L1(E, G) such that T =
RS and L2(R)L1(S) < (L2◦L1)(T ). Since L1

1
= L/ and S ∈ L1(E, G), there exists a

measure µ, operatorsW ∈ L(L1(µ), G′′) and Z ∈ L(E, L1(µ)) such that jGS =WZ

and ‖W‖‖Z‖ < (1 + ε)L1(S). Since R′′ ∈ L2(G′′, F ′′), there exists a Hilbert space
H , operators U ∈ L(H, F ′′) and V ∈ L(G′′, H) such that R′′ = UV and ‖U‖‖V ‖ <

(1 + ε)L2(R). Hence jF T = R′′jGS = U(V W )Z and V W ∈ L(L1(µ), H). Since
L1(µ) is a Lg

1,1—space, Grothendieck’s inequality implies that V W ∈ P1(L1(µ), H)
and P1(V W ) � KG · ‖V W‖ (cf. [3], 23.10). Hence jF T ∈ P1(E, F ′′) and P1(jF T ) �
‖U‖P1(V W )‖Z‖ � (1 + ε)2 KG L2(R)L1(S) < (1 + ε)3 KG (L2 ◦ L1)(T ). Since P1
is regular, the claim follows. �

Now let (A, A) be a maximal Banach ideal such that D2 ⊆ A ⊆ L1 (since
P1

1
⊆ L2

1
= Ld

2, it follows that D2
1
= L∗2

1
⊆ Pd∗

1
1
= L1. Hence the class of such ideals A

is not empty; consider e.g. Pd
2 ). Then A∗ ⊆ L2 and therefore A∗ ◦A ⊆ L2 ◦L1 ⊆ P1

by lemma 4.2. If A∗ ◦A
1
⊆ P1, prop. 4.1 would imply that A∗inj is totally accessible.

In general we don’t know if this is the case. However there exists a beautiful “trick”
to arrange P1(T ) � 1 · (A∗ ◦ A)(T ) for all T ∈ A∗ ◦ A, which is given by tensor
stability. Let γ be a fixed tensor norm. Remember that a given quasi Banach ideal
(A, A) is called γ-tensorstable (cf. [1], [3]), if

S⊗̃γT ∈ A(E⊗̃γF, G⊗̃γH) for all S ∈ A(E, G), T ∈ A(F, H).

In this case there is a constant c � 1 satisfying

A(S⊗̃γT ) � cA(S)A(T ).

If c = 1, A is called metrically γ-tensorstable. If c = 1 and the above inequality is an
equality, then A is called strongly γ-tensorstable. With the help of tensor stability,

we will show how it is possible to improve the inequality A∗ ◦ A ⊆ P1 to obtain
A∗ ◦ A

1
⊆ P1 and turn our attention to

Theorem 4.1. Let (A,A) be a maximal Banach ideal. If
(i) D2 ⊆ A ⊆ L1 and
(ii) both (A∗ ,A∗) and (A,A) are metrically ε-tensorstable

then (A∗inj ,A∗inj) is totally accessible.

�����. Since D2 ⊆ A ⊆ L1, the adjoint A∗ is contained in L2. Hence there
exist constants c � 0 and c∗ � 0 such that L2(R) � c∗A∗(R) for all R ∈ A∗
and L1(S) � cA(S) for all S ∈ A. Let E, F be Banach spaces, ε > 0 and T ∈
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A∗◦A(E, F ). We must show that T ∈ P1(E, F ) and P1(T ) � 1·(A∗◦A)(T ). By the
previous considerations, there exists a Banach space D, operators R ∈ A∗(D, F ) and
S ∈ A(E, D) such that T = RS ∈ L2 ◦L1 and L2(R) L1(S) < cc∗(1+ε)(A∗ ◦A)(T ).
Lemma 4.2 now implies that T = RS ∈ P1(E, F ) and

P1(T ) � KGL2(R)L1(S) < (1 + ε)KGcc∗(A∗ ◦A)(T ).

At this point the improvement of this norm estimation will be realized by the assumed
metric ε-tensor stability of A∗ and A which implies in particular that A∗ ◦ A is
metrically ε-tensorstable (cf. [3], 34.4). Since P1 even is strongly ε-tensorstable (see
[3], 34.5), it follows that

P1(T )
2 = P1(T ⊗̃εT )

� (1 + ε)KGcc∗(A∗ ◦A)(T ⊗̃εT )

� (1 + ε)KGcc∗(A∗ ◦A)(T )2.

Hence: P1(T ) � ((1+ ε)KGcc∗)1/2 (A∗ ◦A)(T ), and an obvious induction argument
implies:

∀n ∈ N : P1(T ) � ((1 + ε)KGcc∗)1/2
n

(A∗ ◦A)(T ).
n →∞ now yields the desired improved norm estimate, and the proof is finished. �

Next we will show that the statement of theorem 4.1 remains valid for arbitrary
finitely generated tensor norms (not only for the injective tensor norm ε) if we assume

a (slight) restriction of the tensor stability condition—with a completely different
proof than the previous one. So, let (A, A) be a maximal Banach ideal with D2 ⊆
A ⊆ L1. Then \A ⊆ \L1

1
= (Psur1 )∗. By Grothendieck’s inequality, L2 ⊆ Psur1

and Psur1 (T ) � KGL2(T ) for all T ∈ L2 (cf. [3], 20.17). Hence \A ⊆ D2 and
there is a constant c � 0 such that D2(S) � cKG\A(S) for all S ∈ \A. Since
L2 is injective, it follows that (\A)∗ ⊆ L2, and there exists a constant c∗ such

that L2(R) � c∗(\A)∗(R) for all R ∈ (\A)∗. Since D2 is right-accessible, hence
L2 ◦ D2

1
⊆ I , we have obtained the following statement which is of its own interest:

Lemma 4.3. Let (A,A) be a maximal Banach ideal such that D2 ⊆ A ⊆ L1.
Then

(\A)∗ ◦ \A ⊆ I
and there exist constants c, c∗ such that

I(T ) � cc∗KG((\A)∗ ◦ \A)(T )

for all T ∈ (\A)∗ ◦ \A.
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Now let in addition γ be an arbitrary finitely generated tensor norm and assume

that (\A)∗ as well as \A are metrically γ-tensorstable. Let (M, F ) ∈ FIN× BAN
and U ∈ (\A)∗	(M, F ). Then U and U⊗̃γU are finite operators and lemma 4.3.
implies that

(\A)∗	(U) � cc∗KG\A(U).

This estimation now can be improved as follows: Let ε > 0. Then there is a Banach

space D, an operator V ∈ (\A)∗(F, D) with (\A)∗(V ) = 1 such that (\A)∗	(U) <

(1+ε)I(V U). Since L 1
= I∗ as well as I are metrically γ- tensorstable (see [3], 34.5),

I even is strongly γ- tensorstable (see [3], 34.2). Hence

(\A)∗	(U)2 < (1 + ε)2I(V U)2

� (1 + ε)2I((V ⊗̃γV ) ◦ (U⊗̃γU))

� (1 + ε)2(\A)∗(V ⊗̃γV ) (\A)∗	(U⊗̃γU)

� (1 + ε)2(\A)∗	(U⊗̃γU).

(The last inequality follows by the metric γ-tensor stability of (\A)∗.) Since \A also
is metrically γ-tensorstable, we obtain

(\A)∗	(U)2 � (\A)∗	(U⊗̃γU) � cc∗KG \A(U⊗̃γU) � cc∗KG \A(U)2.

Hence, induction implies (\A)∗	(U) � \A(U), and since (\A)∗	 is right-accessible,
we have proved:

Theorem 4.2. Let (A,A) be a maximal Banach ideal and γ be a finitely gener-

ated tensor norm. If

(i) D2 ⊆ A ⊆ L1 and
(ii) both ((\A)∗, (\A)∗) and (\A, \A) are metrically γ-tensorstable

then (A∗inj ,A∗inj)
1
= ((\A)∗, (\A)∗) is totally accessible.

To finish this paper we will give now interesting examples which also show that
normed products of maximal Banach ideals will be of crucial significance concerning

the investigation of accessibility. In particular we give a partial answer to a question
of A. Defant and K. Floret whether the ideal (L∞, L∞) is totally accessible or not
(see [3], 21.12).
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5. On normed products of operator ideals and accessibility

Let (A, A) be a maximal Banach ideal such that (A,A) ⊆ (L2,L2). Then
D2 ⊆ A∗ , and related to the foregoing results, it is a natural question to ask for
further properties of A, which even imply that D2 ⊆ A∗ ⊆ L1. In order to arrange
this inclusion, we consider now the product ideal L2 ◦ A:

Lemma 5.1. Let (A,A) be a p-Banach ideal (0 < p � 1). Then (L2◦A,L2◦A) is
always an injective p

1+p -Banach ideal. In particular it is right-accessible and regular.

�����. Let T ∈ (L2 ◦ A)inj(E, F ) and ε > 0. Then there are a Banach
space G, operators R ∈ L2(G, F∞) and S ∈ A(E, G) such that JF T = RS and

L2(R)A(S) < (1 + ε)L2 ◦A(JF T ). Let H be a Hilbert space, V ∈ L(H, F∞) and
W ∈ L(G, H) such that R = V W and ‖V ‖‖W‖ < (1 + ε)L2(R). Let C be the

(closed) range of JF : F
1

↪→ F∞. Then H0 := V −1(C) is a closed subspace of H , and
consequently there exists a projection P ∈ L(H, H) from H onto H0 such that the

closure of the range of V P is contained in C. Since the range of WS is contained
in H0, it follows that WS = PWS. Now let γ : C −→ F be defined canonically

and let γ0 be the restriction of γ to C0, where C0 is the closure of V P (H). Let
B := γ0Z, with Z : H −→ C0, z �→ V Pz, and let D := WS. Then, B ∈ L2(H, F )

and L2(B) � ‖V ‖, D ∈ A(E, H) and A(D) � ‖W‖A(S). In accordance with the
construction,

BDx = γ(V PWSx) = γ(V WSx) = γ(RSx) = Tx for all x ∈ E.

Hence T = BD ∈ L2 ◦ A(E, F ) and L2(B)A(D) < (1 + ε)2(L2 ◦A)inj(T ). Injective
p-Banach ideals are always right-accessible, and since F∞ has the metric extension

property, they are also regular. �

Which ideals A imply now the non-normability of L2 ◦A? One answer is given by

Proposition 5.1. Let (A,A) be a maximal Banach ideal such that (L2◦A,L2◦A)
is normed. Then (A∗,A∗) ⊆ (L∞,L∞).

�����. Since L2 ◦ A is normed and injective (in particular regular), and as a
product of two ultrastable Banach ideals again ultrastable (cf. [2], 3.4.5), it follows
that

N
1
⊆ L2 ◦ A

1
= (L2 ◦ A)reg

1
= (L2 ◦ A)max.
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The last isometric identity is implied by ([13], 8.8.6). Hence I 1
= Nmax

1
⊆ L2 ◦ A,

and the injectivity further implies that P1
1
⊆ L2 ◦ A and therefore

A∗
1
⊆ (L2 ◦ A)∗

1
⊆ L∞.

�

Combining the preceeding considerations with theorem 4.1 and 4.2 leads to the

somehow surprising

Corollary 5.1. Let (A,A) be a maximal Banach ideal such that (A,A) ⊆
(L2,L2). Let (A∗ ,A∗) as well as (A,A) be metrically ε-tensorstable, or let

(\A∗, \A∗) and (Ainj,Ainj) be metrically γ-tensorstable with respect to a given

finitely generated tensor norm γ. If (L2 ◦ Ad,L2 ◦Ad) is normed, then (Ainj,Ainj)
is totally accessible.

�����. Let B := Ad. Then

D2 ⊆ A∗ 1= B∗d
1
⊆ Ld

∞
1
= L1.

Now, theorems 4.1 and 4.2—applied to A∗—yield the claim. �

Corollary 5.2. Let (A,A) be a maximal injective Banach ideal such that
(A,A) ⊆ (L2,L2). Let (A∗ ,A∗) as well as (A,A) be metrically γ-tensorstable

with respect to a given finitely generated tensor norm γ. If (L2 ◦ Ad,L2 ◦ Ad) is

normed, then (A,A) is totally accessible.

Proposition 5.2. Let (A,A) be a maximal Banach ideal such that (A∗ ,A∗) is
γ-tensorstable for some injective tensor norm γ. If (L2 ◦Ad,L2 ◦Ad) is normed, than

there is no infinite dimensional Banach space E such that idE ∈ A∗.

�����. By ([3], 23.3), the ideals L1, L2, and L∞ are mutually uncomparable.
Since γ is an injective tensor norm, an infinite dimensional Banach space in space(A∗)
would lead to L∞ ⊆ A∗ (cf. [3], 34.7). On the other hand, (since L2 ◦Ad is normed)

the previous calculations show that A∗
1
⊆ L1. Hence L∞ ⊆ A∗

1
⊆ L1, which is a

contradiction. �

Remark. Let A ⊆ D2. Then A ⊆ L2, and L2 ◦ Ad is a trace ideal (cf. [2], 4.4).
In particular L2 ◦ Ad is not normed.
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So far we have seen that there is an intimate relation between normed products of

operator ideals and accessibility-conditions. We will finish this paper with another
example which shows, again, that normed products of operator ideals have an impact
on accessibility.

Proposition 5.3. Let (A,A) be an injective, maximal Banach ideal, which is
totally accessible. If ((A∗ ◦ A)reg, (A∗ ◦ A)reg) is normed, then (A∗,A∗) is not
totally accessible.

�����. By assumption, both A and A∗ are maximal, hence ultrastable, so is
their product (see [2], 3.4.5), and it follows that

(A∗ ◦ A)reg 1= (A∗ ◦ A)max.

Since (A∗ ◦ A)reg is assumed to be normed, and A is right-accessible, we obtain

I 1
= Nmax

1
⊆ (A∗ ◦ A)reg

1
⊆ I .

Since A is injective and A∗ regular, an easy calculation shows that A∗ ◦A is regular
as well, and therefore it follows that

A∗ ◦ A 1
= I .

Now, assume that A∗ is totally accessible. Then, by the injectivity of the totally
accessible ideal A, A∗ ◦ A is also totally accessible (see [3], 21.4), which is a contra-
diction, since I is not totally accessible. �

Corollary 5.3. If (L∞ ◦ P1)reg is normed, then L∞ is not totally accessible.

Note, that (P1 ◦ L∞)reg
1
= I is normed, as it was shown in section 4.

6. Questions and open problems

• Is the conjugate of a maximal Banach ideal always left-accessible? (Conjecture:
no)

• Let (A,A) be a maximal Banach ideal. Does this even imply the validity of the
A-local principle of reflexivity? (Conjecture: no)

• What relations exist between tensorstable operator ideals, normed products of
operator ideals and accessibility? How far trace ideals are involved?
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• Assume that A is a maximal Banach ideal such that A∗
1
⊆ L∞. Does this

condition even imply that L2 ◦ A is a normed ideal? (The converse implication
is true (see 5.1)).

• Is it possible to maintain the statement of corollary 5.2 without the property of
L2 ◦ Ad being normed?

• In general it seems to be more easy (via trace ideals) to prove that the product
of two Banach ideals is not normed. Find criteria which show the normability.
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