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Abstract. We consider nonlinear systems with a priori feedback. We establish the ex-
istence of admissible pairs and then we show that the Lagrange optimal control problem
admits an optimal pair. As application we work out in detail two examples of optimal
control problems for nonlinear parabolic partial differential equations.
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1. Introduction

In this paper we examine nonlinear systems with a priori feedback and establish the

existence of optimal pairs for a Lagrange optimal control problem. This is achieved by
assuming a convexity condition on an appropriate orientor field. It is well known from

the finite dimensional theory (see the books of Berkovitz [4] and Cesari [6]) that such
a convexity condition is indispensable in general. It was first introduced by Cesari

[5] and is known as property (Q). In this note we show that under reasonably mild
hypotheses on the data, this property is actually equivalent to simply assuming that

the orientor field has closed and convex values. Our main results are three existence
theorems. In the first two we establish the nonemptiness of the set of admissible

pairs and in the third we show that the Lagrange optimal control problem admits an
optimal pair. Our hypotheses are very general and natural. Finally, we illustrate our

abstract theory by elaborating in detail two examples of optimal control problems
monitored by nonlinear parabolic partial differential equations.
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In addition to extending the finite dimensional theory presented in the books of

Berkovitz [4] and Cesari [6], our research also extends the infinite dimensional work
of Ahmed-Teo [1] who treated semilinear systems under more restrictive hypotheses
on the data (see Section 5.4).

2. Mathematical preliminaries

Let (Ω,Σ, µ) be a measure space and (X, ‖·‖) a separable Banach space. Through-
out this paper, we will use the following notation:

Pf(c)(X) = {A ⊂ X : A nonempty, closed (convex)},

P(w)k(c)(X) = {A ⊂ X : A nonempty, (weakly) compact (convex)}.

A multifunction F : Ω → Pf (X) is said to be measurable if, for all x ∈ X , the
function ω �→ d(x, F (ω)) = inf{‖x− z‖ : z ∈ F (ω)} is measurable. A multifunction
F : Ω → Pf (X) is said to be graph measurable if GrF = {(ω, x) ∈ Ω × X : x ∈
F (ω)} ∈ Σ × B(X), with B(X) being to the Bore σ-field of X . For Pf (X)-valued
multifunctions, measurability implies graph measurability, while the converse is true

if there is a σ-finite measure µ on (Ω,Σ) with respect to which Σ is complete (actually,
graph measurability implies measurability under the more general condition that

Σ = Σ̂ (= the universal σ-field) with no explicit reference to any measure on Σ).
We define Sp

F (1 � p � ∞) to be the set of all Lp(Ω, X)-selectors of F (·), i.e. Sp
F =

{f ∈ Lp(Ω, X) : f(ω) ∈ F (ω) µ-a.e}. Note that for a graph measurable multifunction
F : Ω→ Pf (X), S

p
F is nonempty if and only if the function ω �→ inf{‖z‖ : z ∈ F (ω)}

belongs to Lp(Ω,�+ ).
On Pf (X) we can define a generalized metric, known in the literature as the

“Hausdorff metric”, by setting, for A,B ∈ Pf (X),

h(A,B) = max
{
h∗(A,B) = sup{d(a,B) : a ∈ A}, h∗(B,A) = sup{d(b, A) : b ∈ B}

}

(recall that d(a,B) = inf{‖a− b‖ : b ∈ B}; similarly for d(b, A)). The metric space
(Pf (X), h) is complete. A multifunction F : X → Pf (X) is said to be Hausdorff
continuous (H-continuous) if it is continuous from X into (Pf (X), h).

Given ε > 0 and x ∈ X , we put Ḃε(x) = {y ∈ X : ‖x− y‖ < ε} and if A ⊂ X , we
denote by Aε the set Aε = {y ∈ X : d(y,A) < ε}.
Let Y , Z be Hausdorff topological spaces. A multifunction F : Y → 2Z \ {∅}

is said to be lower semicontinuous (l.s.c.) (upper semicontinuous (u.s.c.)), if for all

U ⊂ Z open F−(U) = {y ∈ Y : F (y)∩U 	= ∅} (resp. F+(U) = {y ∈ Y : F (y) ⊂ U})
is open in Y .
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Now let H be a Hilbert space and let X be a dense subspace of H carrying the

structure of a separable, reflexive Banach space, which embeds into H continuously.
Identifying H with its dual (pivot space), we have X ⊂→ H ⊂→ X∗, with all embed-
dings being continuous and dense. Such a triple of spaces is known in the literature

as “evolution triple” or “Gelfand triple” (see Zeidler [15]). We will also assume that
the embedding of X into H is also compact (in fact, this implies that H ⊂→ X∗

is compact, too). To have a concrete example in mind, let m be a positive integer
and 2 � p � ∞. Let Z ⊂ �

N be a bounded domain and set X = Wm,p
0 (Z,�),

H = L2(Z,�) and X∗ = W−m,q(Z,�) where 1p +
1
q = 1. Then from the Sobolev

embedding theorem, we know that (X,H,X∗) is an evolution triple and all embed-

dings are compact. By | · |(‖ · ‖∗) we will denote the norm of H (resp. of X∗). Also
by (·, ·) we will denote the inner product of H and by 〈·, ·〉 the duality brackets of
the pair (X,X∗). The two are compatible in the sense that 〈·, ·〉 /X×H = (·, ·).
Let 1 < p, q <∞, 1p +

1
q = 1, T = [0, b]; we define

Wpq(T ) = {x ∈ Lp(T,X) : ẋ ∈ Lq(T,X∗)}.

The derivative involved in this definition is understood in the sense of vector valued
distributions. Equipped with the norm ‖x‖Wpq = [‖x‖2Lp(T,X) + ‖ẋ‖2Lq(T,X∗)]

1
2 , the

space Wpq(T ) becomes a separable, reflexive Banach space. It is well known that
Wpq(T ) embeds continuously into C(T,H), i.e. every element inWpq(T ) has a unique

representative in C(T,H). Since we have assumed that X ⊂→ H compactly, we have
that Wpq(T ) ⊂→ Lp(T,H) compactly (see [15], p. 450).

3. Optimal control problem

Let T = [0, b] and let (X,H,X∗) be an evolution triple as in Section 2, with all

embeddings being compact. We consider the following Lagrange optimal control
problem:

J(x, u) =
∫ b

0
L(t, x(t), u(t)) dt→ inf J = m;(1)

s.t. ẋ(t) +A(t, x(t)) = f(t, x(t), u(t)) a.e.;

x(0) = x0;

u(t) ∈ U(t, x(t)) a.e., u(·) is measurable.

The control space is modelled by a separable reflexive Banach space (Y, ‖ · ‖Y ). We

will need the following hypotheses on the data of (1):

H(A): A : T ×X → X∗ is an operator such that
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(1) for all x ∈ X , t �→ A(t, x) is measurable;

(2) for a.e. t ∈ T , x �→ A(t, x) is hemicontinuous and monotone;
(3) ∃ a1 ∈ Lq(T,�+ ) and c1 � 0 such that ‖A(t, x)‖∗ � a1(t) + c1‖x‖p−1 for all

x ∈ X and for a.e. t ∈ T , with 2 � p <∞ and 1p + 1q = 1;
(4) ∃ c � 0 such that 〈A(t, x), x〉 � c‖x‖p for all x ∈ X and for a.e. t ∈ T .

H(f): f : T ×H × Y → H is a function such that

(1) ∀ (x, u) ∈ H × Y , t �→ f(t, x, u) is measurable;
(2) for a.e. t ∈ T , (x, u) �→ f(t, x, u) is continuous;

(3) ∀ a, c ∈ Lq(T,�+) such that
|f(t, x, u)| � a(t)+c(t)[|x|2/q+‖u‖Y ] for all (x, u) ∈ H×Y and for a.e. t ∈ T ,

H(U): U : T ×H → Pf (Y ) is a multifunction such that
(1) (t, x) �→ U(t, x) is graph measurable;

(2) for a.e. t ∈ T , x �→ U(t, x) is H-continuous;
(3) ∃ c2 > 0: |U(t, x)| = {‖u‖Y : u ∈ U(t, x)} � c2(1 + |x|2/q) for all x ∈ X and
for a.e. t ∈ T .

Remark. Note that hypothesis H(U)(2) implies that x �→ U(t, x) is l.s.c. and has
a closed graph.

H(L): L : T ×H × Y → � = � ∪ {+∞} is an integrand such that
(1) (t, x, u) �→ L(t, x, u) is measurable;
(2) for a.e. t ∈ T , (x, u) �→ L(t, x, u) is l.s.c.;

(3) ∃ ψ ∈ L1(T,�) and β � 0:
ψ(t)− β|x| � L(t, x, u) for all u ∈ U(t, x), x ∈ H and for a.e. t ∈ T .

Moreover, we introduce the following convexity hypothesis on the data:

Hc: the multifunction Q : T ×H → 2H×�, defined by

Q(t, x) = {[h, η] ∈ H × � : ∃ u ∈ U(t, x) with L(t, x, u) � η and h = f(t, x, u)}

is such that x �→ Q(t, x) has property (Q) of Cesari (see [6], p. 292).

Remark. Recall that, in our case, property (Q) of Cesari means that for all t ∈ T

Q(t, x) =
⋂

δ>0

co
⋃

x′∈Ḃδ(x)

Q(t, x′), ∀ x ∈ H.

A pair [x, u] ∈ Wpq(T )×L1(T, Y ) is called an “admissible pair” if the two functions
satisfy all the constraints of problem (1). In that case x is called an admissible state
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(or trajectory) and u and admissible control. An admissible pair which minimizes

the Lagrange cost functional among pairs, is called an “optimal pair”.
The convexity hypothesis which we mentioned in the introduction and which is

essential in establishing the existence of an optimal pair for (1) is hypothesis Hc.

The next simple lemma tells us that, under reasonable hypotheses on f , L and U ,
this hypothesis is actually equivalent to simply assuming that for every (t, x) ∈ T×H ,
the set Q(t, x) is closed and convex.

Lemma 1. If given x ∈ H and ε > 0 there exists a δ = δ(x) > 0 such that ∀ (x, u),
(x′, u′) ∈ GrU(t, ·) with |x − x′| < δ, ‖u − u′‖Y < δ ⇒ |f(t, x, u) − f(t, x′, u′)| < ε

and L(t, x′, u) > L(t, x, u) − ε and U(t, ·) is H-continuous then hypothesis Hc is

equivalent to assuming that for all (t, x) ∈ T ×H , Q(t, x) is closed and convex.

�����. Clearly we only need to show that if Q(t, x) is closed and convex for
all (t, x) ∈ T × H , then hypothesis Hc is satisfied. According to Theorem 5.5 of

[9], if we show that Q(t, ·) is h∗-u.s.c. then we are done. So we need to show that
if xn → x in H , then h∗(Q(t, xn), Q(t, x)) → 0 as n → ∞. Fix (t, x) ∈ T × H ,

let ε > 0 be given and let δ = δ(x) > 0 be the one postulated by our hypothesis
on f(t, ·, ·) and L(t, ·, ·). Since by hypothesis U(t, ·) is H-continuous, we can find
n0 � 1 such that for n � n0 we have |xn−x| < δ and h(U(t, xn), U(t, x)) < δ. Given
[νn, ηn] ∈ Q(t, xn), by definition we can find un ∈ U(t, xn) such that νn = f(t, xn, un)

and L(t, xn, un) � ηn. Then dY (un, U(t, x)) < δ for n � n0. So we can find
u′n ∈ U(t, x) such that ‖un − u′n‖Y < δ. Hence from our hypothesis on f(t, ·, ·) and
L(t, ·, ·) we have

|f(t, xn, un)− f(t, x, u′n)| < ε and L(t, x, u′n)− ε < L(t, xn, un) � ηn, ∀ n � n0.

Therefore [νn, ηn] ∈ Q(t, x) + εB1, where B1 = {[ν, η] ∈ H ×�: |ν|+ |η| < 1}, ∀ n �
n0. Since [νn, ηn] ∈ Q(t, xn) was arbitrary, we deduce that h∗(Q(t, xn)Q(t, x)) � ε,

∀ n � n0. So Q(t, ·) is h∗-u.s.c. and then Q(t, ·) has property (Q). �

Next we will establish the nonemptiness of the set P (x0) ⊂Wpq(T )×L1(T, Y ) of

admissible pairs.

Theorem 1. If hypothesis H(A), H(f), H(U) with (2) replaced by (2′): for
a.e. t ∈ T , x �→ U(t, x) is l.s.c. hold and for all (t, x) ∈ T × H , f(t, x, U(t, x))
is closed, then P (x0) 	= ∅ and proj1 P (x0) = P1(x0) is relatively sequentially w-

compact in Wpq(T ).

�����. Let F : T ×H → Pf (H) be defined by

F (t, x) = f(t, x, U(t, x)).
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First we will show that for every x : T → H Lebesgue measurable, the multifunction

t �→ F (t, x(t)) is Lebesgue measurable, too. To this end let un : T → Y , n � 1, be
Lebesgue measurable selectors of U(·, x(·)) such that U(t, x(t)) = {un(t)}n�1. The
existence of such a sequence of measurable selectors follows from hypothesis H(U)(1)

and Theorem 4.2 of Wagner [14]. Then hypothesis H(f)(2) tells us that

F (t, x(t)) = {f(t, x(t), un(t))}n�1.

Because of H(f)(1) and (2), (t, x, u) �→ f(t, x, u) is jointly measurable and so, for

every n � 1, t �→ f(t, x(t), un(t)) is measurable. A final appeal to Theorem 4.2 of
[14] yields the Lebesgue measurability of t→ F (t, x(t)). Next we will show that for

every t ∈ T , x �→ F (t, x) is l.s.c. To prove this we need to show that if xn → x, then
F (t, x) ⊂ limF (t, xn). So let ν ∈ F (t, x), then ∃ u ∈ U(t, x) such that ν = f(t, x, u).
Because of hypothesis H(U)(2′) we get that there exist un ∈ U(t, xn) such that

un → u in Y . Set νn = f(t, xn, un). Then νn → f(t, x, u) = ν and νn ∈ F (t, xn).

Hence we have shown that x �→ F (t, x) is l.s.c.
Because of hypothesis H(f)(3) and H(U)(3) we have

|F (t, x)| � a(t) + c(t)|x|2/q + c(t)c2 + c(t)c2|x|2/q

� â(t) + ĉ(t)|x|2/q a.e. on T, where â(·) = a(·) + c2 c(·) ∈ Lq(T,�+ )

and ĉ(·) = c(·) + c2 c(·) ∈ Lq(T,�+ ).

Now consider the evolution inclusion

(2)
ẋ(t) +A(t, x(t)) ∈ F (t, x(t)) a.e.;
x(0) = x0.

By a solution of (2) we mean a function x ∈Wpq(T ) such that ẋ(t)+A(t, x(t)) = f(t)

a.e., x(0) = x0 with f ∈ Lq(T,H), f(t) ∈ F (t, x(t)) a.e. Recall that Wpq(T ) embeds
into C(T,H) continuously, so that the initial condition makes sense. First we will
obtain an a priori bound for the solutions of (2). So let x ∈ Wpq(T ) be such a

solution (denote the solution set of (2) by P ′1(x0)). From

ẋ(t) +A(t, x(t)) = f(t) a.e., x(0) = x0, with f ∈ Sq
F (·,x(·)),

it follows that

〈ẋ(t), x(t)〉 + 〈A(t, x(t)), x(t)〉 = (f(t), x(t)) a.e.

This implies

1
2
d
dt
|x(t)|2 + c‖x(t)‖p � |f(t)| |x(t)| � |f(t)|β1‖x(t)‖ a.e.,
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where β1 > 0 is such that | · | � β1‖ · ‖ (recall that X embeds into H continuously).
Apply Cauchy’s inequality with ε > 0 and right hand side to get

d
dt
|x(t)|2 + 2c‖x(t)‖p � 2β1

(εq

q
|f(t)|q + 1

εpp
‖x(t)‖p

)
a.e.

Let ε > 0 be such that 2β1εpp = 2c. Then we have

d
dt
|x(t)|2 � ĉ0|f(t)|q a.e.

with ĉ0 =
2β1
Q

(
β1
cp

)1/(p−1)
, hence by integrating we have

|x(t)|2 � |x0|2 + ĉ0
∫ t

0
(â(s) + ĉ(s)|x(s)|2/q)q ds

� |x0|2 + 2q−1ĉ0
∫ t

0
â(s)q ds+ 2q−1ĉ0

∫ t

0
ĉ(s)q|x(s)|2 ds.

Applying Gronwall’s lemma, we get M1 > 0 such that for all x(·) ∈ P ′1(x0) we have

(3) ‖x(·)‖C(T,H) � M1.

Then we get
d
dt
|x(t)|2 + 2c‖x(t)‖p � 2|f(t)|β1M1 a.e.

and hence

2c
∫ b

0
‖x(s)‖p ds � |x0|2 + 2β1M1

∫ b

0
(â(s) + ĉ(s)M2/q

1 ) ds.

Therefore there exists M2 > 0 such that for all x(·) ∈ P ′1(x0)

(4) ‖x(·)‖Lp(T,X) � M2.

Since ẋ(t) = −A(t, x(t)) + f(t) a.e., by using H(A)(3), the fact that |f(t)| � â(t) +
ĉ(t)|x|2/q a.e. and bounds (3) and (4) above, we get an M3 > 0 such that for all

x(·) ∈ P ′1(x0)

(5) ‖ẋ(·)‖Lq(T,X∗) � M3.

From (4) and (5) above we have that P ′1(x0) is bounded in Wpq(T ), hence relatively
sequentially weakly compact.
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Now because of (3), without any loss of generality we may assume that

|F (t, x)| � â(t) + ĉ(t)M2/q
1 = ϕ(t) a.e.,

ϕ(·) ∈ Lq(T,�+). Let V = {h ∈ Lq(T,H) : |h(t)| � ϕ(t) a.e.} and let ξ : Lq(T, T )→
Wpq(T ) be the map which to each h ∈ Lq(T,H) assigns the unique solution of

ẋ(t) +A(t, x(t)) = h(t) a.e., x(0) = x0 (see [3], Th. 4.2, p. 167). Let K = ξ(V ). We
claim that K is weakly compact in Wpq(T ). Indeed, by a similar a priori estimation
as above we get that K is bounded in Wpq(T ), hence relatively sequentially weakly

compact in Wpq(T ). Let {xn}n�1 ⊂ K and assume that xn → x weakly in Wpq(T ).
Be definition we have

ẋn(t) +A(t, xn(t)) = fn(t) a.e.

xn(0) = x0.

By passing to a subsequence if necessary, we may assume that fn → f weakly

in Lq(T,H). Let Â(·) be the Nemitsky (superposition) operator corresponding
to A(·, ·). So Â(x)(·) = A(·, x(·)) for every measurable x : T → X . Because of

hypothesis H(A)(3) and bound (4) above, we see that {Â(xn)}n�1 is bounded
in the reflexive Lebesgue-Bochner space Lq(T,X∗). So we may assume that

Â(xn) → v weakly in Lq(T,X∗). Let ((·, ·))0 be the duality brackets for the
pair (Lp(T,X), Lq(T,X∗)) and ((·, ·))L2(T,H) the inner product on the separable

Hilbert space L2(T,H). From the properties of the evolution triple we have that
((·, ·))0/Lp(T,H)×L2(T,H) = ((·, ·))L2(T,H). From the integration by parts formula for

functions in Wpq (T) ([15], Proposition 23.23) we have

∫ b

0
〈ẋn(s)− ẋ(s), xn(s)− x(s)〉 ds = 1

2
|xn(b)− x(b)|2

and hence we get

((ẋn, xn − x))0 =
1
2
|xn(b)− x(b)|2 + ((ẋ, xn − x))0.

Note that ((ẋ, xn − x))0 → 0. Also {xn}n�1 is bounded in Wpq(T ) and since the

latter embeds compactly in Lp(T,H) and continuously in C(T,H), we also have
1
2 |xn(b) − x(b)|2 → 0 as n → ∞. Therefore ((ẋn, xn − x))0 → 0 as n → ∞. So we
have

((Â(xn), xn − x))0 = ((fn, xn − x))L2(T,H) − ((ẋn, xn − x))0 → 0 as n→∞.

But because of hypothesisH(A), Â is hemicontinuous, monotone, hence has property
(M) (see [15], pp. 583–584). Thus v = Â(x), i.e. Â(xn)→ Â(x) weakly in Lq(T,X∗).

Therefore for every h ∈ Lp(T,X) we have

((ẋn, h))0 + ((Â(xn), h))0 = ((fn, h))0
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and

((ẋ, h))0 + ((Â(x), h))0 = ((f, h))0.

It follows that

ẋ(t) +A(t, x(t)) = f(t) a.e., x(0) = x0 and f ∈ V

and so x ∈ K, i.e. K is w-compact in Wpq(T ) and ξ(·) is sequentially weakly contin-
uous. Let K̂ = coK ∈ Pkc(Lp(T,H)) and define R : K̂ → Pf (Lq(T,H)) by

R(x) = Sq
F (·,x(·)).

Using Fryszkowski’s selection theorem (see [8]), we can find a continuous function
r : K̂ → Lq(T,H) such that r(x) ∈ R(x) for all x ∈ K̂. Then � = ξ0r : K̂ → K̂ is

continuous. Apply Schauder’s fixed point theorem to get a point x ∈ K̂ such that
�(x) = x. Clearly x(·) ∈ P ′1(x0).
Finally, let x ∈ ξ(g), g ∈ Lq(T,H), g(t) ∈ F (t, x(t)) a.e. and let ∆: T → 2Y be

defined by
∆(t) = {u ∈ U(t, x(t)) : g(t) = f(t, x(t), u)}.

Clearly ∆(t) 	= ∅ a.e. and from hypotheses H(f) and H(U) we have that Gr∆ ∈
B(T )×B(Y ).
Apply Aumann’s selection theorem (see [14], Theorem 5.10) to get u : T → Y

measurable such that u(t) ∈ ∆(t) a.e. . Then g(t) = f(t, x(t), u(t)) a.e. and so
x(·) ∈ P1(x0) 	= ∅. Finally, since by the above argument P1(x0) = P ′1(x0), we

have that P ′1(x0) is relatively w-compact in Wpq(T ) (hence relatively compact in
Lp(T,H)). �

Although the above result suffices for the optimal control problem considered in

the paper, we also mention another result, which offers more. We will need the
following hypotheses on the data:

H(f)1: f : T ×H × Y → H is a function such that

(1) ∀ (x, u) ∈ H × Y , t �→ f(t, x, u) is measurable;
(2) for a.e. t ∈ T , (x, u) �→ f(t, x, u) is uniformly continuous;

(3) ∃ a, c ∈ Lq(T,�+ ) such that
|f(t, x, u)| � a(t)+c(t)[|x|2/q+‖u‖Y ] for all (x, u) ∈ H×Y and for a.e. t ∈ T .

H(U)1: U : T ×H → Pf (Y ) is a multifunction such that

(1) (t, x) �→ U(t, x) is graph measurable;
(2) for a.e. t ∈ T , x �→ U(t, x) is h∗-u.s.c.;
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(3) ∃ c2 > 0: |U(t, x)| � c2(1 + |x|2/q) for all x ∈ H and for a.e. t ∈ T .

H ′
c: for almost all t ∈ T and for all x ∈ H , the set f(t, x, U(t, x)) is closed and

convex.

Then we have the following result concerning the sets P1(x0) and P (x0).

Theorem 2. If hypotheses H(A), H(f)1, H(U)1 and H ′
c hold, then P (x0) 	= ∅

and P1(x0) is weakly compact in Wpq(T ).

�����. Let F : T × H → Pfc(H) be the multifunction defined by F (t, x) =
f(t, x, U(t, x)). As in the proof of Theorem 1, we can show that if x : T → H is
Lebesgue measurable, then t �→ F (t, x(t)) is Lebesgue measurable, too. Next we will

show that, for a.e. t ∈ T , we have
⋂

δ>0

co f(t, Ḃδ(x), U(t, Ḃδ(x))) = f(t, x, U(t, x)), x ∈ H.

To this end, note that because of hypothesisH(f)1(2), given ε > 0, we can find δ1 > 0
such that f(t, Ḃδ1(x), U(t, x)δ1 ) ⊂ f(t, x, U(t, x))ε, while from hypothesis H(U)1(2),

we can find 0 < δ � δ1 such that U(t, Ḃδ(x)) ⊂ U(t, x)δ1 . So using hypothesis H
′
c,

we get

⋂

δ>0

co f(t, Ḃδ(x), U(t, Ḃδ(x))) = f(t, x, U(t, x)) = F (t, x), x ∈ H.

Now we can show that the graph of F (t, ·) is sequentially closed in H × Hw (Hw

denotes the space H equipped with the weak topology). Indeed, let [xn, νn]→ [x, ν]
in H × Hw, νn ∈ F (t, xn), n � 1. Then there exist un ∈ U(t, xn) such that νn =

f(t, xn, un). Now given δ > 0 we can find n0(δ) = n0 � 1 such that xn ∈ Ḃδ(x) and
un ∈ U(t, Ḃδ(x)). Hence for n � n0 we have

νn = f(t, xn, un) ∈ f(t, Ḃδ(x), U(t, Ḃδ(x))).

Using the property established above together with Mazur’s lemma (since νn → ν in

Hw) we get that ν ∈ F (t, x).
So GrF (t, ·) is sequentially closed in H ×Hw.

With the same priori estimation as in the proof of Theorem 1, we can show that

P1(x0) is bounded in Wpq(T ) and without any loss of generality we can assume that

|F (t, x)| � ϕ(t) a.e., where ϕ(·) ∈ Lq(T,�+ ).
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Let V = {h ∈ Lq(T,H) : |h(t)| � ϕ(t) a.e.}. This set, furnished with the weak topol-
ogy, is compact metrizable. Let R : V → Pfc(V ) be defined by R(h) = S1F (·,ξ(h)(·)),
where ξ : Lp(T,H)→Wpq(T ) is the solution map, as in the proof of Theorem 1.
We claim that R(·) is u.s.c. on V equipped with the relative weak Lq(T,H)-

topology. Since V topologized like that is w-compact metrizable, it suffices to show
that GrR is closed in V ×V . So let [hn, gn] ∈ GrR, n � 1 and assume that [hg, gn]→
[h, g] weakly in Lq(T,H)× Lq(T,H). Then by definition gn(t) ∈ F (t, ξ(hn)(t)) a.e.
From the proof of Theorem 1 we know that ξ(hn) → ξ(h) in C(T,H). Then using

Theorem 3.1 of [13], we get

g(t) ∈ cow − limF (t, ξ(hn)(t)) ⊂ F (t, ξ(h)(t)) a.e.

the last inclusion being a consequence of the fact that GrF (t, ·) is sequentially closed
in H ×Hw. So [h, g] ∈ Gr� and then R(·) is u.s.c. Applying the Kakutani-KyFan
fixed point theorem we get that there exists h ∈ V such that h ∈ R(h). Then
x = ξ(h) ∈ P1(x0). As in the proof of Theorem 1, via Aumann’s selection theorem,

we can get u : T → Y measurable such that [x, u] ∈ P (x0), i.e. P (x0) 	= ∅. Finally,
let xn ∈ P1(x0) and assume that xn → x weakly in Wpq(T ). Then xn = ξ(gn) with

gn ∈ F (t, xn(t)). By passing to a subsequence if necessary, we may assume that
gn → g weakly in Lq(T,H). Note that, since xn → x weakly in Wpq(T ), xn → x in

Lp(T,H) and by passing to a subsequence if necessary we can achieve xn(t)→ x(t)
a.e. in H . Then as before via Theorem 3.1 of [13] we get g(t) ∈ F (t, x(t)) a.e. Also
x = ξ(g) and hence x ∈ P1(x0); so P1(x0) is w-closed in Wpq(T ), and thus, since
P1(x0) is bounded in Wpq(T ), we have that P1(x0) is w-compact in Wpq(T ). �

Remark. Since Wpq(T ) embeds compactly into Lp(T,H), we have that P1(x0) is
compact in Lp(T,H) and also in L2(T,H) (recall that p � 2).

Now we can present our result on the existence of optimal pairs for problem (1).

Theorem 3. If hypotheses H(A), H(f), H(U), Hc, H(L) hold and the set f(t, x,

U(t, x)) is closed for every (t, x) ∈ T ×H , then problem (1) admits an optimal pair.

�����. Let Γ: T ×X ×X∗ → 2Y be defined by

Γ(t, x, ν) = {u ∈ U(t, x) : ν +A(t, x) = f(t, x, u)}.

Then Gr Γ = {(t, x, ν, u) ∈ T×X×X∗×Y : (t, x, u) ∈ GrU : ν+A(t, x) = f(t, x, u)},
Gr Γ ∈ B(T )×B(X)×B(X∗)×B(Y ) (cf. hypothesesH(A), H(f) and H(U)). Define
p : T ×X ×X∗ → � = � ∪ {+∞} by

p(t, x, ν) = inf{L(t, x, u) : u ∈ Γ(t, x, ν)},
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where as always we use the convention that the infimum over the empty set is +∞.
Now we will establish some properties of p.
(i) (t, x, ν) �→ p(t, x, ν) is superpositionally measurable, i.e. every x : T → X and

ν : T → X∗ Lebesgue measurable functions, t �→ p(t, x(t), ν(t)) is Lebesgue

measurable, too.
So let x : T → X and ν : T → X∗ be two Lebesgue measurable functions. We

need to show that for every θ ∈ �

∆(θ) = {t ∈ T : p(t, x(t), ν(t)) � θ} ∈ L(T ),

with L(T ) being the Lebesgue σ-field of T . Observe that

∆(θ) =
⋂

n�1
projT En(θ), where

En(θ) =
{
(t, u) ∈ T × Y : L(t, x(t), u) � θ +

1
n
, (t, x(t), ν(t), u) ∈ GrΓ

}
.

Because of hypothesis H(L)(1), (t, u) �→ L(t, x(t), u) is measurable while we have

already established above that Γ is graph measurable. Hence En(θ) ∈ L(T )×B(Y )
and so by the “projection theorem” (see [10] or [14]) we have projT En(θ) ∈ L(T )

and thus
⋂

n�1
projT En(θ) = ∆(θ) ∈ L(T ).

ii) (x, ν) �→ p(t, x, ν) is sequentially l.s.c. on Xw × X∗ (Xw denotes the space X

equipped with the weak topology).
We need to show that for every θ ∈ � the level set

K(θ) = {[x, ν] ∈ X ×X∗ : p(t, x, ν) � θ}

is sequentially closed on Xw ×X∗. So let {[xn, νn]}n�1 ⊂ K(θ), [xn, νn] → [x, ν] in
Xw×X∗, hence xn → x in H . By definition there exist, by passing to a subsequence
if necessary, un ∈ Γ(t, xn, νn), n � 1, such that

L(t, xn, un) < p(t, xn, νn) +
1
n

� θ +
1
n
.

Then un ∈ U(t, xn) and νn+A(t, xn) = f(t, xn, un). Because of hypotheses H(U)(3)

and H(f)(3) and by passing to a subsequence if necessary, we may assume that
hn = f(t, xn, un) → h weakly in H . By virtue of Mazur’s lemma, we can find

λk
n � 0,

mn∑
k=0

λk
n = 1 such that

ĥn =
mn∑

k=0

λk
nhn+k → h in H.
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Note that, for every n � 1, we have

ĥn ∈ co
∞⋃

k=n

f(t, xk, uk)

whence we get

h ∈
⋂

n∈�
co

∞⋃

k=n

f(t, xk, uk).

Also, if ηn = L(t, xn, un), we set

η̂n =
mn∑

k=0

λk
nηn+k

and let η̂ = lim η̂n, which is finite because of hypothesis H(L)(3) and the choice of

un.
Then thanks to hypothesis Hc, we get [h, η̂] ∈ Q(t, x) and so there exists u ∈

U(t, x) such that h = f(t, x, u) and L(t, x, u) � η̂.
Note that because of hypothesis H(A)(3) {A(t, xn)}n�1 is bounded in X∗ and so

by passing to a subsequence if necessary, we may assume that A(t, xn)→ w weakly
in X∗. Further we have

〈A(t, xn), xn − x〉 = 〈f(t, xn, un)− νn, xn − x〉 = (f(t, xn, un), xn−x)−〈νn, xn − x〉 .

Recall that f(t, xn, un) → h weakly in H , xn → x weakly in X , xn → x in H and
νn → ν in X∗. So we have

lim
n→∞

〈A(t, xn), xn − x〉 = 0.

But A(t, ·), being monotone and hemicontinuous (see hypothesisH(A)(2)), has prop-
erty (M) (see [15], pp. 383–384). So w = A(t, x). Therefore we have

νn +A(t, xn)→ ν +A(t, x) weakly in X∗

and then

ν +A(t, x) = f(t, x, u), where u ∈ U(t, x) and L(t, x, u) � η̂.

Finally, since
mn∑

k=0

λk
n ηn+k �

mn∑

k=0

λk
n

(
θ +

1
n+ k

)
� θ +

1
n
,
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we get L(t, x, u) � θ. Hence we obtain that p(t, x, ν) � θ and so (x, ν) �→ p(t, x, ν) is

sequentially l.s.c. on Xw ×X∗.
(iii) ν �→ p(t, x, ν) is convex.
Observe that epi p(t, x, ·) = {[ν, η] ∈ X∗ × � : p(t, x, ν) � η} = ⋂

ε>0
{[ν, η] ∈ X∗ × � :

∃ u ∈ U(t, x) : L(t, x, u) � η + ε, ν +A(t, x) = f(t, x, u)} and the last intersection is
convex because of hypothesis Hc.

Now let p̂ : T ×H ×X∗ → � = � ∪ {+∞} be defined by

p̂(t, x, ν) =

{
p(t, x, ν) if x ∈ X ;
+∞ if x ∈ H \X.

Our claim is that (x, ν) �→ p̂(t, x, ν) is l.s.c. on H ×X∗. Indeed, let [xn, νn]→ [x, ν]
in H × X∗ and assume that p̂(t, xn, νn) � θ, ∀ n � 1, θ ∈ �. Then xn ∈ x,

∀ n � 1 and νn + A(t, xn) = f(t, xn, un) with un ∈ U(t, xn). Because of hypotheses
H(U)(3), H(f)(3) and H(A)(4), we have that {xn}n�1 is bounded on X and so we
may assume that xn → x weakly in X . Then property (ii) of p together with the
equality p̂(t, xn, νn) = p(t, xn, νn) implies

lim p̂(t, xn, νn) � p̂(t, x, ν).

It follows that p̂(t, x, ν) � θ and so

(x, ν) �→ p̂(t, x, ν) is l.s.c. as claimed.

Remark that p̂(t, x, ·) is convex (cf. property (iii) of p) and that

ψ(t)− β|x| � p(t, x, ν) a.e. on T, ∀ (x, v) ∈ X ×X∗ (cf. hypothesis

H(L)(3)). Suppose that m < +∞ and let {[xn, un]}n�1 ⊂ Wpq(T )× L1(T, Y ) be a

minimizing sequence for the optimal control problem (1), i.e. J(xn, un)→ m. From
the a priori bounds established in the proof of Theorem 1, we know that {xn}n�1
is bounded in Wpq(T ), hence {ẋn}n�1 is bounded in Lq(T,X∗). By passing to a
subsequence if necessary, we may assume that xn → x weakly in Wpq(T ), hence

xn → x in Lp(T,X) and ẋn → ẋ weakly in Lq(T,X∗). Applying Theorem 2.1 of [2],
we get

−∞ <

∫ b

0
p̂(t, x(t), ẋ(t) dt � lim

∫ b

0
p(t, xn(t), ẋn(t)) dt � lim J(xn, un) = m <∞.

From the above inequalities we see that by redefining, if necessary, p̂(t, x(t), ẋ(t)) on
a Lebesgue-null subset on T , we may assume that p̂(t, x(t), ẋ(t)) = p(t, x(t), ẋ(t)) is
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finite for all t ∈ T . By a straightforward application of Aumann’s selection theorem,
for every k � 1 we can find a measurable function uk : T → Y such that uk(t) ∈
Γ(t, x(t), ẋ(t)) a.e. and

L(t, x(t), uk(t)) � p(t, x(t), ẋ(t)) +
1
k
a.e.

Let L̂k : T → � be defined by L̂k(t) = L(t, x(t), uk(t)). Note that

ψ(t)− β|x(t)| � L̂k(t) � p(t, x(t), ẋ(t)) +
1
k
a.e.

and so {L̂k}k�1 is uniformly integrable in L1(T,�). Hence from the classical
Dunford-Pettis compactness criterion, we may assume that L̂k → L̂ weakly in

L1(T,�), L̂ ∈ L1(T,�).
Remark that [ẋ(t) + A(t, x(t)), L̂k(t)] ∈ Q(t, x(t)) a.e. Then as before, using

Mazur’s lemma on the sequence {L̂k}k�1 weakly convergent in L1(T,�), recalling
that from a strong convergent sequence in L1(T,�) we can always extract a subse-

quence converging almost everywhere and using hypothesis Hc, we conclude that

[ẋ(t) +A(t, x(t)), L̂(t)] ∈ Q(t, x(t)) a.e.

Another application of Aumann’s selection theorem yields a measurable function

u : T → Y such that u(t) ∈ U(t, x(t)) a.e., ẋ(t)+A(t, x(t)) = f(t, x(t), u(t)) a.e. and
L̂(t) � L(t, x(t), u(t)) a.e.

Then since
∫ b

0 p(t, x(t), ẋ(t)) dt+
b
k �

∫ b

0 L̂k(t) dt, we have

∫ b

0
L̂k(t) dt �

∫ b

0
p(t, x(t), ẋ(t)) dt � m

and so we get

J(x, u) � m.

However [x, u] ∈ P (x0). Hence J(x, u) = m and consequently [x, u] is optimal. �
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4. Examples

We present two applications of nonlinear parabolic optimal control problems

Let T = [0, b] and let Z be a bounded domain in �N with smooth boundary
Γ = ∂Z. Let 2 � p < ∞. We consider the distributed parameters optimal control
problem

(6)





∫ b

0

∫

Z

L(t, z, x(t, z), u(t, z)) dz dt→ inf = m;

s.t.
∂x

∂t
−

N∑

k=1

Dk(α(t, z)|Dkx|p−2Dkx) = f(t, z, x(t, z), u(t, z)),

a.e. on T × Z;

x|T×Γ = 0, x(0, z) = x0(z), ‖u(t, z)‖ � γ(t, z‖x(t, ·)‖2 a.e. on T × Z,

where Dk = ∂
∂zk
and | · | denotes the absolute value.

We will need the following hypotheses on the data:

H(α): α : T × Z → � is a measurable function such that there exist β1, β2 ∈ �:

0 < β1 � α(t, z) � β2 a.e. on T × Z.

H(f)2: f : T × Z × � × �
k → � is a function such that

(1) ∀ (x, u) ∈ � × �
k , (t, z) �→ f(t, z, x, u) is measurable;

(2) ∃ k ∈ L1(T, L∞(Z,�+ )) such that
|f(t, z, x, u)− f(t, z, x′, u′)| � k(t, z)(|x− x′|+ ‖u− u′‖)
a.e. in T × Z and ∀ (x, u), (x′, u′) ∈ � × �

k ;

(3) ∃ a ∈ Lq(T, Z2(Z,�+ )) and c ∈ Lq(T, L∞(Z,�∞ )):
|f(t, z, x, u)| � a(t, z) + c(t, z)(|x|+ ‖u‖), a.e. in T × Z, ∀ (x, u) ∈ � × �

k .

H(γ): γ : T × Z × �
+ → �

+ is a function such that

(1) ∀ r ∈ �+ , (t, z) �→ γ(t, z, r) is measurable;
(2) ∀ (t, z) ∈ T × Z, r �→ γ(t, z, r) is continuous;

(3) there exists θ ∈ L∞(T × Z,�+ ) such that

γ(t, z, r) � θ(t, z)(1 + r) a.e. on T × Z.

H(L)1: L : T × Z × � × �
k → � is an integrand such that

(1) ∀ (x, u) ∈ � × �
k , (t, z) �→ L(t, z, x, u) is measurable;
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(2) ∀ M > 0 ∃ wM : T × Z × �
+ × �

+
0 such that

(2)1 ∀ (r, r′) ∈ �+ × �, (t, z) �→ wM (t, z, r, r′) is measurable;

(2)2 ∀ (t, z) ∈ T × Z, (r, r′) �→ wM (t, z, r, r′) is continuous at (0, 0) and
wM (t, z, 0, 0) = 0;

(2)3 ∃ ϕM : T×Z → � : ϕM (t, ·) ∈ L1(Z,�) and wM (t, z, r, r′) � ϕM (t, z) ∀ t ∈ T
and a.e. on Z;

(2)4 |L(t, z, x, u) − L(t, z, x′, u′)| � wM (t, z, |x − x′|, ‖u − u′‖) a.e. in T × Z and

∀ (x, u), (x′, u′) ∈ � × �
k such that ‖u‖ � M and ‖u′‖ � M ;

(3) ∃ ψ ∈ L1(T × Z,�) and β � 0:
ψ(t)− β(|x|+ ‖u‖) � L(t, z, x, u) a.e. on T × Z, ∀ (x, u) ∈ � × �

k ;

(4) ∀ (t, z, x) ∈ T × Z × �, u �→ L(t, z, x, u) is convex.

H ′′
c : ∀ x ∈ L2(Z,�), the function u �→ f(t, z, x(z), u) is such that

∀ u, u′ ∈ �
k with ‖u‖, ‖u′‖ � γ(t, z, ‖x‖2) and ∀ λ ∈ [0, 1] we have

f(t, z, x(z), λu+ (1− λ)u′) = λf(t, z, x(z), u) + (1− λ)f(t, z, x(z), u′);

H0: x0 ∈ L2(Z,�).
Then we have the following existence result concerning problem (6)

Theorem 4. If hypotheses H(α), H(γ), H(f)2, H(L)1, H ′′
c and H0 hold, then

problem (6) admits an optimal pair [x, u] ∈ C(T, L2(Z,�))×L2 (T ×Z,�k ) such that
∂x
∂t ∈ Lq(T,W−1,q(Z,�)).

�����. In this case X = W 1,p
0 (Z,�), H = L2(Z,�) and X∗ = W−1,q(Z,�).

From the Sobolev embedding theorem we know that (X,H,X∗) is an evolution triple
with all embeddings being compact. Let θ : T ×W 1,p

0 (Z,�) ×W 1,p
0 (Z,�) → � be

the time varying Dirichlet form defined by

θ(t, x, y) =
∫

Z

N∑

k=1

α(t, z)|Dkx|p−2DkxDky dz.

Using Hölder’s inequality and hypothesis H(α), we get

|θ(t, x, y)| � β2

N∑

k=1

( ∫

Z

|Dkx|p dz
)1/q

·
( ∫

Z

|Dky|p dz
)1/p

.

Recall that
N∑

k=1
‖Dkx‖p is an equivalent norm on W

1,p
0 (Z,�); therefore ∃ ĉ1 > 0:

|θ(t, x, y)| � ĉ1‖x‖p−1‖y‖.
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So we can define an operator A : T ×W 1,p
0 (Z,�) →W−1,q(Z,�) by

〈A(t, x), y〉 = θ(t, x, y), ∀ y ∈ W 1,p
0 (Z,�).

Observe that we have just proved that

‖A(t, x)‖∗ � ĉ1‖x‖p−1.

Using the elementary inequality

22−p|µ− ν|p � (µ|µ|p−2 − ν|ν|p−2)(µ− ν), µ, ν ∈ �, ∀ p � 2,

we get that there exists ĉ2 > 0 such that

ĉ2‖x− y‖p � θ(t, x, x − y)− θ(t, y, x− y) = 〈A(t, x) −A(t, y), x− y〉
∀ x, y ∈W 1,p

0 (Z,�).

It follows that x �→ A(t, x) is strongly monotone.

Note that by Fubini’s theorem t �→ 〈A(t, x), y〉 is measurable for every y ∈
W 1,p
0 (Z,�) and hence t �→ A(t, x) is weakly measurable. Since W−1,q(Z,�) is a

separable, reflexive Banach space, using the Pettis measurability theorem we deduce
that t �→ A(t, x) is measurable. Also it is easily verified that x �→ A(t, x) is con-

tinuous from W 1,p
0 (Z,�) into W

−1,q(Z,�) and that 〈A(t, x), x〉 � c̄‖x‖p for some
c̄ > 0. Thus we have satisfied hypothesis H(A). Next, let Y = L2(Z,�k ) and define

f̂ : T ×H × Y → H by

f̂(t, x, u)(·) = f(t, ·, x(·), u(·)),

i.e. f̂ is the Nemitsky (superposition) operator corresponding to the function f . Using
H(f)2(3) we obtain, by virtue of Young’s inequality, that there exist â, ĉ ∈ Lq(T,�+ )

such that

|f̂(t, x, u)| � â(t) + ĉ(t)[|x| + ‖u‖Y ] � â1(t) + c(t)[‖x‖2/q + ‖u‖Y ] a.e. on T,

where â1 = â+ ĉ ∈ Lq(T,�+ ). �

Further, from Krasnoselskii’s theorem we know that (x, u) �→ f̂(t, x, u) is continu-
ous and by H(f)2, using Fubini’s theorem we get that t �→ f̂(t, x, u) is measurable.

So we have satisfied hypothesis H(f).
Next let U : T ×H → Pwkc(Y ) be defined by

U(t, x) = {u ∈ Y : ‖u(z)‖ � γ(t, z, |x|) a.e. on Z}.
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Because of hypothesis H(γ), we readily see that t �→ U(t, x) is measurable, while x �→
U(t, x) is H-continuous; therefore (t, x) �→ U(t, x) is jointly measurable (cf. Theorem
3.3 of [12]). Futhermore, hypothesis H(γ)(3) gives that ∃ θ̂ > 0:

|U(t, x)| � θ̂(1 + |x|) � θ̂1(1 + |x|2/q)

with θ̂1 = 2θ̂. So we have satisfied hypothesis H(U).

Next, let L̂ : T ×H × Y → � be defined by

L̂(t, x, u) =
∫

Z

L(t, z, x(z), u(z)) dz.

Then from Fubini’s theorem, t �→ L̂(t, x, u) is measurable, while from hypothesis

H(L)1(2) we get that (x, u) �→ L̂(t, x, u) is continuous. Hence (t, x, u) �→ L̂(t, x, u) is
measurable. Also, from hypothesis H(L)1(3), we have that there exist ψ̂ ∈ L1(T,�)
and β̂ > 0 such that ψ̂(t) − β̂|x| � L̂(t, x, u) a.e. on T , ∀ x ∈ H , ∀ u ∈ U(t, x).
Therefore also hypothesisH(L) is satisfied. Finally, note that by virtue of hypotheses

H(f)2(2), (L)1(2)− (4) and H ′′
c and Lemma 1, we see that the convexity hypothesis

Hc is satisfied (observe that u �→ L(t, x, u) is convex) and by H ′′
c we have that

f(t, x, U(t, x)) is closed ∀ (t, x) ∈ T ×H .

Now we can rewrite (6) as the equivalent abstract optimal control problem

Ĵ(x, u) =
∫ b

0
L̂(t, x(t), u(t)) dt→ inf = m;(6′)

s.t. ẋ(t) +A(t, x(t)) = f̂(t, x(t)u(t)) a.e.;

x(0) = x0 ∈ H = L2(Z,�);
u(t) ∈ U(t, x(t)) a.e., u(·)−measurable.

Apply Theorem 3 to get an optimal pair [x, u] ∈ C(T, L2(Z,�)) ×L2(T ×Z,�). For
the optimal state x(t, z) we know that ∂x

∂t ∈ Lq(T,W−1,q(Z,�)).

Again let T = [0, b] and let Z be a bounded domain in �N with smooth boundary
Γ = ∂Z. We consider the optimal control problem

1
2

∫ b

0

∫

Z

|x(t, z)− x̂(t, z)|2 dz dt+ 1
2

∫ b

0

∫

Z

‖u(t, z)‖2 dz dt→ inf = m;(7)

∂x

∂t
−

N∑

k=1

Dk(α(‖Dx‖2N )Dkx) = f(t, z, x(t, z)) + b(t, z)u(t, z),

a.e. on T × Z;

x|T×Γ = 0, x(0, z) = x0(z) a.e. on Z;
u(t, z) ∈ U(t, z, ‖x(t, ·)‖2) a.e. on T × Z.
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Here D = grad and ‖Dx‖2N =
N∑

k=1
|Dkx|2.

Problems of this type arise in nonlinear elasticity.

We will need the following hypotheses on the data of (7):

H(α): α : �+ → �
+ is continuous and there exist h > 0 and d > 0 such that

0 � α(r) � h for all r � 0 and for all t̂ = (tk)Nk=1, ŝ = (sk)Nk=1 we have

N∑

k=1

(tk − sk)(α(‖t‖2)tk − α(‖s‖2)sk) � d‖t− s‖2.

H(f)3: f : T × Z × � → � is a function such that

(1) ∀ x ∈ R, (t, z) �→ f(t, z, x) is measurable;

(2) ∃ k ∈ L1(T, L∞(Z,�+ )):
|f(t, z, x)− f(t, z, x′)| � k(t, z)|x− x′|, ∀ x, x′ ∈ �, a.e. on T × Z;

(3) ∃ a ∈ L2(T × Z,�+ ), c ∈ L2(T, L∞(Z,�+ )) such that
|f(t, z, x)| � a(t, z) + c(t, z)|x|, a.e. on T × Z, ∀ x ∈ �.

H(b): b ∈ L∞(T × Z,�k ).

H(U)2: U : T × Z × �
+ → Pkc(�k ) is a multifunction such that

(1) ∀ x ∈ �, (t, z) �→ U(t, z, r) is measurable;

(2) ∀ (t, z) ∈ T × Z, r �→ U(t, z, r) is continuous;

(3) ∃ θ ∈ L∞(T × Z,�+ ) such that

|U(t, z, r)| � θ(t, z)(1 + r) a.e. on T × Z, ∀ x ∈ �+ .

H0: x0 ∈ L2(Z,�);
Ĥ : x̂ ∈ L2(T × Z,�) (this is the target function).

We have the following existence result concerning (7):

Theorem 5. If hypotheses H(α), H(f)3, H(b), H(U)2, H0 and Ĥ hold, then
problem (7) admits an optimal pair [x, u] ∈ C(T, L2(Z,�)) × L2(T × Z,�k ) such

that ∂x
∂t ∈ L2(T,H−1(Z,�)).

�����. In this case the evolution triple consists ofX = H10 (Z,�), H = L
2(Z,�)

and X∗ = H−1(Z,�). Then let θ : H10 (Z,�) ×H10 (Z,�) → � be the Dirichlet form
defined by

θ(x, y) =
∫

Z

α(‖Dx‖2N )(Dx,Dy) dz,

where (·, ·) denotes the scalar product on �N .
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Using hypothesis H(α), we get that there exists ĥ > 0 such that

|θ(x, y)| � ĥ‖x‖ ‖y‖.

Consequently, we can define A : H10 (Z,�) → H−1(Z,�) by

〈A(x), y〉 = θ(x, y), ∀ y ∈ H10 (Z,�)

and from above we know that ‖A(x)‖∗ � ĥ‖x‖. Furthermore, as in the previous
example, it is easy to see that A(·) verifies hypothesis H(A), with p = 2. Let
Y = L2(Z,�k ) and define f̂ : T ×H × Y → H by

f̂(t, x, u)(z) = f(t, z, x(z)) + b(t, z)u(z), ∀ z ∈ Z.

Clearly, hypothesis H(f) is satisfied.

Now let Û(t, x) = {u ∈ Y : u(z) ∈ U(t, z, |x|) a.e. on Z}. Using hypothesis H(U)2
and Theorem 3.1 and 4.4 of [13], we see that Û(t, ·) is H-continuous. Furthermore,
for every ν ∈ Y we have

d(ν, Û(t, x))2 =
∫

Z

d(ν(z), U(t, z, |x|))2 dz.

Therefore (t, x, ν) �→ d(ν, Û(t, x)) is a Carathéodory function, hence it is jointly

measurable and then (t, x) �→ Û(t, x) is measurable. Note that ∃ θ̂ > 0 such that
|Û(t, x)| � θ̂(1 + |x|) (cf. hypothesis H(U)2(3).
Let L : T ×H × Y → � be defined by

L(t, x, u) =
1
2

∫

Z

|x(z)− x̂(t, z)|2 dz + 1
2

∫

Z

‖u(z)‖2 dz.

It is easy to see that hypothesis H(L) is satisfied; moreover, by using Lemma 1, also
hypothesis Hc is verified.

Rewriting problem (7) in the equivalent form

J(x, u) =
∫ b

0
L(t, x(t), u(t)) dt→ inf = m;(7′)

s.t. ẋ(t) +A(x(t)) = f̂(t, x(t), u(t)) a.e.;

x(0) = x0 ∈ H = L2(Z,�);
u(t) ∈ Û(t, x(t)) a.e., u(·)-measurable,

and taking into account that f̂(t, x, Û(t, x)) is closed, ∀ (t, x) ∈ T ×H , we can apply
Theorem 3 to get the existence of an optimal pair with the requested properties. �
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