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DRL-SEMIGROUPS AND MV-ALGEBRAS

Jiř́i Rachůnek, Olomouc

(Received November 23, 1995)

The notion of a DRl-semigroup was introduced by K.L.N. Swamy in [7] as a
common generalization of Brouwerian algebras and abelian lattice ordered groups (l-

groups). A DRl−semigroup is an algebra A = (A,+, 0,∨,∧,−) of type 〈2, 0, 2, 2, 2〉
such that

(1) (A,+, 0) is a commutative monoid,

(2) (A,∨,∧) is a lattice,
(3) (A,+,∨,∧) is a lattice ordered semigroup (l-semigroup), i.e. A satisfies the

identities

x+ (y ∨ z) = (x+ y) ∨ (x+ z),

x+ (y ∧ z) = (x+ y) ∧ (x+ z).

(4) If “�” denotes the order on A induced by the lattice (A,∨,∧) then for each
x, y ∈ A, x− y is the smallest z ∈ A such that y + z � x.

(5) A satisfies the identities

((x − y) ∨ 0) + y � x ∨ y,

x− x � 0.

By [7], Theorem 1, DRl-semigroups form a variety of algebras of type 〈2, 0, 2, 2, 2〉,
because condition (4) can be equivalently replaced by the identities

(4i) x+ (y − x) � y,

(4ii) x− y � (x ∨ z)− y,

(4iii) (x+ y)− y � x.

The notion of an MV -algebra was introduced by C.C. Chang in [2], [3] as an
algebraic counterpart of the Lukasiewicz infinite valued propositional logic.
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An MV -algebra is an algebra A = (A,⊕,¬, 0) of type 〈2, 1, 0〉 satisfying the fol-
lowing identities. (See e.g. [4].)

(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(MV2) x⊕ y = y ⊕ x;

(MV3) x⊕ 0 = x;

(MV4) ¬¬x = x;

(MV5) x⊕ ¬0 = ¬0;
(MV6) ¬(¬x ⊕ y)⊕ y = ¬(x⊕ ¬y)⊕ x.

D. Gluschankof in [5] studied some connections between cyclic ordered groups and
MV -algebras. In this paper we deal with the connections between DRl-semigroups

and MV -algebras.

Let G = (G,+, 0,−(.),∨,∧) be an abelian l-group and 0 � u ∈ G. For any

x, y ∈ [0, u] = {x ∈ G ; 0 � x � u}, set x ⊕ y = (x + y) ∧ u and ¬x = u − x. Then
Γ(G, u) = ([0, u],⊕,¬, 0) is an MV -algebra and for any MV -algebra A there exist

an abelian l-group G and 0 < u ∈ G such that A is isomorphic to Γ(G, u). Recently,
these connections were studied by J. Jakubík in [6] also for complete MV -algebras

and complete l-groups.

If A = (A,⊕,¬, 0) is an MV -algebra and if we set x ∨ y = ¬(¬x ⊕ y) ⊕ y and

x ∧ y = ¬(¬x ∨ ¬y), then (A,∨,∧, 0,¬0) is a bounded distributive lattice. (See
e.g. [4], [5].)

Theorem 1. If G = (G,+, 0,−(.),∨,∧) is an abelian l-group, 0 < u ∈ G, A =
[0, u], and if we set for any x, y ∈ A

x⊕ y = (x+ y) ∧ u,

x� y = ((x− y) ∨ 0) ∧ u,

then (A,⊕, 0,∨,∧,�) is a bounded DRl-semigroup with the least element 0 and the
greatest element u satisfying the properties

(i) ∀x ∈ A; u� (u� x) = x,

(ii) ∀x, y ∈ A; x⊕ (y � x) = y ⊕ (x� y),

in which u⊕u = u and u� x = u− x for any x ∈ A.

�����. We will show that (A,⊕,∨,∧,�) is a DRl-semigroup.
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a) Γ(G, u) is anMV -algebra, hence (A,⊕, 0) is a commutative monoid. If x, y, z ∈
A then

x⊕ (y ∨ z) = (x+ (y ∨ z)) ∧ u = ((x+ y) ∨ (x+ z)) ∧ u

= ((x+ y) ∧ u) ∨ ((x+ z) ∧ u) = (x ⊕ y) ∨ (x⊕ z),

x⊕ (y ∧ z) = (x+ (y ∧ z)) ∧ u = (x+ y) ∧ (x+ z) ∧ u

= ((x+ y) ∧ u) ∧ ((x+ z) ∧ u) = (x ⊕ y) ∧ (x⊕ z),

therefore (A,⊕,∨,∧) is an l-semigroup.

b) For any x, y ∈ A, we have

y ⊕ ((x− y) ∨ 0) ∧ u) = (y + (((x − y) ∨ 0) ∧ u)) ∧ u

= (y + ((x − y) ∨ 0)) ∧ (y + u) ∧ u

= ((y + (x− y)) ∨ y) ∧ u = (x ∨ y) ∧ u

= x ∨ y � x.

Let r ∈ A, y ⊕ r � x, i.e. (y + r) ∧ u � x. Since y + r � x, r � ((x − y) ∨ 0) ∧ u.

Consequently, x� y is the smallest element in A satisfying y ⊕ z � x.
c) If x, y ∈ A then by b)

((x� y) ∨ 0)⊕ y = (x� y)⊕ y = x ∨ y.

d) For each x ∈ A,
x� x = ((x − x) ∨ 0) ∧ u = 0.

Hence (A,⊕, 0,∨,∧,�) is a DRl-semigroup and, moreover,

u⊕ u = (u+ u) ∧ u = u,

u� x = ((u− x) ∨ 0) ∧ u = (u− x) ∧ u = u− x

for each x ∈ A.

We will verify the validity of conditions (i) and (ii).
(i): u� (u � x) = u− (u− x) = x.

(ii): By b),

x⊕ (y � x) = (x+ (((y − x) ∨ 0) ∧ u)) ∧ u

= ((x+ ((y − x) ∨ 0) ∧ (x+ u) ∧ u

= ((x+ (y − x)) ∨ x) ∧ u = (x ∨ y) ∧ u

= x ∨ y = y ⊕ (x� y).

�
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Corollary 2. Let A = (A,⊕,¬, 0) be an MV-algebra. For any x, y ∈ A, set

(1) x � y ⇔ ¬(¬x ⊕ y)⊕ y = y.

Then “�” is a lattice order on A (with the lattice operations x ∨ y = ¬(¬x⊕ y)⊕ y

and x∧y = ¬(¬x∨¬y)), for any r, s ∈ A there exists the least element r�s with the

property s⊕ (r� s) � r, and (A,⊕, 0,∨,∧,�) is a DRl-semigroup with the smallest

element 0 and the greatest element ¬0.

�����. Let G = (G,+, 0,−(.),∨,∧) be an abelian l-group, 0 < u ∈ G, and let

A ∼= Γ(G, u).We have to verify that the order on Γ(G, u) obtained by (1) is the same
as that induced on [0, u] by the order of the l-group G.

Let x, y ∈ [0, u]. Suppose that x � y in G. Then

¬(¬x ⊕ y)⊕ y = (u− (((u − x) + y) ∧ u))⊕ y

= ((x − y) ∨ 0)⊕ y = 0⊕ y = y.

Conversely,

¬(¬x ⊕ y)⊕ y = y =⇒
(((x − y) ∨ 0) + y) ∧ u = y =⇒ (x ∨ y) ∧ u = y =⇒

x ∨ y = y =⇒ x � y.

This implies the assertion. �

Theorem 3. Let (A,+, 0,∨,∧,−) be a bounded DRl-semigroup with the smallest
element 0 and the greatest element 1 satisfying the conditions

(i) ∀x ∈ A; 1− (1− x) = x,

(ii) ∀x, y ∈ A; x+ (y − x) = y + (x− y).

Set ¬x = 1− x for any x ∈ A. Then (A,+,¬, 0) is an MV-algebra.

�����. Let us show that conditions (MV1)–(MV6) are satisfied.

(MV1)–(MV3) are contained directly in the definition of a DRl-semigroup.

(MV4): If x ∈ A then, by (i), ¬¬x = 1− (1− x) = x.

(MV5): It is clear (by [7], Lemma 1) that ¬0 = 1 (and 1 + 1 = 1). If x ∈ A, then

0 � x implies 1 � x+ 1, hence x+ 1 = 1. Thus x+ ¬0 = ¬0.
(MV6): Let x, y ∈ A. Then by [7], Lemma 6, and by (i) and (ii), ¬(¬x+ y) + y =

(1−((1−x)+y))+y = ((1−(1−x))−y)+y = (x−y)+y = (y−x)+x = ¬(¬y+x)+x.

�
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Let A = (A,⊕,¬, 0) be an MV -algebra and ∅ 
= I ⊆ A. Then I will be called an

ideal of A if

(a) ∀a, b ∈ I; a⊕ b ∈ I,

(b) ∀a ∈ I, x ∈ A; ¬(¬(a ⊕ ¬x) ⊕ ¬x) ∈ I.

Recall that if B = (B,+, 0,∨,∧,−) is a DRl-semigroup and c, d ∈ B, then by the
symmetric difference of c and d we mean c ∗ d = (c − d) ∨ (d − c). (Hence “∗” is a
metric operation on A.) A non-void subset J ⊆ B is called an ideal of B if

(c) ∀a, b ∈ J ; a+ b ∈ J ,

(d) ∀a ∈ J, x ∈ B; x ∗ 0 � a ∗ 0 =⇒ x ∈ J .

Under conditions (c) and (d), if x ∈ B, 0 � x, then x ∗ 0 = x. Hence in any
DRl-semigroup induced by an MV -algebra, condition (d) can be replaced by

(d′) ∀a ∈ J , x ∈ B; x � a =⇒ x ∈ J.

Then it is obvious that in MV -algebras the ideals in the sense of MV -algebras
and those in the sense of DRl-semigroups coincide. (Orders on MV -algebras will be

always introduced by (1) from Corollary 2.)

In [8], Theorem 1.2, it is proved that the ideals and the congruences of DRl-

semigroups are in a one-to-one correspondence. We will show an analogous corre-
spondence also for the ideals and the congruences of MV -algebras.

Proposition 4. If I is an ideal of an MV-algebraA = (A,⊕,¬, 0) then the relation

≡I on A such that

∀x, y ∈ A ; x ≡I y ⇔ x ∗ y ∈ I,

is a congruence on the MV-algebra A.

�����. Suppose that A = Γ(G, u), where G is an abelian l-group and 0 < u ∈ G.

By [8], Theorem 1.2, ≡I is an equivalence such that

∀x, y, u, v ∈ A ; x ≡I y, u ≡I v =⇒ (x⊕ u) ≡I (y ⊕ v).

Let x, y ∈ A, x ≡I y, i.e. x ∗ y ∈ I. Then

¬x ∗ ¬y = (u − x) ∗ (u− y)

= ((u − x)� (u− y)) ∨ ((u − y)� (u− x))

= ((((u − x)− (u− y)) ∨ 0) ∧ u) ∨ ((((u − y)− (u− x)) ∨ 0) ∧ u)

= (((y − x) ∨ 0) ∧ u) ∨ (((x− y) ∨ 0) ∧ u)

= (y � x) ∨ (x� y) = x ∗ y ∈ I,

hence ¬x ≡I ¬y. Therefore “≡I” is a congruence on (A,⊕,¬, 0). �
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Proposition 5. If “∼” is a congruence on an MV-algebra A = (A,⊕,¬, 0) then

I∼ = {x ∈ A ; x ∼ 0} is an ideal of A.

�����. The lattice operations on A are defined by

x ∨ y = ¬(¬x ⊕ y)⊕ y, x ∧ y = ¬(¬x ∨ ¬y),

hence “∼” is a congruence also on the induced lattice (A,∨,∧).
If a, b ∈ I∼, i.e. a ∼ 0, b ∼ 0, then (a⊕ b) ∼ 0, and so a⊕ b ∈ I∼.

Let a ∈ I∼, x ∈ A and x � a. Then x ∨ a ∈ I∼, thus (x ∨ a) ∼ 0, hence also
(x ∧ (x ∨ a)) ∼ (x ∧ 0), that is x ∼ 0, and therefore x ∈ I∼. �

Theorem 6. The ideals and the congruences of any MV-algebra are in a one-to-
one correspondence.

�����. If A is an MV -algebra then the ideals on A coincide with the ideals
of the induced DRl-semigroup. By [8], Theorem 1.2 and its proof, the ideals of any

DRl-semigroup correspond one-to-one to its congruences and this correspondence is
expressed by the same formulas as in Propositions 4 and 5. �

In [9], some results concerning the lattices of ideals of semiregular normal au-
tometrized lattice ordered algebras are obtained. The DRl-semigroups are special

cases of these algebras, hence the following theorem is an immediate consequence of
[9], Theorem 6.

Theorem 7. The ideals of any MV-algebra A form (under ordering by set inclu-

sion) a complete algebraic Brouwerian lattice I(A).

Theorem 8. The latticeMV of all varieties of MV-algebras is a complete dually
algebraic dually Brouwerian lattice.

�����. It is well-known that the lattice of subvarieties of any variety of al-

gebras M is dually isomorphic to the lattice of fully characteristic congruences of
the free algebra with countable rank in M, and hence, by Theorem 6, the lattice
MV is dually isomorphic to the lattice Ic(F ) of fully characteristic (i.e. closed un-
der all endomorphisms) ideals of the free MV -algebra F with a countable set of

free generators. Obviously, Ic(F ) is a complete sublattice of the lattice I(F ), and
thus it is Brouwerian. Moreover, Cc(F ), the lattice of fully characteristic congru-

ences, is algebraic, because the fully characteristic congruences corresponding to the
finite sets of identities are its compact elements. (If p = q is an identity, then its

corresponding congruence is the least fully characteristic congruence θ such that
p(u0, u1, . . .)θq(u0, u1, . . .) for free generators u0, u1, . . ..) �
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Proposition 9. If A is an MV-algebra and I ∈ I(A), then the pseudocomplement
of I in I(A) is

I⊥ = {x ∈ A ; ¬(¬(a ⊕ ¬x)⊕ ¬x) = 0, for each a ∈ I}.

�����. If A is a DRl-semigroup and I ∈ I(A), then, by [9], Lemma 7, the
pseudocomplement of I in I(A) is I∗ = {x ∈ A ; x ∧ a = 0, for each a ∈ I}. This
implies the assertion. �

The ideal I⊥ from Proposition 9 will be called the polar of I ∈ I(A). If J ∈ I(A),
then J is called a polar in A, if there is some I ∈ I(A) such that J is its polar.
Denote the set of all polars in an MV -algebra A by P(A). It is obvious that if
I ∈ I(A), then I ∈ P(A) if and only if (I⊥)⊥ = I. From Glivenko’s theorem (see
e.g. [1]) we have:

Theorem 10. If A is an MV-algebra then the set of its polars P(A) ordered by
set inclusion is a complete Boolean algebra.

Finally, we will show some connections between homomorphisms of MV -algebras
and DRl-semigroups. (Recall that if G and H are abelian l-groups, 0 < u ∈ G and

f : G −→ H is an l-group homomorphism, then f , the restriction of f to [0, u], is an
MV-algebra homomorphism of Γ(G, u) into Γ(H, f(u)). See e.g. [4].)

Proposition 11. Let G and H be abelian l-groups, 0 < u ∈ G, 0 < v ∈ H ,

and A = Γ(G, u), B = Γ(H, v). Suppose that f : A −→ B is a homomorphism of

MV-algebras which is a restriction of an l-group homomorphism f : G −→ H . Then

f is a homomorphism of the DRl-semigroup (A,⊕,∨,∧,�) into the DRl-semigroup

(B,⊕,∨,∧,�).
�����. We have

f(u) = f(¬0) = ¬f(0) = v,

hence also f(u) = v.

Let x, y ∈ A. Then

f(x� y) = f(((x− y) ∨ 0) ∧ u) = ((f(x) − f(y)) ∨ 0) ∧ v = f(x)� f(y).

�

Proposition 12. Let (A,+, 0,∨,∧,−) and (B,+, 0′,∨,∧,−) be DRl-semigroups
with the least elements 0 and 0′, and the greatest elements 1 and 1′, respectively,
satisfying conditions (i) and (ii) from Theorem 3, and let g : A −→ B be a homo-

morphism of DRl-semigroups such that g(1) = 1′. Then g is a homomorphism of

induced MV-algebras.
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�����. If x ∈ A, then

g(¬x) = g(1− x) = g(1)− g(x) = 1′ − g(x) = ¬g(x).

�
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