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VARIATIONAL EQUATIONS ALONG INTEGRAL CURVES

OF A PROJECTABLE SYSTEM OF VECTOR FIELDS

Catalin Tigăeru, Suceava

(Received February 7, 1996)

There exists a rich literature on systems of connections and systems of vector

fields, stimulated by their importance in geometry and physis. In the previous papers
[T1], [T2] we examined a simple type of systems of vector fields, called parameter

dependent vector fields, and established their varionational equation.

In this paper we generalize the above equation to the projectable system of vector
fields. The material is organized as follows: in the first section the geometry of the

product bundle is presented. In the second we introduce the notion of derivative
along a direction and prove Theorem 1. The third section is devoted to Theorem

2, which represents the main result of the paper. Some examples are presented in
the last section. In a further paper we will apply the results in order to investigate

some special systems as strong systems, “nice” systems and systems of connections
generated by systems of vector fields.

1. The geometry of the product bundle

(1.a) The vertical splitting. Let χ : H → B, π : E → B be two fibred mani-
folds over the same base space B. We denote

(1.1) H ⊕ E = H ×B E =
{
(h, e);χ(h) = π(e) = x ∈ B

}
.

One gets the following fibred manifolds:

pE : H ⊕ E → E, (h, e)→ e,

pH : H ⊕H → H, (h, e)→ h,

p : H ⊕ E → B, (h, e)→ x.
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They are related by the relation

p = χ ◦ pH = π ◦ pE .

Proposition 1. We have the following vertical splittings:

V p = V pE ⊕ V pH ,

V pE = H ⊕ E ×H V χ,

V pH = H ⊕ E ×E V π.

They are consequences of p = χ ◦ pH = π ◦ pE . It is easy to verify that the last

two splittings are described by the followings isomorphisms:

µE : V pE → H ⊕ E ×H V χ,(1.2)

V pE � Ξ,(h,e) →
(
(h, e), (pH)∗ · Ξ,(h,e)

)
,

µH : V pH → H ⊕ E ×E V π,

V pH � Ξ,(h,e) →
(
(h, e), (pH)∗ · Ξ,(h,e)

)
.

These splittings allow us to prolong a vertical vector field of χ to a vertical vector
field of pE .

Let h ∈ H be a fixed point and let Ξ ∈ V χ,h be a vertical vector; then Ξ induces
a vector field along the set

{h} × Ex = p−1H (h) where x = χ(h),

which is vertical along pE at every point (h, e) ∈ p−1H (h).
Indeed, if we set

(1.3) Ξ↑(h, e) = µ−1E

(
(h, e),Ξ,h

)

we obtain a field of vertical vectors along pE, called the vertical prolongation of Ξ. Let
us write the above consideration in coordinate expressions: let (U, xi), i = 1, . . . , n,

be a coordinate chart on B; let
(
χ−1(U), xi, za

)
be the adapted coordinate chart on

H and
(
π−1(U), xi, uα

)
the adapted coordinate chart on E. Then, on the open set

χ−1(U)⊕ π−1(U), we get the coordinate expression (xi, za, uα) with the property

xi(h, e) = xi(x), x = χ(h) = π(e),

za(h, e) = za(h),

uα(h, e) = uα(e).
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If Ξ ∈ V χ,h, Ξ = Ξa · ∂za
,h, the one gets

(1.4) Ξ↑(h, e) = Ξa · ∂za
,(h,e), (h, e) ∈ p−1H (h).

(1.b) Connections of the fibred manifold pE : H ⊕ E → E.

Proposition 2. Let σ : H ×B TB → TH be a connection of the fibred manifold

χ : H → B; we denote the vertical projector of σ by

Pσ : TH → V χ.

Then the formula

(1.5) Pσ = µ−1E ◦ ( id
H⊕E

×HPσ) ◦ pH

represents a splitting of the exact sequence

0→ V pE → T (H ⊕ E)→ H ⊕ E ×E TE → 0.

Consequently, (1.5) represents the vertical projector of a connection

σ : H ⊕ E ×E TE → T (H ⊕ E).

The coordinate expression of σ described as follows: if

σ(h, ∂xi) = ∂xi + σa
i (x, h) · ∂za = δxi

then

σ
(
(h, e), ∂xi

)
= δxi = ∂xi + σa

i (x, h) · ∂za,(1.6)

σ
(
(h, e), ∂uα

)
= ∂uα.

The connection σ splits the tangent space T (H ⊕ E) into the decomposition

(1.7) T (H ⊕ E) = V pE ⊕HpE .
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2. Systems of vector fields

(2.a) The horizontal prolongation of a (p.s.v.f). We use the abbreviation
(s.v.f) for systems of vector fields and (p.s.v.f) for projectable (s.v.f). Let η : H⊕E →
TE be a (s.v.f) and let σ be a connection of the fibred manifold χ : H → B.

We set

η : H ⊕ E → T (H ⊕ E),

η(h, e) = σ
(
(h, e), η(h, e)

)
,(2.1)

where σ is the induced connection described by Proposition 2. The coordinate de-
scription of (2.1) is: if

η(h, e) = ηi(h, e) · ∂xi + ηα(h, e) · ∂uα

then

(2.2) η(h, e) = ηi(h, e) · δxi + ηα(h, e) · ∂uα

where δxi, ∂uα are described by (1.6).

We denote by η : S(χ)→ χ(E) the sheaf morphism

S(χ) � s → s ∈ χ(E),

s(e) = η
(
s(π(e)), e

)
(2.3)

(see [M-M] for details). The (s.v.f) is projectable if there exists a morphism

η : H −→ TB

such that the diagram
η : H ⊕ E ��

��

TE

��
η : H �� TB

commutes. According to [M-M], η is projectable if and only if ηi ∈ F (H). Let us
suppose η is a (p.s.v.f). Then its horizontal prolongation η has the property that it

projects onto the horizontal vector field η′, η′ : H → TH , described by the following
diagram:

H ��

η′
����������������� H ×B TB

σ

��
TH
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One gets locally the expression

(2.4) η′(h) = ηi(h) · δxi = ηi(h) ·
(
∂xi + σa

i (x, h) · ∂za
)
.

Let {ϕt : H ⊕ E → H ⊕ E, t ∈ �} be the one-parametric group of η and let

{ϕ′t : H → H, t ∈ �} be the one-parametric group of η′. Because η projects onto η′,
one obtains that the diagram

(2.5)

ϕt : H ⊕ E ��

��

H ⊕ E

��
ϕ′t : H �� H

commutes.
We may use this diagram in order to describe how an integral curve of η′ determines

a fields of integral curves of η.

Let h0 ∈ H,x0 = χ−1(x0) be a fixed point and let

t → ϕ′t(h0) = c′(t)

be the integral curve of η′ passing through h0. Let e0 ∈ E,x0 = π−1(x0) be any point
and let

(2.6) t → ϕt(h0, e0) = c(t)

be the integral curve of η passing through (h0, e0). The formula (2.6) determines the

family of integral curves of η starting from every point of E,x0 .

Let s ∈ S(χ) be an integral section of η′ which contains c′(t), and let

{st : E → E, t ∈ �}

be the one-parametric group of the vector field s = η(s). Let us denote the integral
curves of s which passes through e0 by

(2.7) t → st(e0) = c(t).

Then we obtain the following decomposition of c(t):

(2.8) c(t) =
(
c′(t), c(t)

)
.

One can verify that (2.8) is independent of the chosen section satisfying the above
properties.
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(2.b) The derivative along a direction. Let η be a (s.v.f) and let Ξ ∈ χ(H) be

a vertical vector field of the fibred manifold χ.We call such a vector field a direction.
Let

{ζλ : H → H, λ ∈ �}

be the one-parametric group of Ξ.

Definition 1. Let (h, e) ∈ H ⊕E be a fixed point. By the derivative of η along

the direction Ξ at the point (h, e) we mean the limit

(2.9) (∂η/∂Ξ)(h, e) = lim
λ→0
(1/λ) ·

(
η(h, e)− η(ζλ(h), e)

)
.

One notices that η(h, e), η
(
ζλ(h), e

)
belong to TeE and so ∂η/∂Ξ does. If the

above limit exists at every point (h, e) ∈ H ⊕ E, then a new (s.v.f)

∂η/∂Ξ: H ⊕ E → TE

called the derivative of η along the direction Ξ, is well defined.

Theorem 1. Let η be a (s.v.f) and let Ξ ∈ χ(H) be a direction. Then the relation

(2.10) (pE)∗,(h,e) · [Ξ↑, η] = (∂η/∂Ξ)(h, e)

holds.

�����. Let Γ: H ⊕ E ×E TE → T (H ⊕ E) be a connection of the fibred

manifold pE : H ⊕ E → E. Locally, Γ can be described by the formulas

Γ(∂xi) = δxi = ∂xi + Γa
i (h, e) · ∂za,

Γ(∂uα) = δuα = ∂uα + Γa
α(h, e) · ∂uα.

As in (2.1), we can prolong η to the horizontal vector field

ηΓ : H ⊕ E → T (H ⊕ E)

with the coordinate expression

ηΓ(h, e) = ηi(h, e) · δxi + ηα(h, e) · δuα.

Let {ζ↑λ : H ⊕ E → H ⊕ E, λ ∈ �} be the one-parametric group of the vertical
prolongation Ξ↑. Then it acts as

ζ↑λ(h, e) =
(
ζλ(h), e

)
,
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where {ζλ : H → H, λ ∈ �} represents the one-parametric group of Ξ ∈ χ(H).

Consequently, the differential of ζ↑λ satisfies

(ζ↑−λ)∗,(ζλ(h),e) · ∂xi = ∂xi
,(h,e),

(ζ↑−λ)∗,(ζλ(h),e) · ∂uα = ∂uα
,(h,e)

and

(ζ↑−λ)∗,(ζλ(h),e) · ∂za = Y a(h, e) ∈ V pE,(h,e).

One obtains

[Ξ↑, ηΓ](h, e) = lim
λ→0
(1/λ) ·

(
ηΓ(h, e)− (ζ↑−λ)∗ · ηΓ(ζλ(h), e)

)

= lim
λ→0
(1/λ) ·

(
Γ((h, e), η(h, e))− Γ

(
(h, e), η(ζλ(h), e))

)

+ lim
λ→0
(1/λ) ·

(
Γ((h, e), η(ζλ(h), e))− (ζ↑−1)∗ · ηΓ

(
ζλ(h), e)

)
.

The first limit is equal to
Γ
(
(h, e), (∂η/∂Ξ)(h, e)

)

as we can see from Proposition 1. We shall prove that the second limit represents a

vertical vector along pE : H ⊕ E → E.

One has

(ζ↑−λ)∗ · ηΓ
(
ζλ(h), e

)
= (ζ↑−λ)∗ · (ηi · ∂xi + ηα · ∂uα + Γa

i · ∂za + Γa
i · ∂za)

,
(
ζλ(h),e

)

= ηi
(
ζλ(h), e

)
· ∂xi

,(h,e) + ηα
(
ζλ(h), e

)
· ∂uα

,(h,e)

+
(
Γa

i

(
ζλ(h), e

)
+ Γa

α

(
ζλ(h), e

))
· Y a(h, e)

= ηi
(
ζλ(h), e

)
· ∂xi

,(h,e) + ηα
(
ζλ(h), e

)
· ∂uα

,(h,e)

+ a vertical vector

= Γ
(
(h, e), η

(
ζλ(h), e

))
+ a vertical vector

This implies that the vector

(1/λ) ·
(
Γ
(
(h, e), η(ζλ(h), e)

)
− (ζ↑−λ)∗ · ηΓ

(
ζλ(h), e

))

belongs to the vector space V pE,(h,e). Because V pE,(h,e) is a closed set, we conclude

that
lim
λ→0
(1/λ) ·

(
Γ
(
(h, e), η(ζλ(h), e)

)
− (ζ↑−λ)∗ · ηΓ

(
ζλ(h), e

))

belongs to V pE,(h,e).
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Hence, because of the property of the connection Γ, one obtains

(pE)∗,(h,e) · [Ξ↑, ηΓ] = (pE)∗,(h,e) · Γ
(
(h, e), ∂η/∂Ξ(h, e)

)
= (∂η/∂Ξ)(h, e).

This concludes the proof.

Theorem 1 allows us to compute the local expression of the derivative along a
direction. Let Ξ ∈ χ(H) be a direction with the coordinate expression

Ξ(h) = Ξa(x, h) · ∂za.

Then, according to (1.4), one has

(2.11) (∂η/∂Ξ)(h, e) = Ξa(h) ·
(
(∂ηi/∂za)(h, e) · ∂xi

,e + (∂ηα/∂za)(h, e) · ∂uα
,e

)
.

The above relation leads to the following conclusion: the derivative along a direc-
tion depends only on the value of the direction at the point. �

3. The variational equation of a (p.s.v.f)

(3.a) The evolution map. Let r ∈ S(π) be a section; we set

r↑ : H → E,

r↑(h) = r
(
χ(h)

)
;

then r↑ becomes a morphism between the fibred manifold H and E.

Proposition 3. Let h0 ∈ H be a fixed point. Then there exist

– a real number ε > 0,
– a fibred neighborhood U0 of h0
– a map

γ : (−ε, ε)× U0 → H ⊕ E

with the property

γ∗,(t,h) · ∂t = η
(
γ(t, h)

)
,(3.1)

γ(0, h) =
(
h, r↑(h)

)
.

�����. By a continuity argument, we can see that the map

(3.2) γ(t, h) = ϕt

(
h, r↑(h)

)

is well defined on a neighborhood of (0, h0) ∈ � ×H and satisfies (3.1). We call the
map γ the evolution map. �
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Corollary 1. Let Ξ ∈ V χ,h0 be a vertical vector and let us denote

e0 = r↑(h0) = r(x0).

Then the relation

(3.3) γ∗,(t,h0) · Ξ = (ϕt)∗,(h0,e0) · Ξ↑(h0, e0)

holds for every t belonging to the set (−ε, ε) ⊂ �.

�����. We can rewrite the relation (3.2) as the diagram

U0 ⊂ H ��

γ

idH ×Hr↑

��������������������� H ⊕ E

ϕt

��
H ⊕ E

for every t belonging to (−ε, ε). It is easy to check that

(id
H
×Hr↑)∗,h0 · Ξ = Ξ↑(h0, e0).

This concludes the proof. �

(3.b) The variational vector along the integral curve of s. One notices
that the curve

t → γ(t, h0)

is nothing else but the integral curve of η starting from (h0, e0). Let us suppose η is
a (p.s.v.f). According to (2.8), one gets

t → γ(t, h0) = c(t) =
(
c′(t), c(t)

)
.

Then, because of (3.3), one obtains a vector field along c(t), denoted by

J(Ξ):
[
c(t)

]
→ T (H ⊕ E)

and defined by the relation

(3.4) J(Ξ)
(
c(t)

)
= (γ∗),(t,h0) · Ξ = (ϕt)∗,(h0,e0) · Ξ↑(h0, e0).

According to the decomposition (1.7), one gets

(3.5) J(Ξ)
(
c(t)

)
= J

v
(Ξ)

(
c(t)

)
+ J

h
(Ξ)

(
c(t)

)

where J
v
(Ξ) ∈ V PE,c(t) and J

h
(Ξ)

(
c(t)

)
∈ HpE,c(t).
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Definition 2. Let σ be a connection of the fibred manifold χ : H → B and let

Ξ ∈ V χ,h0 be a vertical vector. Then the variational vector field induced by σ and
Ξ along the curve c(t) = st(h0) is the field

J(Ξ):
[
c(t)

]
→ TE,

J(Ξ) = (pE)∗,c(t) · J
h
(Ξ)

(
c(t)

)
.(3.6)

(3.c) The variational equation of a (p.s.v.f). Let

j(Ξ):
[
c′(t)

]
→ TH

be the vector field defined by the relation

(3.7) j(Ξ)
(
c′(t)

)
= (ϕ′t)∗,h0 · Ξ

Then j(Ξ) splits into the decomposition

j(Ξ)
(
c′(t)

)
= jh(Ξ)

(
c′(t)

)
+ fv(Ξ)

(
c′(t)

)
,

where jh(Ξ)
(
c′(t)

)
∈ Hχ,c′(t), jv(Ξ)

(
c′(t)

)
∈ V χ,c′(t).

We set

(3.8) Ξ̃
(
c′(t)

)
= Pσ · j(Ξ)

(
c′(t)

)
= jv(Ξ)

(
c′(t)

)
.

Theorem 2. The formula

(3.9)
[
s, J(Ξ)

](
c(t)

)
= (∂η/∂Ξ̃)

(
c(t)

)

holds.

�����. First, we prove that the relation

(∗) Pσ · J(Ξ)
(
c(t)

)
= J

v
(Ξ)

(
c(t)

)
=

(
Ξ̃

(
c′(t)

))↑

holds. Taking into account (2.5) and the expression of pH !, one gets

Pσ · J(Ξ)
(
c(t)

)
= µ−1E ◦ ( id

H⊕E
×HPσ) ◦ pH ! ·

{
(ϕt)∗,(h0,e0) · Ξ↑(h0, e0)

}

= µ−1E ◦
((

c′(t), c(t)
)
, Pσ · j(Ξ),c′(t)

)

= µ−1E ◦
{(

c′(t), c(t)
)
, Ξ̃

(
c′(t)

)}

=
(
Ξ̃

(
c′(t)

))↑(
c(t)

)
.

592



Along the set (−ε, ε)× {h0}, one has

[∂t,Ξ] = 0.

Thus, one obtains

(γ∗),(t,h) · [∂t,Ξ] =
[
η, J(Ξ)

](
c(t)

)
= 0.

Consequently, one obtains

0 =
[
η, J(Ξ)

](
c(t)

)
=

[
η, J

v
(Ξ) + J

h
(Ξ)

](
c(t)

)

=
[
η, J

v
(Ξ)

](
c(t)

)
+

[
η, J

h(
Ξ)]

(
c(t)

)
,

and so [
J

v
(Ξ), η

](
c(t)

)
=

[
η, J

h
(Ξ)

](
c(t)

)
.

Applying (pH)∗ on both sides of the equality and taking into account Theorem 1
and (∗), one obtains [

s, J(Ξ)
](
c(t)

)
= (∂η/∂Ξ̃)

(
c(t)

)
.

This concludes the proof. �

4. Examples

(4.a) Parameter dependent vector fields. Let M be a manifold; we set

H = �m ×M −→ M, (λ, x) −→ x,

E =M −→ M, x −→ x.

Then a (s.v.f) is a map

X : �m ×M → M, (λ, x)→ X(λ, x) ∈ TxM.

In the paper [T1] we called such a (s.v.f) a parameter dependent vector field. It

models the classical theory of the differential equations depending on parameters.

We notice that the integral sections are the constants.

Consequently, if λ ∈ �m , then it induces the vector field

λ : M → TM, λ(x) = X(λ, x).
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The reader can verify that the formula (3.9) has the form

(4.1)
[
λ, J(Ξ)

](
λt(x)

)
= (∂X/∂Ξ)

(
λt(x)

)
.

The above relation is nothing else but the variational equation of the differential
equations depending on parameters.

(4.b) The geodesic flow. An example of a parameter dependent vector is the
geodesic flow of the principal frame bundle B(M) of the manifold M. Let θ be the
canonical form and let ω be a connection form on B(M). Then, if ξ ∈ �m is a vector,

there exists only one standard horizontal vector field

B(ξ) : B(M)→ TB(M)

defined by the relations

θ
(
B(ξ)

)
= ξ,

ω
(
B(ξ)

)
= 0.

We define the parameter depending vector field

B : �m × B(M)→ TB(M),(4.3)

B(ξ, u) = B(ξ)(u) =
m∑

i=1

ξi · B(ei)(u),

where we denote by e1, . . . , em the canonical basis on �m and set

ξ = (ξ1, . . . , ξm).

A direction (vertical vector) Ξ ∈ χ
(
�

m ×B(M)
)
can be written as

Ξ = Ξi(ξ, u) · ∂ei.

Let ξ0 ∈ �m be a fixed point; then the relation (4.1) combined with (4.3) leads to

the formula

(4.4)
[
B(ξ0), J(Ξ)

]
=

(
ξt(u)

)
=

m∑

i=1

Ξi
(
ξt(u), u

)
·B(ei)

(
ξt(u)

)
,

where
[
t → ξt(u)

]
represents the integral curve of B(ξ0) starting from u.
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We have proved in [T2] that J(Ξ) projects onto a Jacobi vector field along the

geodesic determined by B(ξ0). This is the reason why we call (4.4) the lift of the
Jacobi equation to the frame principal bundle.

(4.c) The system of horizontal projectable vector fields. Let π : E → B

be a fibred manifold endowed with the connection

γ : E ×B TB → TE.

The lift of a vector X,x ∈ TxB is defined as follows:

Xh
e = γ

(
(e, x), X,x

)
, π(e) = x,

as is well known.
Consequently, we obtain a (p.s.v.f), devoted

γ : TB ×B E → TE

and described by the relation

(4.5) γ(X,x, e) = Xh
e ∈ TeE.

Let σ be a general connection on TB; then σ is a connection of the fibred manifold
pE : TB ⊕ E → E and so one obtains

γ : TB ⊕ E → T (TB ⊕ E),

γ(Xx, e) = σ
(
(X,x, e), Xh

e

)
.

The projection of γ along pH is nothing else but the lift of X with respect to the
connection σ. So one obtains

γ′ : TB → T (TB),

γ′(X,x) = σ(x, X,x).

Let X,x ∈ TB be fixed and let Ξ ∈ V χ,x be a vertical vector in X,x. Then,

according to (3.9), one obtains the equation

[
Xh, J(Ξ)

](
c(t)

)
= (∂γ/∂Ξ̃)

(
c(t)

)
.

The above equation has a simple form. Let (xi), i = 1, . . . , m be a local coordinate
chart of B and let (xi, uα), α = 1, . . ., n be an adapted chart of E. The adapted
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chart of H = TB becomes (xi, ẋj), j = 1, . . . , m. The connection γ is described by

the relations
γ(e, ∂xi

,x) = ∂xi
,e + γα

i (e) · ∂uα
,e = δxi

,e.

Then, if Ξ = Ξj · ∂ẋj , one obtains

[
Xh, J(Ξ)

](
c(t)

)
= Ξ̃j · δxj

where we set

Ξ̃
(
c′(t)

)
= Ξ̃j

(
c′(t)

)
· ∂ẋj

,c′(t).

Let us suppose we have defined an adapted covariant derivative on the fibred
manifold E, denoted ∇.

Proposition 4. The vector field J(Ξ) is a Jacobi field along the geodesic c(t) if
and only if the following relation is fulfilled:

(4.6) ∇∂γ/∂Ξ̃X
h +∇Xh∂γ/∂Ξ̃ = 0.

�����. One has

∇XhJ(Ξ)−∇J(Ξ)X
h − T

(
Xh, J(Ξ)

)
= ∂γ/∂Ξ̃.

Deriving this relation with respect to ∇ and taking into account thatXh is parallel
along c(t), one obtains

∇Xh∇XhJ(Ξ) + Ω
(
J(Ξ), Xh

)
Xh +∇XhT

(
J(Ξ), Xh

)
= ∇∂γ/∂Ξ̃X

h +∇Xh∂γ/∂Ξ̃.

We have denoted by Ω and T the curvature and the torsion tensors with respect
to ∇ (see [K-N] for details). �
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