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ON THE DEFECT SPECTRUM OF AN EXTENSION

OF A BANACH SPACE OPERATOR

Vladimír Kordula, Praha

(Received January 11, 1995)

Abstract. Let T be an operator acting on a Banach space X. We show that between
extensions of T to some Banach space Y ⊃ X which do not increase the defect spectrum (or
the spectrum) it is possible to find an extension with the minimal possible defect spectrum.

Let X be a Banach space. Denote by B(X) the algebra of all bounded operators
in X . For T ∈ B(X) denote by R(T ) and N(T ) its range and kernel, respectively.

Denote by σπ(T ) = {λ ∈ � : T−λ is not bounded below} and σδ(T ) = {λ ∈ � : T−λ

is not onto} its approximate point spectrum and its defect spectrum, respectively.
Both σπ(T ) and σδ(T ) are compact subsets of the complex plane. The approximate
point spectrum as well as the defect spectrum contain the boundary of the spectrum.

If we consider any extension S of T to a larger Banach space Y ⊃ X then the
spectrum of S contains the approximate point spectrum of T . It was shown in [3]
and [5] that the spectrum of an extension can be made the smallest possible, i.e.

there exist a Banach space Y and an operator S ∈ B(Y ) such that T = S|X and
σ(S) = σπ(T ).

First we study how the defect spectrum of an extension of a Banach space operator

can be reduced. The situation is different than in the previous case because for any
Banach space operator there is some extension which is onto. But it is natural to

consider extensions S of T with the defect spectrum contained in the defect spectrum
of T . We describe which subsets of the complex plane are the defect spectrum of

some extension S of T under the assumption σδ(S) ⊂ σδ(T ). We also solve the same
problem under another condition σ(S) ⊂ σ(T ).

The research was partially supported by grant no. 119106 of the Academy of Sciences,
Czech Republic, 1991 Mathematics Subject Classification 47A20, 47A10
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Then we consider a general case. We show for which pairs F1, F2 of subsets of the

complex plane there is an extension S of T such that σπ(S) = F1 and σδ(S) = F2.
The author would like to thank V. Müller for the fruitful discussions about the

subject.

Let K be a compact subset of � . We shall denote by K̂ = {λ ∈ � : |p(λ)| �
sup
z∈K

|p(z)| for every polynomial p} the polynomial convex hull of K. It is well known
that the polynomial convex hull of K is equal to the complement of the unbounded

component of � \K. Thus ∂K̂ ⊂ ∂K.

Lemma 1. Let K, L be compact subsets of the complex plane � . If K̂ = L̂ then

∂K̂ ⊂ L and ∂L̂ ⊂ K.

�����. Assume that there is λ ∈ ∂K̂ − L. Find ε > 0 such that the open
disc D(λ, ε) is disjoint with L. As λ ∈ ∂K̂, we have that (� − K̂) ∩ D(λ, ε) =

(� −L̂)∩D(λ, ε) is non-empty. Thus (� −L̂)∪D(λ, ε) is open, connected, unbounded
set disjoint with L and therefore contained � − L̂. Hence λ ∈ � − L̂ = � − K̂ and

this is a contradiction. The second inclusion follows from symmetry. �

Lemma 2. Let X be a Banach space, let A ∈ L(X). Then

σ̂(A) = σ̂π(A) = σ̂δ(A).

�����. Follows from the fact that ∂σ(A) ⊂ σπ(A) ⊂ σ(A) and ∂σ(A) ⊂
σδ(A) ⊂ σ(A). �

Lemma 3. Let Y be a Banach space, let X be a closed subspace of Y . Let

T ∈ L(X), S ∈ L(Y ), S|X = T . Then

(1) σδ(S) ⊂ σ̂δ(T ) implies ∂σ̂(T ) ⊂ σδ(S),

(2) σ(S) ⊂ σ(T ) implies ∂σ(T ) ⊂ σδ(S).

�����. As T is the restriction of S to X , we have σπ(T ) ⊂ σπ(S). Using
Lemma 2 and the assumption σδ(S) ⊂ σ̂δ(T ) we obtain

σ̂(T ) = σ̂π(T ) ⊂ σ̂π(S) = σ̂δ(S) ⊂ σ̂δ(T ) = σ̂(T ).

Thus we have shown that σ̂(T ) = σ̂δ(S) and we can apply Lemma 1.
(2) Let λ ∈ ∂σ(T ). The boundary of the spectrum of T is contained in the

approximate point spectrum, so that λ ∈ σπ(T ) ⊂ σπ(S) ⊂ σ(S). There exist
complex numbers λn (n ∈ �) converging to λ and λn ∈ � − σ(T ) ⊂ � − σ(S). Thus

λ ∈ ∂σ(S) ⊂ σδ(S).
We shall need the following lemma (cf. [1]). �
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Lemma 4. Let Ω be a bounded, non-empty, open subset of � . Then there exist
a Hilbert space H and an operator SΩ ∈ L(H) such that
(1) σ(SΩ) = Ω;
(2) ∂Ω ⊂ σδ ⊂ ∂Ω;

(3) there exists h0 ∈ H such that (g, h0) �= 0 for any λ ∈ Ω and any non-zero
g ∈ N(SΩ − λ). Moreover N(SΩ − λ) �= {0}.

�����. Put Ω∗ = {z ∈ � : z ∈ Ω}. Denote by H the Bergman space of all

square-integrable functions in Ω∗ with respect to the planar Lebesgue measure. For
f, g ∈ H the scalar product is defined by

(f, g) =
1

λ(Ω∗)

∫

Ω∗
f(z)g(z)dz dz,

where λ(Ω∗) is the Lebesgue measure of the set Ω∗. This scalar product makes H

into a Hilbert space. Define the operator M on the Hilbert space H by

(Mf)(z) = zf(z).

As for f ∈ H

‖Mf‖2 = 1
λ(Ω∗)

∫

Ω∗
|zf(z)|2 dz dz �

(
sup
z∈Ω∗

|z|
)2
‖f‖2,

we have M ∈ L(H). Fix λ ∈ Ω∗. There exists t > 0 such that D(λ, t) ⊂ Ω∗, where
D(λ, t) is an open disc with the centre in λ and radius t. Let f ∈ H . Consider

the expression of f as a power series converging in the disc D(λ, t), i.e. f(z) =
∞∑

i=0
an(z − λ)n. Let 0 < s < t. Then

m(s) =
∫

D(λ,s)
|f(z)|2 dz dz =

∫

D(λ,s)

∣∣∣∣
∞∑

n=0

an(z − λ)n
∣∣∣∣
2

dz dz

=
∫ s

0

∫ 2�

0

∣∣∣∣
∞∑

n=0

anrneinϕ

∣∣∣∣
2

r dr dϕ = 2�
∫ s

0

∞∑

0

|an|2r2n+1 dr

= 2�
∞∑

n=0

|an|2
s2n+2

2n+ 2
.

Thus for 0 < 2ε < t we have

∫
D(λ,ε) |f(z)|2 dz dz∫
Ω∗ |f(z)|2 dz dz

� m(ε)
m(2ε)

=

∞∑
n=0

|an|2 ε2n+2

2n+2

∞∑
n=0

|an|2 (2ε)
2n+2

2n+2

� 1
4
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and therefore

3
4

∫

Ω∗
|f(z)|2 dzdz �

∫

Ω∗\D(λ,ε)
|f(z)|2 dz dz �

∫

Ω∗
|f(z)|2 dz dz.

Hence

‖(M − λ)f‖2 = 1
λ(Ω∗)

∫

Ω∗
|(z − λ)f(z)|2 dz dz

� 1
λ(Ω∗)

∫

Ω∗\D(λ,ε)
|(z − λ)f(z)|2 dz dz

� ε2

λ(Ω∗)

∫

Ω∗\D(λ,ε)
|f(z)|2 dz dz

� 3ε2

4λ(Ω∗)

∫

Ω∗
|f(z)|2 dz dz = 3ε

2

4
‖f‖2.

Set SΩ = M∗. We have shown that M − λ is bounded below for λ ∈ Ω∗, so that
for µ ∈ Ω the operator SΩ − µ = (M − µ)∗ is onto. For λ /∈ Ω∗ it is clear that
[(M − λ)−1f ](z) = (z − λ)−1f(z) (f ∈ H). Thus (SΩ − λ) = (M − λ)∗ is invertible

for λ /∈ Ω∗.
We have proved that σ(SΩ) ⊂ Ω and σδ(SΩ) ⊂ ∂Ω.

Denote by h0 the function equal identically to 1 on Ω∗. Let λ ∈ Ω and g ∈
N(SΩ − λ) = N((M − λ)∗), g �= 0. Any function f ∈ H can be written in the form

f(z) =
f(z)− f(λ)

z − λ
(z − λ) + f(λ).

As the analytic function (f(z) − f(λ))(z − λ)−1 is also in H , the first term of the
latter sum is in R(M − λ) = (N(SΩ − λ))⊥. Thus we obtain (g, f) = (g, f(λ)h0) =

f(λ)(g, h0) and (g, h0) �= 0, otherwise g ∈ H⊥ = {0}. Further, if f ∈
∞∑

n=0
an(z − λ)n

in D(λ, t) and 0 < s < t then

|f(λ)|2 = |a0|2 � m(s)
�s2

� λ(Ω∗)
�s2

‖f‖2.

Thus f → f(λ) is a non-zero bounded linear functional vanishing on R(M − λ) =

(N(SΩ−λ))⊥ and consequently N(SΩ−λ) is non-trivial. Hence Ω ⊂ σ(SΩ) ⊂ Ω, so
that σ(SΩ) = Ω and ∂Ω ⊂ σδ(SΩ). This completes the proof of (1), (2) and (3). �

Lemma 5. Let Z be a Banach space, D ∈ B(Z), K > 0. Let M be a subspace

of R(D) such that M is dense in Z and for any y ∈ M there exists x ∈ Z satisfying

Dx = y and ‖x‖ � K‖y‖. Then D is onto.
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�����. Define the bounded operator D0 : Z/N(D) → Z by D0(x + N(D)) =

Dx. Define the operator C : M → Z/N(D) by Cy = D−1y + N(D). As ‖Cy‖ �
K‖y‖, we can extend C to an operator from Z to Z/N(D), which we denote by the
same symbol C. For y ∈ M we have D0Cy = D0(D−1y +N(D)) = y. If z ∈ R(D)

then there exist elements yn ∈ M converging to z. As the sequence yn = D0Cyn

converges to D0Cz, we obtain z ∈ D0Cz ∈ R(D). Thus R(D) is closed, dense in Z

and therefore D is onto. �

Proposition 6. Let X be a Banach space, let Ω be a bounded, non-empty
open subset of � . Then there exists a Banach space Z and operators S̃Ω ∈ B(Z),

A : Z → X such that

(i) σ(S̃Ω) = Ω,

(ii) ∂Ω ⊂ σδ(S̃Ω) ⊂ ∂Ω,
(iii) A(N(S̃Ω − λ)) = X for any λ ∈ Ω.
�����. Let H be a Hilbert space, SΩ be an operator and let h0 be an element of

H satisfying conditions (i)–(iii) of Lemma 4. Denote by Z0 = X ⊗a H the algebraic
tensor product of X and H . Define the norm on Z0 by

‖z‖ = inf
{ n∑

i=1

‖xi‖ · ‖hi‖ : xi ∈ X, hi ∈ H, z =
n∑

i=1

xi ⊗ hi

}
.

Let Z = X⊗̂H be the completion of Z0. It is not difficult to show that Z is a Banach

space. Define the operator S̃Ω on Z0 by

S̃Ω

( n∑

i=1

xi ⊗ hi

)
=

n∑

i=1

xi ⊗ SΩhi.

This definition is correct and
∥∥∥∥

n∑

i=1

xi ⊗ SΩhi

∥∥∥∥ � ‖SΩ‖
n∑

i=1

‖xi‖ · ‖hi‖.

Thus we can extend S̃Ω to a bounded operator on Z which we shall denote by the
same symbol S̃Ω.

Let λ ∈ Ω, i.e. SΩ − λ is onto. There exists K > 0 such that for any h ∈ H there
is g ∈ H satisfying (SΩ − λ)g = h and ‖g‖ � K · ‖h‖. Let z ∈ Z0, ε > 0. Find

elements xi ∈ X , hi ∈ H such that z =
n∑

i=1
xi ⊗ hi and

n∑
i=1

‖xi‖ · ‖hi‖ � (1 + ε)‖z‖.
Choose gi ∈ H such that (SΩ − λ)gi = hi and ‖gi‖ � K · ‖hi‖. Then

z =
n∑

i=1

xi ⊗ hi =
n∑

i=1

xi ⊗ (SΩ − λ)gi = (S̃Ω − λ)

( n∑

i=1

xi ⊗ gi

)
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and ∥∥∥∥
n∑

i=1

xi ⊗ gi

∥∥∥∥ �
n∑

i=1

‖xi‖ · ‖gi‖ � K

n∑

i=1

‖xi‖ · ‖hi‖ � K(1 + ε)‖z‖.

Thus S̃Ω − λ is onto by Lemma 5.

If λ /∈ σ(SΩ) then (S̃Ω − λ)−1 = ((SΩ−̃λ)−1), i.e. λ /∈ σ(S̃Ω). Define the operator

A : X0 → X by

A

( n∑

i=1

xi ⊗ hi

)
=

n∑

i=1

(hi, h0)xi.

This definition is correct and

∥∥∥∥
n∑

i=1

(hi, h0)xi

∥∥∥∥ � ‖h0‖
n∑

i=1

‖xi‖ · ‖hi‖.

Thus we can extend A to a bounded operator from Z to X which we shall denote by
the same symbol A. Let x ∈ X , λ ∈ Ω. By Lemma 4 there is a nonzero g ∈ N(SΩ−λ)

such that (g, h0) = 1. Then x⊗ g ∈ N(S̃Ω − λ) and A(x ⊗ g) = (g, h0)x = x. Thus
A(N(S̃Ω − λ)) = X . �

Consider an operator T ∈ B(X). By Lemma 3 the defect spectrum of any exten-
sion S of T to a larger Banach space Y such that σδ(S) ⊂ σδ(T )(σ(S) ⊂ σ(T )) con-

tains ∂σ̂(T ) (∂(σ(T )). Let F be a compact subset of � such that ∂σ̂(T ) ⊂ F ⊂ σδ(T )
(∂σ(T ) ⊂ F ⊂ σ(T )). We show that it is possible to find a Banach space Y ⊃ X

and an extension S of T to Y such that σδ(S) = F (σδ(S) = F and σ(S) ⊂ σ(T )).
In particular, Y and S can be constructed such that the defect spectrum of S is the

smallest possible, i.e. σδ(S) = ∂σ̂(T )(σδ(S) = ∂σ(T )).

Theorem 7. Let X be a Banach space, T ∈ B(X). Then

(i) for any compact subset F of � , ∂σ̂(T ) ⊂ F ⊂ σδ(T ), there are a Banach space
Y containing X and an extension S of T to Y such that σδ(S) = F ,

(ii) for any compact subset F of � , ∂σ(T ) ⊂ F ⊂ σ(T ), there are a Banach space

Y containing X and an extension S of T to Y such that σδ(S) = F and σ(S) ⊂
σ(T ).

�����. (i) Denote by Ω the interior of σ̂(T ). If Ω is an empty set then set

Z = {0}. Otherwise by Proposition 6 there are a Banach space Z and the operators
S̃Ω ∈ B(Z), A : Z → X such that σ(S̃Ω) = Ω, σδ(S̃Ω) = ∂Ω and A(N(S̃Ω − λ)) = X

for λ ∈ Ω. Set Y0 = X ⊕ Z. If Ω is non-empty then define the operator S0 on Y0 by

S0(x⊕ z) = (Tx+Az)⊕ S̃Ωz,
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otherwise we set S0 = T . It is easy to see that for λ ∈ Ω we have S0 − λ is onto and

that S0 − λ is invertible for λ /∈ Ω. Find a normal operator N on the Hilbert space
�2 with σ(N) = σδ(N) = F . Set Y = Y0 ⊕ �2 and define S ∈ B(Y ) by S = S0 ⊕N .
Then σδ(S) = F and (i) is proved.

For the proof of (ii) denote by Ω the interior of σ(T ). The rest of the proof is the

same as in (i). �

Remark 8. In the case when X is even a Hilbert space it is easy to see that the
space Y in the previous theorem can be also constructed as a Hilbert space.

Lemma 9. Let A be an operator on a Banach space X . Then ∂σπ(A) ⊂ σδ(A)

and ∂σδ(A) ⊂ σπ(A).

�����. Let µ ∈ ∂σπ(A). Then there exist elements µn converging to µ such that
A−µn is bounded below. If µ /∈ σδ(A) then A−µn is onto and consequently invertible

for n large enough. But then µ ∈ ∂σ(A) ⊂ σδ(A) and this is a contradiction. Thus
µ ∈ σδ(A). The second inclusion can be proved similarly. �

Theorem 10. Let X be a Banach space, T ∈ B(X). Let F1, F2 are subsets of

the complex plane. The following conditions are equivalent:

(i) there exist a Banach space Y containing X and an extension S of T to Y such

that σπ(S) = F1 and σδ(S) = F2,

(ii) the sets F1, F2 are compact, ∂F1 ⊂ F2, ∂F2 ⊂ F1, σπ(T ) ⊂ F1, σ(T ) ⊂ F̂2.

�����. (i) ⇒ (ii). Clearly F1, F2 are compact. By Lemma 9 we have ∂F1 ⊂ F2
and ∂F2 ⊂ F1. Further we have σπ(T ) ⊂ σπ(S) = F1, so that by Lemma 2

σ(T ) ⊂ σ̂(T ) = σ̂π(T ) ⊂ σ̂π(S) = σ̂δ(S) = F̂2.

(ii) ⇒ (i). By [3] or [5] there exist a Banach space X0 ⊃ X and an operator T0

such that T = T0|X and σ(T0) = σπ(T0) = σπ(T ). Denote by Ω the interior of F1. If
Ω is an empty set then set Z = {0}. Otherwise by Proposition 6 there exist a Banach
space Z and operators S̃Ω ∈ B(Z), A : Z → X such that σ(SΩ) = Ω, σδ(S̃Ω) = ∂Ω,
A(N(S̃Ω − λ)) = X for λ ∈ Ω. Set Y0 = X ⊕ Z. If Ω is non-empty then define

S0 ∈ B(Y0) by

S0(x ⊕ z) = (T0x+Az)⊕ S̃Ωz,

otherwise set S0 = T0. Then

σπ(S0) ⊂ σπ(T0) ∪ σπ(S̃Ω) ⊂ F1 ∪ Ω ⊂ F1.
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Further,

σδ(S0) ⊂ ∂Ω ∪ [(� \ Ω) ∩ σδ(T0)] ⊂ ∂Ω ∪ [(� \ Ω) ∩ F1] ⊂
∂Ω ∪ ∂F1 ⊂ ∂F1 ⊂ F2.

By Proposition 6 there are a Hilbert space W1 and an operator S1 ∈ B(W1) such
that σπ(S1) = σ(S1) = intF1 and σδ(S1) = ∂(intF1) ⊂ ∂F1 ⊂ F2. Similarly there are

a Hilbert space W2 and an operator S2 ∈ B(W2) such that σδ(S2) = σ(S2) = intF2
and σπ(S2) = ∂(intF2) ⊂ ∂F2 ⊂ F1. Find a normal operator N ∈ B(�2) with

σ(N) = σπ(N) = σδ(N) = ∂F1 ∪ ∂F2.

Set Y = Y0 ⊕ W1 ⊕ W2 ⊕ �2 and S = S0 ⊕ S1 ⊕ S2 ⊕ N . Then σπ(S) = F1 and

σδ(S) = F2. �

Remark 11. The same as Remark 8.
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