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Eva Matoušková and Luděk Zajíček, Praha

(Received April 18, 1995)

1. Introduction

Our article is based on the interesting paper [BN] by J.M. Borwein and D. Noll,
which investigates the second order differentiability of convex functions on Banach

spaces. Borwein and Noll consider a rather weak notion of second order differentia-
bility and ask whether an infinite version of Alexandrov’s theorem is possible (they

show that for the strong “Fréchet” notion of second order differentiability no such
version holds in �2).

The classical theorem of A.D. Alexandrov says that every convex function on �n is

almost everywhere second order differentiable. Borwein and Noll give examples which
suggest that the only infinite dimensional space where a version of Alexandrov’s

theorem could be possible is the separable Hilbert space.

Using a dual description of second order differentiability and a notion of gen-

eralized second order differentiability they prove a density version of Alexandrov’s
theorem for a certain class of convex integral functionals on any separable Hilbert

space L2
�n(Ω, P, µ), n = 1. They claim that their basic one-dimensional Lemma 7.7

can be generalized to �n and therefore the result holds for each n. We prove this

“n-dimensional” result by a direct geometrical method without any use of dual func-
tions and generalized second order differentiability. We use an intuitively obvious

characterization of Lipschitz smoothness of a convex function in a Hilbert space by
existence of a ball “supporting from above” the graph of the function and a method

based on the notion of the inner parallel body which was used by P. McMullen in [M].
Moreover, our method does not require the assumption of [BN] that L2

�n(Ω, P, µ) is
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separable and also yields that the set D2f of points of second order differentiability

is even uncountable in any ball.
Borwein and Noll also show that for a very special type of convex integral func-

tionals, namely for convex continuous functions f : �2 → � of the form

(1) f(x) =
∞∑

n=1

fn(xn),

the set D2f of points of second order differentiability of f is not only dense, but it is

in a sense big—it is not an Aronszajn null set in any nonempty open set. Note that
it is still possible* (as conjectured in [BN], p. 79) that this stronger result holds also

for a general continuous convex function f on �2. Nevertheless, the most interesting
open problem in this area is whether such a general f is at least densely second order

differentiable (cf. also Problem 9, p. 45 of [VZ], which asks whether there exists a
point at which f is second order differentiable in every direction).

Our geometrical method gives immediately the stronger result mentioned above
not only for convex continuous functions f : �2 → � of the form (1) but also for

those of a slightly more general form

(2) f(x) = f1(x1, . . . , xn1) + f2(xn1+1, . . . , xn2) + . . . .

We do not know whether this stronger result holds for general convex integral func-
tionals on any separable L2

�n(Ω, P, µ).

Borwein and Noll proved that for general continuous convex functions on �2, the
set X \ D2f is not in general Aronszajn null. They conjectured ([BN], p. 54) that
it need not be Haar null. We prove this conjecture showing even an example of a
function f of the form (1) for which X \D2f is not Haar null.
In connection with this example we answer negatively two questions of Christensen.

Namely, we construct in c0 an uncountable family of pairwise disjoint closed sets

which are not Haar null. We also construct two closed convex sets A and B in c0
which are not Haar null but the set F (A,B) = {x ∈ c0 : (A+x)∩B is not Haar null}
is empty.
Finally, we show that the geometrical characterization of Lipschitz smooth points

and a well-known result on the existence of nearest points easily gives that the set of
Lipschitz smooth points of a general continuous convex function on a Hilbert space

is uncountable in any ball, which (in Hilbert spaces) slightly improves a result of M.
Fabian [F] which says that it is dense.

*Added in proof: This turned out not to be the case. According to [MM] there is even
an equivalent norm p on l2 which is Fréchet differentiable only on an Aronszajn null set.
Therefore (see the text after Proposition 2.3) D2p is Aronszajn null as well.
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Note that we prove also some (tedious) measurability lemmas but postpone them

to the last section. Similar measurability problems are mostly ignored in [BN].

2. Preliminaries

The letters � and � will stand for sets of real and natural numbers, respectively.

We consider only real normed linear spaces. The subdifferential of a convex con-
tinuous function f is denoted by ∂f . By λn we denote the n-dimensional Lebesgue

measure, epi f is the closed epigraph of a function f , and BX(x, r) is the usual no-
tation for an open ball of radius r and center x in a normed linear space X ; the

subscript will be often omitted. Similarly, BX(x, r) is the coresponding closed ball.
The zero vector is denoted by 0. If H is a Hilbert space, we always consider in the

product space H×� the canonical inner product norm ‖(h, t)‖ = (‖h‖2+ t2)1/2. We
say that a subset A of a Banach space X is c-dense if A has cardinality of continuum

in any open ball in X .
Consider the following definition ([BN], p. 45) of second order differentiability:

Definition 2.1. Let f be a convex continuous function defined on a normed
linear space X . We say that f is second order differentiable at x ∈ X if there

exists x∗ ∈ ∂f(x) and a bounded linear operator T : X → X∗ such that f has a
representation of the form

(3) f(x+ th) = f(x) + t〈x∗, h〉+ t2

2
〈Th, h〉+ o(t2) (t→ 0)

for every h ∈ X . We write D2f for the set of points of second order differentiability
of f .

The symmetrization ∇2f(x) of the operator T from Definition 2.1 also satisfies
(3); it is called the Hessian of f at x in [BN]. By f ′′(x) we denote the symmetric
bilinear form on X × X corresponding to T . Thus f ′′(x)(h, k) = 〈∇2f(x)(h), k〉.
The definition of second order differentiability can be reformulated also in terms of
“differentiability” of the subdifferential mapping.

Theorem 2.2. (J.M. Borwein, D. Noll, [BN], p. 48) Let f be a convex continuous
function on a Banach space X , let x ∈ X . Then x ∈ D2f if and only if there exists a
bounded linear operator T : X → X∗ such that

w∗-lim
t→0
(y∗t − y∗0)/t = Th

for any fixed h ∈ X and all y∗t ∈ ∂f(x+ th). Moreover, in this case, T = ∇2f(x).
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We will need also the following result of [BN] (Remark 2, p. 46) which says that

in the case of a finite-dimensional X the “weak” Definition 2.1. coincides with the
“strong” one.

Proposition 2.3. Let X be a finite-dimensional Banach space and let f be a
convex continuous function on X . Then a symmetric T : X → X∗ is the Hessian of

f at a point x ∈ X if and only if there exists x∗ ∈ ∂f(x) such that

f(x+ h) = f(x) + 〈x∗, h〉+ 1
2
〈Th, h〉+ o(‖h‖2) (‖h‖2 → 0).

Borwein and Noll ([BN], p. 47) showed that if a convex continuous function f

is second order differentiable at some point of a Banach space, then it is Fréchet
differentiable at that point; even more, it is Lipschitz smooth there. The notion of
Lipschitz smooth points was investigated by M. Fabian in [F].

Definition 2.4. Let X be a Banach space, and let f : X → � be a convex
continuous function. For c > 0 and δ ∈ (0,∞], we denote by L(f, c, δ) the set of all
x ∈ X for which there exists x∗ ∈ X∗ such that

(4) f(x+ v)− f(x)− 〈x∗, v〉 � c‖v‖2

whenever ‖v‖ < δ. We say that f is Lipschitz smooth at x if x ∈ Lf :=
⋃{L(f, c, δ) :

c > 0, δ > 0}.

Of course, x∗ in the above definition is necessarily the Fréchet derivative of f at
x. If x ∈ D2f ∩ L(f, c, δ), then (3) and (4) easily imply that ‖∇2f(x)‖ � 2c.
Finally, let us recall Christensen’s [C] concept of exceptional sets.

Definition 2.5. A Borel subset C of a separable Banach space X is said to be
Haar null if there exists a Borel probability measure µ on X such that µ(C + x) = 0

for any x ∈ X .

The definition easily implies that each Haar null set has empty interior. Chris-
tensen proved in [C] that the system of Haar null sets is closed on countable unions,

and in a finite dimensional space it coincides with the system of all Borel Lebesgue
null sets. Note that each Aronszajn null set [A] in a separable Banach space is Haar
null.
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3. Lipschitz smoothness and balls supporting the graph

In this section we give a geometrical characterization of points of Lipschitz smooth-
ness, and prove by McMullens’s method [M] the basic Proposition 3.8.

The following notion enables us to characterize Lipschitz smoothness geometri-
cally.

Definition 3.1. Let f be a convex continuous function defined on a Hilbert space
H, let epif be the closed epigraph of f , and r > 0. A point x ∈ H is an r-point of
the function f if there exists a point z ∈ H×� such that the closed ball BH×�(z, r)

supports from above the graph of f at the point (x, f(x)), i.e. BH×�(z, r) ⊂ epi f
and (x, f(x)) ∈ BH×�(z, r).
It is easy to see that if x is an r-point for some r > 0 then it is an r′-point for

every 0 < r′ < r.

Lemma 3.2. Let H be a Hilbert space, c > 0 and ψ(x) := c‖x‖2 for x ∈ H.
Then, for any z ∈ H, the ball

B := B
(
(0, c‖z‖2 + 1

2c
),

√
1
4c2
+ ‖z‖2

)

supports from above the graph of ψ at the point (z, c‖z‖2). In particular, every point
of H is a 1

2c -point of the function c‖x‖2.
�����. The inequality

c‖x‖2 � c‖z‖2 + 1
2c
−
√
1
4c2
+ ‖z‖2 − ‖x‖2

is valid for all x ∈ H with ‖x‖ �
√
1/(4c2) + ‖z‖2, as an easy computation after

substituting t := ‖z‖2 − ‖x‖2 reveals. Since on the right side of the inequality we
have the “lower sphere function” of the ball B, and for x = z we get equality, B
supports from above the graph of ψ at (z, c‖z‖2). �

Lemma 3.3. Let H be a Hilbert space, let c > 0, δ > 0, and x ∈ H be given. Let
f be a convex continuous function on H such that ∇2f(y) exists and ‖∇2f(y)‖ � c

for every y ∈ B(x, δ). Then x ∈ L(f, c, δ).
�����. The assumptions easily imply that f ′ is c-Lipschitz on B(x, δ). This

fact and the mean value theorem imply that, for every h ∈ H, ‖h‖ < δ, we have

f(x+ h)− f(x)− 〈f ′(x), h〉 = 〈f ′(z), h〉 − 〈f ′(x), h〉 � c‖h‖2

for a suitable choice of t ∈ (0, 1) and z = x+ th. �
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Lemma 3.4. Let H be a Hilbert space, r > 0 and ψ(x) = −
√
r2 − ‖x‖2 for

x ∈ BH(0, r) . Then the second Fréchet derivative T of ψ is bounded on B(0, r − ε)
for any ε > 0. Moreover,

(i) ‖ψ′(x)‖ > 1 for x ∈ BH(0, r), ‖x‖ >
√
2
2 r and

(ii) ‖T (x)‖ < 8/r for x ∈ BH(0,
√
3
2 r).

�����. The statement of the lemma follows easily from the fact that

ψ′(x) = x/
√
r2 − ‖x‖2

and

T (x)(v) = v/
√
r2 − ‖x‖2 + x〈x, v〉 · 1/(

√
r2 − ‖x‖2)3

for x ∈ BH(0, r) and v ∈ H. �

Lemma 3.5. Let r > 0 be given. Then there exist c > 0 and δ > 0 such that if
f is a convex continuous function on a Hilbert space H, x is an r-point of f , and
‖f ′(x)‖ < 1, then x ∈ L(f, c, δ).

�����. If x is an r-point of f , there exist y ∈ H and s ∈ � such that f is “sup-
ported at x” from above by the “lower sphere function” ψ(v) := s−

√
r2 − ‖v − y‖2,

i.e.

f(v) � ψ(v) if ||v − y‖ � r, and

f(x) = ψ(x).

Since clearly ψ′(x) = f ′(x) and ‖f ′(x)‖ < 1, Lemma 3.4 implies that ‖x − y‖ �√
2r/2. Therefore Lemma 3.3 and Lemma 3.4 give x ∈ L(ψ, 8/r, (

√
3−

√
2)r/2), and

consequently x ∈ L(f, 8/r, (
√
3−

√
2)r/2). �

Lemma 3.6. Let f be a continuous convex function on a Hilbert space H and let
x ∈ H be an r-point of f . Then x ∈ Lf .

�����. Define y, s and ψ as in the proof of Lemma 3.5. Then ‖x− y‖ < r and

the second derivative of ψ is bounded on a neighborhood of x by Lemma 3.4. Hence
Lemma 3.3 implies that x ∈ Lψ and consequently x ∈ Lf . �

Lemma 3.7. Let c > 0, δ > 0 be given. Then there exists r > 0 such that if f is
a convex continuous function on a Hilbert space H and x ∈ L(f, c, δ), then x is an
r-point of f .
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�����. We can put r := min{δ/2, 1/(2c)}. To prove this, suppose that x ∈
L(f, c, δ), where f is as above. Without any loss of generality we can suppose x = 0.
Then

f(v) � ψ(v) := f(0) + 〈f ′(0), v〉+ c‖v‖2 if ‖v‖ � δ, and

f(0) = ψ(0).

A simple calculation gives that ψ(v) = c‖v − y‖2 + s for y = −f ′(0)
2c and s = f(0)−

‖f ′(0)‖2
4c2 . Consequently, Lemma 3.2 implies that x = 0 is an 1

2c -point of ψ. Now it is

easy to show that x = 0 is an r-point of f . �

The following proposition (as well as its proof) is only a quantitative version of

the McMullen’s result of [M].

Proposition 3.8. Let c > 0, δ > 0 (c > 0 and δ =∞) be given. Then there exist
c′ > 0 and δ′ > 0 (respectively, c′ > 0 and δ′ = ∞) such that if n ∈ �, f : �n → �

is convex, z ∈ L(f, c, δ) and η > 0, then λn(B(z, η) ∩ L(f, c′, δ′)) > 0.

�����. First consider the case 0 < δ < ∞. Denote by r the constant assigned
to c and δ by Lemma 3.7, and define c′ and δ′ as the constants which Lemma 3.5

assigns to r/2. Now, let some convex f : �n → �, z ∈ L(f, c, δ) and η > 0 be given.
Without any loss of generality we can assume that z = 0, f(z) = 0, f ′(z) = 0, and

‖x∗‖ < 1 for every x∗ ∈ ∂f(x), x ∈ B(0, η). Consider the inner parallel set K of
epi f defined by the ball B := B�n+1(0, r/2):

K := {α ∈ �
n+1 : B + α ⊂ epi f} = {α ∈ epi f : dist(α, graphf) � r/2}.

Since an inner parallel set of any convex set is convex (see e.g. [Lt]), we know that K

is convex. Using this fact, it is easy to prove that K is a closed epigraph of a convex
function g > f and bdrK = graphg = {α ∈ epi f : dist(α, graphf) = r/2}. Denote

G := {(x, f(x)) ∈ �n+1 : dist((x, f(x)),K) = r/2},
K ′ := {(x, f(x)) ∈ G : ‖x‖ < η},
K ′′ := {x ∈ �n : (x, f(x)) ∈ K ′}.

It is easy to see that G is closed, and therefore K ′ and K ′′ are Fσ sets. Every

x ∈ K ′′ is clearly an (r/2)-point of f . To see this, observe that the ball B(z, r/2),
where z ∈ K and ‖z − (x, f(x))‖ = r/2 “supports the graph of f from above” at

(x, f(x)); the existence of such a z follows from the definition of G and the fact that
K is closed. Since ‖x‖ < η, we have also that ‖f ′(x)‖ < 1. Therefore, x ∈ L(f, c′, δ′)
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by the choice of c′ and δ′. Let us prove that λnK ′′ > 0. To this end, consider the

metric projection P = PK on the set K restricted to G. Since K is convex, P is a
1-Lipschitz mapping by the well-known result. Clearly, P−1(t) is nonempty for any
t ∈ bdrK. Since 0 is an r-point of f , f(0) = 0 and f ′(0) = 0, it is easy to see that
dist((0, r), graphf) = r and consequently α := (0, r/2) ∈ bdrK. Now, we shall show
that there exists ε > 0 such that

(5) P−1(B(α, ε)) ⊂ K ′.

Supposing the contrary, we obtain that there exists a sequence {zn} in G \K ′ such
that P (zn) → α. Consequently, there exists z ∈ G \ K ′ such that P (z) = α; this

fact and the definition of G imply that z ∈ B(α, r/2). Since z ∈ G, we have that
z /∈ B(2α, r) and consequently z ∈ B(α, r/2) \ B(2α, r) = {0} ⊂ K ′, which is a

contradiction. Now (5) yields that

P (K ′) ⊃ bdrK ∩B(α, ε).

The n-dimensional Hausdorffmeasure (for the definition and properties see e.g. [Rog])

of the latter set is nonzero. Since P is Lipschitz, the n-dimensional Hausdorff mea-
sure of K ′ is also nonzero, and since the mapping x �→ (x, f(x)) is Lipschitz on K ′′,

by the same reasoning λnK ′′ > 0.
Now let c > 0 and δ =∞. Find c′ > 0 and δ′ > 0 which correspond to c and δ = 1

by the just proved part of our proposition. Clearly, we can suppose that c′ > 3c.
Now let some convex f : �n → �, z ∈ L(f, c, δ), and η > 0 be given. Without

any loss of generality we can assume that z = 0, f(z) = 0, and f ′(z) = 0. Choose
0 < ζ < δ′/5 such that ‖y∗‖ � cδ′ for any y∗ ∈ ∂f(y), y ∈ B(0, ζ). To prove that

λn (B(z, ζ) ∩ L(f, c′,∞)) > 0,

it is enough to show that if y ∈ L(f, c′, δ′) and ‖y‖ < ζ, then y ∈ L(f, c′,∞). To this
end, fix such a y and let v ∈ �n be such that ‖v − y‖ � δ′. Then

(6) ‖v‖ � 4δ
′

5
and ‖v − y‖ � 3‖v‖

4
.

Because 0 ∈ L(f, c,∞) and f ′(0) = 0 we have f(v) � c‖v‖2 and f(y) � 0. Therefore

f(v)− f(y)− 〈f ′(y), v − y〉 � c‖v‖2 + ‖f ′(y)‖‖v − y‖ �
16c‖v − y‖2/9 + cδ′‖v − y‖ � 3c‖v − y‖2 � c′‖v − y‖2,

where (6) was used to obtain the second inequality. �
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4. Cardinality of the set Lf

The set Lf of points where a convex continuous function f on a Hilbert space

H is Lipschitz smooth is dense, but unlike the Fréchet differentiability, Lf does not
have to contain a dense Gδ set, cf. [F]. The geometrical characterization of Lipschitz

smoothness from Section 3 enables us to give a different proof of density of Lf which
yields moreover that Lf is uncountable in any ball. Let X be a Banach space and

let C be a closed nonempty subset of X . If z ∈ C, x ∈ X and ‖x− z‖ = dist(x,C),
we say that z is a nearest point in C to x. Let f be as above, let C ⊂ H × � be

the graph of f , and let z = (x, f(x)) be a nearest point in C to a point in the open
epigraph of f . We will use the obvious fact that then x is an r-point for some r > 0

and therefore x ∈ Lf by Lemma 3.6.

Theorem 4.1. Let f be a convex continuous function on a Hilbert space H.
Then the set Lf of points of Lipschitz smoothness is uncountable in any ball. If H

is separable, then Lf is c-dense (i.e., it has cardinality of continuum in any ball).

�����. Let z ∈ H and ε > 0 be given. Let D ⊂ H × � be the intersection of
the open epigraph of f and the ball B((z, f(z)), ε/2). The well-known result on the

existence of nearest points (cf. e.g. [BF]) implies that the set G of points in D which
possess a nearest point in the graph of f is a residual subset of D. Define G′ as the

set of all x ∈ H for which (x, f(x)) is a nearest point in the graph of f to some point
in G. Clearly G′ ⊂ B(z, ε). Let x ∈ G′; denote α = (x, f(x)). Since f is Lipschitz

smooth at x, there exists a unique hyperplane supporting the graph of f at the point
α; denote it by P . If y ∈ epi f is any point for which α is a nearest point in C, then α
is also a nearest point of y in P . Therefore y is contained in the line px perpendicular
to P and containing the point α. Consequently, G ⊂ ⋃

x∈G′
px. Therefore the set G′ is

not countable, and consequently Lf ∩ B(z, ε) is also uncountable. Since the set Lf
is Borel by Lemma 8.2, Aleksandrov-Hausdorff theorem (cf. [K]) implies that Lf is

c-dense if H is separable. �

5. Convex functionals of the form (2)

Lemma 5.1. Let Hi, i ∈ �, be Hilbert spaces and let the Hilbert space H :=
(∑

Hi

)
�2
⊂

∞∏
i=1

Hi be the �2-sum of these spaces. Let fi : Hi → � be (necessarily

continuous convex) functions such that f(x1, x2, . . .) :=
∞∑
i=1

fi(xi) is a continuous

convex function on H . Let x0 = (x01, x
0
2, . . .) ∈ H , c > 0 and δ > 0 be given. Then

the following conditions are equivalent:
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(i) x0 ∈ L(f, c, δ),
(ii) x0i ∈ L(fi, c, δ) for each i ∈ �.

�����. That (i) implies (ii) is obvious. Suppose that (ii) holds. Choose y ∈
∂f(x0). Then there clearly exist yi ∈ ∂fi(x0i ) such that 〈y, v〉 =

∞∑
i=1
〈yi, vi〉, for each

v = (v1, v2, . . .) ∈ H . Now choose an arbitrary v ∈ H such that ‖v‖ < δ. Then, for

each i, ‖vi‖ < δ and consequently (ii) yields

fi(x
0
i + vi)− fi(x

0
i ) � 〈yi, vi〉+ c‖vi‖2.

Hence

f(x0+v)−f(x0) =
∞∑

i=1

(fi(x0i+vi)−fi(x0i )) �
∞∑

i=1

〈yi, vi〉+c
∞∑

i=1

‖vi‖2 = 〈y, v〉+c‖v‖2,

which implies (i). �

Lemma 5.2. Let Hi and H be as in Lemma 5.1. Suppose that all Hi are finite-

dimensional. Let Mi ⊂ Hi be bounded Borel sets of positive Lebesgue measure and

such that M =
∞∏
i=1

Mi ⊂ H . Then M is not a null set in the Aronszajn sense.

�����. Put

νi(A) =
λi(A ∩Mi)
λi(Mi)

,

where A ⊂ Hi is Borel and λi is the Lebesgue measure on Hi. Put ν =
∞∏
i=1

νi.

Then ν is a probability Borel measure on
∞∏
i=1

Hi which is concentrated on M , such

that µA = 0 for each Aronszajn null subset of H (cf. [A], Proposition 3, p. 189).
Consequently, M is not Aronszajn null. �

Theorem 5.3. Let Hi, H , fi, f be as in Lemma 5.1 and let all Hi be finite-

dimensional. Let U ⊂ H be a non-empty open set. Then U ∩D2f is not null in the
Aronszajn sense.

�����. By Theorem 4.1 we can find c > 0, δ > 0 and x0 = (x01, x
0
2, . . .) ∈

U ∩ L(f, c, δ). Lemma 5.1 gives that x0i ∈ L(fi, c, δ) for each i. Consequently,

Proposition 3.8 easily yields that there exist c′ > 0, δ′ > 0 and Mi ⊂ Hi such
that Mi ⊂ L(fi, c′, δ′), Mi is bounded and of positive Lebesgue measure in Hi and

M =
∞∏
i=1

Mi ⊂ U . By Lemma 5.1 we obtain thatM ⊂ Lf and, since by Corollary 4.2

of [BN] we know that Lf\D2f is Aronszajn null, we obtain our assertion by Lemma 5.2.
�
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The following theorem is only a reformulation of the previous one.

Theorem 5.4. Let f : �2 → � be a continuous convex function of the form

f(x) = f1(x1, . . . , xn1) + f2(xn1+1, . . . , xn2) + . . . .

Then U∩D2f is not null in the Aronszajn sense, whenever U ⊂ �2 is an open nonempty

set.

6. A convex function on �2 which is not Haar almost everywhere
second order differentiable

The following example shows that even though the functionals of the form (1) are

densely second order differentiable and D2f is not Aronszajn null, the complement
of points of Lipschitz smoothness and consequently also the complement of D2f does

not have to be Haar null. Borwein and Noll observe in [BN] that there exists a closed
convex subset C of c0 (namely the positive cone) with empty interior which contains

a translate of any compact subset of c0. Such a set C is clearly not Haar null, and the
convex continuous function f(x) := dist(x,C) is Fréchet differentiable at no point

of C. Consequently, C is contained in the complement of D2f . However, no reflex-
ive Banach space contains a closed convex set with empty interior which contains a

translate of every compact set (cf. [MS]). Therefore to construct a counterexample
in �2 we have to use a different method. We will need the following simple character-

ization of compact sets in c0: a closed subset K of c0 is compact if and only if there
exists some z = (zn) ∈ c0 such that |xn| < zn whenever x = (xn) ∈ K (cf. [DS],

p. 339).

Example 6.1. There exists a convex continuous function of the form F (x) =
∞∑
n=1

Fn(xn) on �2 such that the set of points where F is not Lipschitz smooth is not

a Haar null set.

For an arbitrary natural number n put

fn(t) =





0, t ∈ (−∞, 1/(n+ 1)],

(n+ 1)(t− 1
n+1 )

2, t ∈ (1/(n+ 1), 1/n),
2t
n +

1−2(n+1)
(n+1)n2 , t ∈ [1/n,∞).

Clearly, each function fn is smooth and convex. It is easy to verify that if t ∈ In :=
(1/(n+1), 1/n), 0 < c < n+1, and δ > 0 is arbitrary, then t ∈ L(fn, c, δ). Moreover,
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an easy computation reveals that

(7) fn(t) � t2 for t ∈ �.

Let p(n) be a sequence of natural numbers such that {n : p(n) = k} is infinite for
each natural number k, and let Fn := fp(n). The functions Fn are convex, and due

to (7)

F (x) = F (x1, x2, . . .) :=
∞∑

n=1

Fn(xn) �
∞∑

n=1

x2n = ‖x‖2.

Hence the function F is convex and locally bounded, therefore it is continuous. Now,

let us prove the following statement:

Let {nk} be an increasing sequence of natural numbers such that the sequence
{p(nk)} is not bounded. Then F is Lipschitz smooth at no point of the set A :=
{x ∈ �2 : xnk

∈ Ip(nk), k ∈ �}.
In fact, assume F is Lipschitz smooth at a point x ∈ A, namely let x ∈ L(F, c, δ)

for some c > 0, δ > 0. Then Lemma 5.1 implies that xn ∈ L(Fn, c, δ) for every n ∈ �.
Choose some nk such that p(nk) > c. Since xnk

∈ Ip(nk), we have xnk
∈ L(Fnk

, c, δ),
which is a contradiction.

Finally, let us prove that the set C of points where F is not Lipschitz smooth is
not a Haar null set. Let µ be a Borel probability measure on �2. Then there exists

a compact set K ⊂ �2 such that µK > 0. If we consider K as a subset of c0, then
K is also compact. Hence there exists a sequence (an) ∈ c0 such that for any x ∈ K
and n ∈ � we have |xn| < an. Now choose an increasing sequence {nk} such that

ank
� 1
2(k + 1)2

and

p(nk) = k for k = 1, 2, . . . .

Define

z :=
∞∑

k=1

( 1
k + 1

+
1

2(k + 1)2

)
enk

,

where {en} is the usual orthonormal basis of �2. The set K + z is a subset of the set
A = {x ∈ �2 : xnk

∈ Ip(nk), k = 1, 2, . . .}, therefore µ(A− z) > 0. However, no point

of A is a point of Lipschitz smoothness of F , and therefore C is not a Haar null set.

Now, let us show that the above mentioned characterization of compact sets in c0
yields easily a negative answer to two questions of Christensen (cf. [C], p. 123).
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Example 6.2. There exist uncountably many pairwise disjoint closed subsets of
c0 which are not Haar null.*

Denote

Mα =
{
(x1, x2, . . .) ∈ c0 : xnαn � 1

n

}

for α = (α1, α2, . . .) ∈ {1,−1}�. Then the sets Mα are closed and pairwise disjoint.
Also, if we use the already mentioned property of compact subsets of c0, it is easy

to show that for every compact K ⊂ c0 and α ∈ {1,−1}� there exists some x ∈ c0
for which x+K ⊂Mα.

Example 6.3. There exist closed subsets A and B of c0 which are not Haar null
and the set F (A,B) = {x ∈ c0 : (x+A) ∩B not Haar null} is empty.
Let α = {1, 1, 1, . . .} and β = {−1,−1,−1, . . .}. Using the notation from the

previous example define A = Mα and B = Mβ. Then A and B are not Haar null.

If we again use the characterization of compact subsets of c0, it is easy to see that
the set (x+A) ∩B is compact for every x ∈ c0 and therefore it is Haar null (cf. [C],
p. 119).

7. Integral functionals

In this section we consider a class of special convex functionals on Hilbert spaces
L2
�n(Ω, P, µ) of (classes of) functions x : Ω→ �

n .

Setting: Let (Ω, P, µ) be a measure space with a complete σ-finite measure. For a
given n ∈ � let H be the Hilbert space L2

�n(Ω, P, µ) and let B be the σ-algebra of
Borel subsets of �n . Let ϕ : �n × Ω→ � be a function such that
(i) ϕ is B ⊗ P -measurable and

(ii) ϕτ := ϕ(·, τ) is convex for all τ ∈ Ω.
In other words, ϕ is a finite convex integrand in the sense of R.T. Rockafellar

(cf. e.g. [R2]). Consider the functional f defined in H by the formula

(8) f(x) :=
∫

Ω
ϕ(x(τ), τ) dµ(τ).

We will suppose that there exist some a � 0 and b ∈ L1
�
(µ) such that ϕ satisfies for

almost all τ ∈ Ω the growth condition

(9) |ϕ(x, τ)| � a‖x‖2 + b(τ).

*Added in proof: After the paper was submitted, we were informed that Dougherty
(cf. [D]) contructed such a family of sets in every separable Banach space. Solecki (cf. [S])
generalized this result to any Polish, abelian, non-locally compact group (see also [BL]).
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(Note that it is not difficult to prove that the condition (9) is equivalent to the

condition (d) of Theorem 3L. of [R2] for p = 2.)

Let us mention a few properties of such a functional f (cf. [R1] and [R2]). The
integrand of (8) is measurable for every measurable function x on Ω. The growth
condition (9) implies that f is convex, finite and continuous on H ; if µ has no

atoms then (9) is also a necessary condition for f to be finite everywhere. For the
subdifferential of f we have that x∗ ∈ ∂f(x) if and only if x∗(τ) ∈ ∂ϕτ (x(τ)) almost
everywhere.

Often in this section we will have to know that certain sets or mappings are
measurable. The proofs of these facts are contained in the appendix.

In the following, if we write x ∈ H , then we actually mean that x is an arbitrary
but fixed representative defined on all of Ω, of the given class of functions.

Lemma 7.1. Let (Ω, P, µ), ϕ and f be as in the setting and, moreover, let µ be
nonatomic. Let x ∈ H and c, δ > 0 be given. Then x ∈ L(f, c, δ) if and only if

x(τ) ∈ L(ϕτ , c,∞) for almost all τ .

�����. First let x ∈ L(f, c, δ). Denote x∗ := f ′(x). It is enough to show that
the set A of all τ ∈ Ω for which there exist some s ∈ �n and k ∈ � such that

(10) ϕτ (x(τ) + s)− ϕτ (x(τ)) − 〈x∗(τ), s〉 > c‖s‖2 + 1/k

has measure zero. Because the left side of (10) is continuous with respect to s,

A =
⋃

s∈S

⋃

k∈�
As,k,

where As,k is the set of all τ satisfying (10) for the particular choice of s and k, and

S is a countable dense subset of �n . Since the left side of (10) is measurable with
respect to τ , the sets As,k are measurable and therefore A is measurable as well.

Suppose that µA > 0. Then there exists a pair s, k such that µAs,k > 0. Since
µ is nonatomic, we can choose B ⊂ As,k such that 0 < µB < δ2/‖s‖2 and define
v := sχB. Then v ∈ H and ‖v‖ < δ. We have

f(x+ v)− f(x)− 〈x∗, v〉 =
∫

B

ϕτ (x(τ) + s)− ϕτ (x(τ)) − 〈x∗(τ), s〉dµ(τ)

> cµB‖s‖2 + µB/k = c‖v‖2 + µB/k,

which is a contradiction with x ∈ L(f, c, δ).
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To prove the other implication suppose that x∗ ∈ ∂f(x) and v ∈ H are given.

Then

f(x+ v)− f(x)− 〈x∗, v〉 =
∫

Ω
[ϕτ (x(τ) + v(τ)) − ϕτ (x(τ)) − 〈x∗(τ), v(τ)〉] dµ(τ)

�
∫

Ω
c‖v(τ)‖2 dµ(τ) = c‖v‖2.

Hence x ∈ L(f, c,∞) and therefore also x ∈ L(f, c, δ). �

In the case of a separable space H , the following proposition follows from Propo-
sition 6.1 and Proposition 6.4 of [BN]. Our proof does not require separability of H

and is more direct.

Proposition 7.2. Let (Ω, P, µ), ϕ and f be as in the setting and, moreover, let
µ be nonatomic. Let x ∈ Lf and x(τ) ∈ D2ϕτ

almost everywhere. Then x ∈ D2f .
�����. Choose c, δ > 0 such that x ∈ L(f, c, δ). Denote x∗ := f ′(x). Then

ϕ′τ (x(τ)) = x
∗(τ) almost everywhere. By the assumptions h(τ) := ∇2ϕτ (x(τ)) exists

and ‖h(τ)‖ � 2c almost everywhere by Lemma 7.1 and the remark after Definition
2.4. Due to Lemma 8.10 the mapping h is measurable. Define a mapping T on H

such that
T (y)(τ) := h(τ) (y(τ)) for y ∈ H.

Because h is measurable and ‖h(τ)‖ � 2c a.e., T (y) ∈ H . Clearly T is linear and

‖T ‖ � 2c. We will show that T satisfies (3) in Definition 2.1. For any z ∈ H we have
1
t2
(f(x+ tz)− f(x)− t〈x∗, z〉 − t2

2
〈Tz, z〉)

=
∫

Ω

( 1
t2
[ϕτ (x(τ) + tz(τ))− ϕτ (x(τ)) − t〈ϕ′τ (x(τ)), z(τ)〉]

− 1
2
〈h(τ) (z(τ)) , z(τ)〉

)
dµ(τ).

The integrand converges on Ω almost everywhere to zero when t converges to zero.

Lemma 7.1 gives that, for almost all τ and all t = 0, | 1t2 [ϕτ (x(τ)+tz(τ))−ϕτ (x(τ))−
t〈ϕ′τ (x(τ)), z(τ)〉]| � c‖z(τ)‖2, and consequently the absolute value of the integrand
is bounded by 2c‖z(τ)‖2 for almost all τ and all t = 0. Since

∫
Ω ‖z(τ)‖2 dµ(τ) <∞,

the Lebesgue dominated convergence theorem gives (3). �

Theorem 7.3. Let (Ω, P, µ), ϕ and H be as in the setting. Then for the convex
functional

f(x) :=
∫

Ω
ϕ(x(τ), τ) dµ(τ), x ∈ H,

the set D2f of points of second order differentiability of f is uncountable in any ball.

If H is separable, then D2f is c-dense.
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�����. First let µ be a nonatomic measure. By Theorem 4.1 the set Lf is

dense in H . Therefore, it is sufficient to show that for any x ∈ Lf and ε > 0, the set
D2f ∩B(x, ε) is not countable.
Let x ∈ L(f, c, δ) for some c, δ > 0 and let ε > 0 be given. Since µ is σ-finite, there

exists a strictly positive g ∈ H such that ‖g‖ < ε. Since x and g are measurable, we
have

C := {(z, τ) ∈ �n × Ω: ‖x(τ)− z‖ � ‖g(τ)‖} ∈ B ⊗ Ω

and Cτ := {z : (z, τ) ∈ C} is clearly a neighborhood of x(τ). Lemma 7.1 implies
that x(τ) ∈ L(ϕτ , c,∞) almost everywhere. Alexandrov’s theorem applied to ϕτ and
Proposition 3.8 imply that there exists c′ > 0 such that

Cτ ∩ L(ϕτ , c′,∞) ∩D2ϕτ

is uncountable for almost all τ . Assume now that D2f ∩ B(x, ε) is countable, say
D2f ∩B(x, ε) = {yk : k ∈ �}. Denote

L := {(z, τ) ∈ �
n × Ω: z ∈ L(ϕτ , c′,∞)},

D := {(z, τ) ∈ �
n × Ω: z ∈ D2ϕτ

}, and

G :=
∞⋃

k=1

graph yk.

By Lemma 8.9 and Lemma 8.10 the set (C ∩ L∩D) \G is contained in B ⊗Ω. The
measure µ is complete and σ-finite, hence for every set there exists a measurable

cover. Therefore by the Szpilrajn-Marczewski’s theorem ([K], p. 95), the σ-algebra
P is closed under the Suslin operation. Since the projection of the set (C∩L∩D)\G on
Ω is Ω up to a set of measure zero, Theorem 8.1 implies that there exists a measurable
function x̃ : Ω→ �

n such that

x̃(τ) ∈ Cτ ∩ L(ϕτ , c′,∞) ∩D2ϕτ
and x̃(τ) = yk(τ) for all k ∈ �

almost everywhere. Clearly ‖x − x̃‖ < ε and x̃ = yk for all k ∈ �. By Lemma 7.1
we have that x̃ ∈ Lf , consequently Proposition 7.2 implies x̃ ∈ D2f , which is a

contradiction. Hence B(x, ε) ∩D2f is not countable.
Now let µ be a σ-finite purely atomic measure. Choose a maximal set of pairwise

disjoint atoms {αk}Kk=1 ⊂ P . We will suppose that K = ∞; the case when K is
finite is similar. We have µ(Ω \⋃αk) = 0; denote ck := µαk. The mapping

S(x) :=
∞∑

k=1

xk√
ck
χαk

, x = (xk) ∈ �2�n (i.e. xk ∈ �
n )
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is an isometry of �2
�n onto H . Define functions ψk on �n by the formula

ψk(z) =
∫

αk

ϕ
( z√

ck
, τ
)
dµ(τ).

Then ψk are clearly convex. Moreover

g(x) :=
∞∑

k=1

ψk(xk) = f(S(x)) for x = (xk) ∈ �2�n,

hence g is continuous. Therefore by Theorem 5.4 the set D2g is uncountable in any
ball in �2

�n. Since S is a linear isometry, S(D2g) = D
2
f and thereforeD

2
f is uncountable

in any ball in H .

Finally, let us consider the general case. Choose a maximal set of pairwise disjoint
atoms {αk} in Ω. Define Ω1 :=

⋃
αk, Ω0 := Ω \Ω1, and Pi := {A ⊂ Ωi : A ∈ P} for

i = 0, 1. Then (Ω0, P0, µ) is nonatomic, (Ω1, P1, µ) is purely atomic, and both are as
in the setting. For i = 0, 1 denote

Hi := L2�n(Ωi, Pi, µ),

fi(x) :=
∫

Ωi

ϕ(x(τ), τ) dµ(τ) for x ∈ Hi,

gi(x0, x1) := fi(xi) for (x0, x1) ∈ H0 ×H1.

Then, clearly, D2g0 = D
2
f0
×H1 and D2g1 = H0×D2f1. Also, D2g0+g1 ⊃ D2g0 ∩D2g1 =

D2f0 ×D2f1 . Since we know that D2fi
is uncountable in any ball in Hi for i = 0, 1, the

set D2g0+g1 is uncountable in every ball of H0×H1. The mapping Z : H0×H1 → H

such that

Z(x0, x1)(τ) =

{
x0(τ), for τ ∈ Ω0,
x1(τ), for τ ∈ Ω1,

is a linear isometry (when H0 ×H1 is equipped with the �2-norm). We have

(g0 + g1)(x0, x1) = f(Z(x0, x1)).

Therefore Z(D2g0+g1) = D
2
f , and thus D

2
f is uncountable in any ball in H . �

If H is a separable space, then D2f is a Borel set by Proposition 8.6. Consequently,

the Aleksandrov-Hausdorff theorem (cf. [K]) implies that D2f is c-dense.
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8. Appendix—Measurability

Let Ω be an arbitrary measurable set equipped with a σ-algebra P . We say that a
closed-valued multifunction T : Ω→ 2�n

is measurable, if {τ ∈ Ω: T (τ) ∩ F = ∅} ∈
P for every closed set F ⊂ �

n (or, equivalently, for every closed ball F in �n ). We
consider the set �n ×Ω always to be equipped with the σ-algebra B⊗P , where B is
the σ-algebra of Borel subsets of �n . As usual, Q is the set of all rational numbers.
The following selection theorem is an immediate consequence of Corollary on p. 33

of [L].

Theorem 8.1. [L] Let Ω be a space equipped with a σ-algebra P which is closed
under the Suslin operation, and let B be the σ-algebra of Borel subsets of �n for
some n ∈ �. Let A be an element of the product σ-algebra B ⊗ P . Denote by ΠΩA
the projection of A into Ω. Then ΠΩA ∈ P and there is a measurable mapping

T : ΠΩA→ �
n such that (T (z), z) ∈ A for every z ∈ ΠΩA.

Lemma 8.2. Let f be a continuous convex function on a Banach space X . Then
the set Lf of points of Lipschitz smoothness is an Fσ set.

�����. For natural numbers k and n denote Ak,n = L(f, k, 1/n). Let {xm}
be a sequence in Ak,n which converges to some x ∈ X . Since f is Lipschitz on a
neigbourhood of x, we can find a weak∗ cluster point x∗ of the sequence f ′(xm).

Then it is easy to see that

f(x+ v)− f(x)− 〈x∗, v〉 � k‖v‖2

holds whenever v ∈ X , ‖v‖ < 1/n. Consequently, each Ak,n is closed, and therefore
Lf =

∞⋃
k,n=1

Ak,n is an Fσ set. �

The statement of Lemma 8.4 is implicitly contained in the proof of Theorem 4.1

of [BN]. Its proof is based on the following simple fact which is actually proved in
the above reference:

Lemma 8.3. Let {fn} be a sequence of K-Lipschitz functions on a metric space
which converges pointwise on a dense subset. Then it converges everywhere to a

K-Lipschitz function.

Lemma 8.4. Let X be a Banach space and let Z be a dense subset of X . Let
f be a convex continuous function defined on X , x ∈ Lf and let T : X → X∗ be a

bounded linear operator such that

(11) lim
t→0
1
t2
(f(x+ tz)− f(x)− t〈f ′(x), z〉) = 〈Tz, z〉/2
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for every z ∈ Z. Then (11) holds for every z ∈ X , and consequently x ∈ D2f .

�����. Define

∆t(z) :=
1
t2
(f(x+ tz)− f(x)− t〈f ′(x), z〉).

Because x ∈ Lf , there exist r > 0 and c > 0 such that

|∆t(z)| � c

whenever z ∈ B(0, r) and t ∈ (0, 1]. The functions ∆t, t ∈ (0, 1] are convex, therefore
they all are Lipschitz with a common constant K ∈ � on B(0, r/2) (cf. [P], the proof
of Proposition 1.6). The function F (z) := 〈Tz, z〉/2 is continuous on X and the
functions ∆t converge pointwise to F on Z when t goes to zero. Using the previous

lemma we easily get (e.g. by Heine’s definition of limit) that ∆t converge to F on
B(0, r/2) and therefore everywhere. �

Let X be a Banach space, let Z ⊂ X be a finite dimensional subspace. Let f be

a convex continuous function on X and k > 0. For x ∈ X define on Z the function
gx,Z(z) = f(x+ z). Let D2f,Z,k be the set of all x ∈ X for which gx,Z is second order
differentiable at 0, and ‖g′′x,Z(0)‖ � k.

Lemma 8.5. Let X , Z, f , and k be as above. Then D2f,Z,k is an Fσδ set.

�����. Let Df be the set of all points of Fréchet differentiability of f . Denote

by M the set of all symmetric bilinear forms on Z × Z with the usual norm. For
ε > 0 and δ > 0 denote by A(ε, δ) the set of all points x ∈ Df for which there exists

M ∈M such that ‖M‖ � k and

(12) |f(x+ z)− f(x)− 〈f ′(x), z〉 − 1
2
M(z, z)| � ε‖z‖2 if z ∈ Z, ‖z‖ < δ.

First observe that each set A(ε, δ) is closed in Df . In fact, if (xn) is a sequence
in A(ε, δ) which converges to some x0 ∈ Df , we can find a subsequence xni and

bilinear forms Mi ∈ M, ‖Mi‖ � k such that (12) holds with x = xni , M = Mi and
(Mi) converges to some M0 ∈ M with ‖M0‖ � k. Using the well-known fact that

f ′(xn) → f ′(x0) (cf. [P], Lemma 2.6), we easily obtain that (12) holds with x = x0
and M =M0. Thus, since Df is a Gδ set (cf. [P]), it is sufficient to show that

D2f,Z,k =
∞⋂

q=1

∞⋃

p=1

A
(1
q
,
1
p

)
.

The inclusion “⊂” is an immediate consequence of Proposition 2.3.
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If x ∈
∞⋂
q=1

∞⋃
p=1

A(1q ,
1
p ), we can find for each q ∈ � some pq ∈ � and Mq ∈ M,

‖Mq‖ � k such that (12) holds with M = Mq, ε = 1
q and δ =

1
pq
. Let M0 be a

cluster point of the sequence (Mq). Then it is easy to check that M0 = g′′x,Z(0) and
‖M0‖ � k. �

Proposition 8.6. Let X be a separable Banach space and let f be a convex
continuous function on X . Then D2f is an Fσδσ set.

�����. Let Z1 ⊂ Z2 ⊂ . . . be finite dimensional subspaces of X such that⋃
Zp = X . Then, in virtue of Lemma 8.2 and Lemma 8.5, we know that it is

sufficient to show that

D2f = Lf ∩
∞⋃

k=1

∞⋂

p=1

D2f,Zp,k.

The inclusion “⊂” can be easily obtained by Proposition 2.3. To show the other
inclusion suppose that x ∈ Lf and that k ∈ � is chosen so that x ∈ D2f,Zp,k

for

p = 1, 2, . . .. Put Mp = g′′x,Zp
(0). Clearly ‖Mp‖ � k and Mp+1 = Mp on Zp × Zp.

It is easy to show that there exists a symmetric bilinear form M on X × X such

that M = Mp on Zp × Zp and ‖M‖ � k. From Lemma 8.4 (which we apply
with Z :=

⋃
Zp, and with T : X → X∗, 〈T (z), x〉 = M(z, x)) it now follows that

M = f ′′(x). �

The second statement of the next lemma can be found in [R2]. The first we were
not able to find.

Lemma 8.7. Let (Ω, P, µ) and ϕ be as in the setting from Section 7; let x :
Ω → �

n be a measurable function. Then the mapping ∂ϕ : �n × Ω → 2�n

, where

∂ϕ(z, τ) := ∂ϕτ (z), and the mapping ψ : τ ∈ Ω �→ ∂ϕτ (x(τ)) are measurable.

�����. Let a closed ball F in �n be given. To prove measurability of ∂ϕ, it is

sufficient to show that the set

A := {(z, τ) ∈ �n × Ω: ∂ϕτ (z) ∩ F = ∅}

is measurable. Denote S := Qn. We will show that

(�n × Ω) \A
=
⋃

h∈S

⋃

m∈�
{(z, τ) ∈ �

n × Ω: m(ϕτ (z + h/m)− ϕτ (z)) < inf{〈h, y〉 : y ∈ F}.

Denote the latter set by B and fix (z, τ) /∈ A . Since ∂ϕτ (z) is closed, convex and
bounded, it is easy to show that there exists h ∈ S for which

sup{〈h, y〉 : y ∈ ∂ϕτ (z)} < inf{〈h, y〉 : y ∈ F}.
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Since it is well-known that

sup{〈h, y〉 : y ∈ ∂ϕτ (z)} = lim
t→0+

1
t
(ϕτ (z + th)− ϕτ (z)),

we obtain that (z, τ) ∈ B. Consequently (�n × Ω) \A ⊂ B. The opposite inclusion

easily follows from the fact that 1t (ϕτ (z+ th)−ϕτ (z)) is nondecreasing with respect
to t. Since ϕ is a measurable function and S is countable, the sets B and A are

measurable. Since the transformation τ �→ (x(τ), τ) is measurable (cf. [R2], Corollary
on p. 174) and ∂ϕ is measurable with respect to the σ-algebra B ⊗ P , the second

assertion of the lemma also holds. �

Lemma 8.8. Let ϕ and x be as in the previous lemma. Then the sets

F := {(z, τ) ∈ �
n × Ω: ϕτ is differentiable at z} and

Fx := {τ ∈ Ω: ϕτ is differentiable at x(τ)}

are measurable.

�����. Let ∂ϕ and ψ be the mappings from Lemma 8.7. Using a well-known
fact, we see that F , Fx are the sets of all points at which ∂ϕ, ψ, respectively, are

singlevalued. Therefore the measurability of ∂ϕ and ψ together with the separability
of �n easily imply that F and Fx are measurable as well. Indeed, e.g. the complement

of F is the set of points x for which there exist two disjoint elements B1 and B2 from
a fixed countable basis of open sets of �n , such that ∂ϕ intersects both B1 and B2.

�

Remark. Define a mapping ϕ′ : F → �
n by ϕ′(z, τ) := ϕ′τ (z). Then ϕ

′ is a
restriction of the multivalued measurable mapping ∂ϕ to the measurable set F and

consequently ϕ′ is measurable.

Lemma 8.9. Let ϕ be as in Lemma 8.7, and let c > 0. Then the set

L := {(z, τ) ∈ �
n × Ω: z ∈ L(ϕτ , c,∞)}

is measurable.

�����. The set F from the previous lemma is measurable and we know that

L ⊂ F . Denote S := Qn. It is easy to see that

F \ L =
⋃

y∈S
{(z, τ) ∈ F : |ϕτ (y)− ϕτ (z)− 〈ϕ′τ (z), y − z〉| > c‖y − z‖2}.

Due to the measurability of ϕ and ϕ′ on F the set F \ L, and consequently also L,
is measurable. �
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In the following we will identify in the standard way �n
2
, the space of all real

n× n matrices, and the space L(�n ,�n ) of linear operators. We will consider them
with the Euclidean norm ‖.‖e of �n

2
.

Lemma 8.10. Let ϕ and x be as in Lemma 8.7. Then the sets

D := {(z, τ) ∈ �n × Ω: z ∈ D2ϕτ
} and Dx := {τ ∈ Ω: x(τ) ∈ D2ϕτ

}

are measurable. Moreover, the mapping d : τ → ∇2ϕτ (x(τ)) is measurable on Dx.

�����. For r > 0, letMr = Qn
2 ∩B(0, r) and S(r) = Qn ∩B(0, r). Let g be a

convex function on �n , and let x ∈ �
n . By Proposition 2.3 we know that x ∈ D2g if

and only if there exist x∗ ∈ ∂g(x) and a linear operator T : �n → �
n such that

(13) lim
h→0

‖h‖−2(g(x+ h)− g(x)− 〈x∗, h〉 − 1
2
〈Th, h〉) = 0.

Of course, the symmetrization of T necessarily equals to ∇2g(x) and x∗ is the

(Fréchet) derivative g′(x). Using this fact we shall prove that D2g = V , where

V =
⋃

m∈�

⋂

k∈�

⋃

T∈Mm

⋃

p∈�

⋂

0�=h∈S(1/p)

{x ∈ Dg : ‖h‖−2 |g(x+ h)− g(x)− 〈g′(x), h〉 − 1
2
〈Th, h〉| � 1/k},

and Dg is the set of points where g is differentiable. If x ∈ D2g, choose a natural

number m > ‖∇2g(x)‖e . Now, for each k ∈ �, choose a p ∈ � such that

‖h‖−2|g(x+ h)− g(x)− 〈g′(x), h〉 − 1
2
〈∇2g(x)(h), h〉| � 1

2k
for h ∈ B(0, 1/p) \ {0}

and find T ∈ Mm such that ‖h‖−2|〈Th, h〉 − 〈∇2g(x)(h), h〉| � 1
k for each h = 0.

Then clearly

‖h‖−2|g(x+ h)− g(x)− 〈g′(x), h〉 − 1
2
〈Th, h〉| � 1

k
for h ∈ B(0, 1/p) \ {0}

and thus x ∈ V .
If x ∈ V , we choose m ∈ � and sequences Tk ∈ Mm, pk ∈ �, k=1,2, . . . , such

that
‖h‖−2|g(x+ h)− g(x)− 〈g′(x), h〉 − 1

2
〈Tkh, h〉| �

1
k

for h ∈ S(1/pk) \ {0}, and consequently for each h ∈ B(0, 1/pk) \ {0}. Since ‖Tk‖e �
m, there exists a cluster point T of {Tk}, and it is easy to check that T satisfies (13).
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Consequently

D =
⋃

m∈�

⋂

k∈�

⋃

T∈Mm

⋃

p∈�

⋂

0�=h∈S(1/p)

{(z, τ) ∈ F : ‖h‖−2|ϕτ (z + h)− ϕτ (z)− 〈ϕ′τ (z), h〉 −
1
2
〈Th, h〉| � 1

k
},

where F is the set defined in Lemma 8.8. Using Remark after Lemma 8.8 we easily
obtain that D is measurable.

We have Dx = G−1(D),where G(τ) = (x(τ), τ). Since the mapping G is measur-
able, we conclude that Dx is measurable as well.

It remains to prove that d is measurable.
Let {ei}ni=1 be the usual orthonormal basis of �n and let i, j ∈ {1, . . . , n} be

fixed. By Lemma 8.7 the mapping τ �→ ∂ϕτ (x(τ)) is measurable and closed valued,
therefore it has a measurable selection s (cf. [R2], p. 163). Similarly, let sk be a

measurable selection for the mapping τ �→ ∂ϕτ (x(τ) + ei/k). By Theorem 2.2 we
have for τ ∈ Dx that

di,j(τ) := 〈∇2ϕτ (x(τ))ei, ej〉 = lim
k→∞

k〈sk(τ) − s(τ), ej〉.

Therefore the function di,j is measurable, being a pointwise limit of a sequence of

measurable functions, and consequently also d is measurable on Dx. �

The authors thank M. Fabian and J. Tišer for helpful remarks which led to im-

provements of the presentation of results.
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