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Abstract. In this paper, we give necessary and sufficient conditions on (pn) for |R, pn|k,
k � 1, to be translative. So we extend the known results of Al-Madi [1] and Cesco [4] to
the case k > 1.
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1. Introduction

Let
∞∑

n=0
an be a given series with a sequence of its partial sums (sn) and let (pn)

be a sequence of positive real numbers such that

Pn :=
n∑

v=0

pv →∞ as n→∞, P−1 = p−1 = 0.

The sequence-to-sequence transformation given by

tn :=
1

Pn

n∑

v=0

pvsv

defines the (R, pn) means of the sequence (sn). We say that the series
∞∑

n=0
an is

|R, pn|ksummable, k � 1, if (see [3], [9])

(1)
∞∑

n=1

nk−1|tn − tn−1|k <∞.

We now recall the discussion of an interesting phenomenon that occurs in the
study of ordinary summability. Let x = (xk) be a sequence and define the sequence
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w = (wk) by wk = xk+1, (k = 0, 1, . . .). The convergence of the sequence z implies the

convergence of the sequence w to the same value and conversely. One might expect
that, given an infinite matrix A, if x is A-summable to s then w is A-summable to
s and conversely. This, however, is not necessarily the case (see, e.g., [2], [5], [10]).

For any given sequence x, if x is A-summable to s implies that w is A-summable
to s, then A is called right translative. If the converse holds, then A is called left

translative. If A is both right and left translative then A is translative.
Following the concept of translativity in ordinary summability, Cesco [4] intro-

duced the concept of left translativity for |R, pn| summability. Also Fridy [6] studied
�-translativity for a matrix A. Analogously we call |R, pn|k, k � 1, left translative if
the |R, pn|ksummability of the series

∞∑
n=0

an implies the |R, pn|ksummability of the

series
∞∑

n=0
an−1, (a−1 = 0); it is right translative if the converse holds, and translative

if it is both left and right translative.
In [4], Cesco has given sufficient conditions for |R, pn| to be left translative.
Al-Madi [1] has also studied the problem of translativity for |R, pn| and provided

some examples to illustrate the differences between right and left translativity of

|R, pn|. Some results for translativity of |N, pn|k summability may also be found
in [7].

In the present paper, we give necessary and sufficient conditions on (pn) for
|R, pn|k, k � 1, to be translative. So, we extend the known results of Al-Madi
[1] and Cesco [4] to the case k > 1.

2. Some remarks on |R, pn|k =⇒ |R, qn|k, k � 1

This section is devoted to the main result of [3] that we extremely need for our
purposes.

Given two summability methods A and B we write A ⇒ B meaning that every
series summable A is also summable B.

Theorem 2.1. If |R, pn|k =⇒ |R, qn|k, k � 1, then

(2)
qnPn

pnQn
= O(1).

If we further suppose that

(3)
∞∑

n=v

nk−1
(

qn

QnQn−1

)k

= O

(
vk−1

Qk
v

)

then (2) is also sufficient (see [3]).
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Note that condition (3) is a modified version of condition (3.1) in [3]. Actually (3)

is much more useful than (3.1) in the proof of the Theorem in [3]. To see this, it is
enough to apply the well-known inequality

(4) (a+ b)k � 2k(ak + bk), (a � 0, b � 0, k � 1),

instead of applying Hölder’s inequality on p. 1012, line 4 in [3]. We omit the details

and refer the reader to [3].

3. The main results

Let (sn) denote the n-th partial sum of the series
∞∑

n=0
an−1, (a−1 = 0). Hence

sn = sn−1, s−1 = 0. Let (zn) be the (R, pn+1) transform of (sn) and (tn) the (R, pn)

transform of (sn). Thus we have

tn =
1

Pn

n∑

v=0

pvsv =
1

Pn

n−1∑

v=0

pv+1sv,(5)

zn =
1

Pn+1 − p0

n−1∑

v=0

pv+1sv =
Pn+1

Pn+1 − p0
tn+1.(6)

We shall need the following

Lemma 3.1. Suppose that

(7)
n−1∑

n=v

nk−1
(

pn+1

Pn+1Pn

)k

= O(vk−1)

where k � 1. Then the series
∞∑

n=0
an−1 is summable |R, pn|k if and only if the series

∞∑
n=0

an is summable |R, pn+1|k.

�����. Assume that
∞∑

n=0
an−1 is summable |R, pn|k, k � 1. Hence

(8)
∞∑

n=1

nk−1|tn − tn−1|k <∞.

By (6) we get

zn − zn−1 =
Pn+1

Pn+1 − p0
(tn+1 − tn)−

tnp0pn+1

(Pn+1 − p0)(Pn − p0)
.
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To complete the proof, it is enough to show, by Minkowski’s inequality, that

(9)
∞∑

n=1

nk−1
(

Pn+1

Pn+1 − p0
|tn+1 − tn|

)k

<∞

and

(10)
∞∑

n=1

nk−1
{

pn+1|tn|
(Pn+1 − p0)(Pn − p0)

}k

<∞.

Since Pn →∞ as n→∞, we see that Pn+1

Pn+1 − p0
→ 1 as n→∞. Hence (9) follows

from (8).
Observe that (10) holds if and only if

(11)
∞∑

n=1

nk−1
(

pn+1

Pn+1Pn
|tn|
)k

<∞.

Now write un := tn − tn−1, t−1 = 0. Then tn =
n∑

v=0
uv. Thus (8) is equivalent to

(12)
∞∑

n=1

nk−1|un|k <∞.

Using inequality (4) we show that (11) holds:

∞∑

n=1

nk−1
(

pn+1

Pn+1Pn
|tn|
)k

�
∞∑

n=1

nk−1
(

pn+1

Pn+1Pn

)k
(

n∑

v=0

|uv|
)k

� 2k
∞∑

n=1

nk−1
(

pn+1

Pn+1Pn

)k n∑

v=0

|uv|k

= 2k
∞∑

v=0

|uv|k
∞∑

n=max(1,v)

nk−1
(

pn+1

Pn+1Pn

)k

= 2k
{
|u0|k

∞∑

n=1

nk−1
(

pn+1

Pn+1Pn

)k

+O(1)
∞∑

v=1

vk−1|uv|k
}

<∞

by assumption and (12).

Conversely, suppose that the series
∞∑

n=1
an is summable |R, pn+1|k. So we have

(13)
∞∑

n=1

nk−1|zn − zn−1|k <∞.
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Now (5) and (6) yield that

tn+1 − tn =

(
1− p0

Pn+1

)
(zn − zn−1) +

p0pn+1

PnPn+1
zn−1.

To prove sufficiency it suffices to show, by Minkowski’s inequality, that

(14)
∞∑

n=1

nk−1
{(
1− p0

Pn+1

)
|zn − zn−1|

}k

<∞

and

(15)
∞∑

n=1

nk−1
(

pn+1

PnPn+1
|zn−1|

)k

<∞.

Since (1− p0/Pn+1)→ 1 as n→∞, (14) follows from (13). Writing zn =
n∑

v=0
wv we

see that (13) is equivalent to

(16)
∞∑

n=1

nk−1|wn|k <∞.

Using (4) we show that (15) holds:

∞∑

n=1

nk−1
(

pn+1

PnPn+1

)k

|zn−1|k � 2k
∞∑

n=1

nk−1
(

pn+1

Pn+1Pn

)k n−1∑

v=0

|wv|k

= 2k
∞∑

v=0

|wv|k
∞∑

n=v+1

nk−1
(

pn+1

PnPn+1

)k

= 2k
{
|w0|k

∞∑

n=1

nk−1
(

pn+1

Pn+1Pn

)k

+O(1)
∞∑

v=1

|wv|kvk−1
}

<∞

by assumption and (16), whence the result. �

Theorem 3.2. Suppose that (7) holds. Then
(i) |R, pn|k is right translative if and only if |R, pn+1|k ⇒ |R, pn|k.
(ii) |R, pn|k is left translative if and only if |R, pn|k ⇒ |R, pn+1|k.

�����. We just prove (i); the proof of (ii) follows similar lines. Suppose

that |R, pn|k is right translative and
∞∑

n=0
an is summable |R, pn+1|k. By Lemma 3.1,
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the series
∞∑

n=0
an−1 (a−1 = 0), is summable |R, pn|k. Right translativity of |R, pn|k

implies that
∞∑

n=0
an is summable |R, pn|k, i.e., |R, pn+1|k ⇒ |R, pn|k.

Conversely, suppose that |R, pn+1|k ⇒ |R, pn|k and the series
∞∑

n=0
an−1 (a−1 = 0),

is summable |R, pn|k. By Lemma 3.1,
∞∑

n=0
an is summable |R, pn+1|k. Then, by

assumption, it is summable |R, pn|k, i.e., |R, pn|k is right translative. �

We are now ready to present the main result:

Theorem 3.3. Suppose that

(17)
∞∑

n=v

nk−1
(

pn+1

Pn+1Pn

)k

= O

(
vk−1

P k
v+1

)

and

(18)
∞∑

n=v

nk−1
(

pn

PnPn−1

)k

= O

(
vk−1

P k
v

)

hold, where k � 1. Then |R, pn|k is translative if and only if

(19) (a)
Pn

Pn+1
= O

(
pn

pn+1

)
and (b)

Pn+1

Pn
= O

(
pn+1

pn

)
.

�����. We first note that each of the conditions (17) and (18) implies (7) since
Pv+1 � Pv � p0 for all v � 0. By Theorem 3.2, we have that |R, pn|k is translative
if and only if |R, pn|k is equivalent to |R, pn+1|k. Now the conclusion follows from
Theorem 2.1 and the fact that Pn+1 ∼ Pn+1 − p0 as n→∞.
Note that if we take k = 1 in Theorem 3.3 and recall the condition Pn →∞ (i.e.,

(R, pn) is regular) we see that (17) and (18) respectively reduce to the equivalent

conditions

(20) (a)
Pv+1

Pv
= O(1) (b)

Pv

Pv−1
= O(1).

�

So we immediately get the following

Corollary 1. If (R, pn) is regular and (20a) or (20b) holds, then |R, pn| is transla-
tive if and only if (19a) and (19b) hold.
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Cesco [4] proved that if (R, pn) is absolutely regular (i.e.,
∑

an is |R, pn| sum-
mable whenever

∑ |an| <∞) then condition (19 a) is sufficient for |R, pn| to be left
translative. Now, an application of Theorem 1 of Mears [8] shows that if (R, pn) is
regular then it is absolutely regular but not conversely. So the conditions given by

Cesco [4] are weaker than ours. However, observe that we prove the theorem in the
“necessary and sufficient” form for translativity, not only for left translativity. So

our result is more applicable than that of Cesco.
We conclude the paper with the following observation. If pn = 1 for all n, then

|R, pn| reduces to the usual |C, 1| summability. In this case all the conditions of
Corollary 1 hold. Hence |C, 1| summability is translative. Actually, Theorem 3.3
yields the following more general result:

Corollary 2. |C, 1|k (k � 1), summability is translative.

Acknowledgement. I am grateful to the referee for bringing to my attention the
paper of R. P. Cesco.
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