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OSCILLATIONS OF CERTAIN FUNCTIONAL

DIFFERENTIAL EQUATIONS

S. R. Grace, Giza

(Received December 8, 1995)

Abstract. Sufficient conditions are presented for all bounded solutions of the linear system
of delay differential equations

(−1)m+1 dmyi(t)
dtm

+
n∑

j=1

qijyj(t− hjj) = 0, m � 1, i = 1, 2, . . . , n,

to be oscillatory, where qijε(−∞,∞), hjj ∈ (0,∞), i, j = 1, 2, . . . , n. Also, we study the
oscillatory behavior of all bounded solutions of the linear system of neutral differential
equations

(−1)m+1 dm

dtm
(yi(t) + cyi(t− g)) +

n∑

j=1

qijyj(t− h) = 0,

where c, g and h are real constants and i = 1, 2, . . . , n.

1. Introduction

Consider the system of delay differential equations

(E) (−1)m+1y(m)i (t) +
n∑

j=1

qijyj(t− hjj) = 0, m � 1, i = 1, 2, . . . , n,

where qij ∈ (−∞,∞), hjj ∈ (0,∞), i, j = 1, 2, . . . , n.

We say that a solution y(t) =
[
y1(t), . . . , yn(t)

]T
of (E) oscillates if for some

i ∈ {1, 2, . . . , n}, yi(t) has arbitrarily large zeros. A solution y(t) of (E) is said to be

nonoscillatory if there exists a t0 � 0 such that for each i = 1, 2, . . . , n, yi(t) �= 0 for
t � t0.
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The oscillatory behavior of scalar delay differential equations and/or linear systems

of delay differential equations has been the subject of numerous investigations. For
a recent survey of results, we refer to the book of Györi and Ladas [3], and for
references concerning the oscillation of systems, the reader is referred to [1].

Recently, Gopalsamy [1] and Gopalsamy and Ladas [2] discussed (E) when m = 1
and derived some sufficient conditions for the oscillation of (E).

The purpose of this paper is to establish some sufficient conditions for the os-
cillation of (E), m � 1 and to investigate the oscillatory behavior of the neutral
system

(EN, a) (−1)m+1
(
yi(t) + cyi(t− ag)

)(m)
+

n∑

j=1

qijyj(t− h) = 0,

i = 1, 2, . . . , n, where a = ±1, c, g and h are real constants.
We note that the results of this paper are extensions of those in [1,2] to higher

order systems of differential equations.

2. Main results

The following result concerns the oscillatory behavior of all bounded solutions

of (E).

Theorem 1. Let qij ∈ (−∞,∞), hjj ∈ (0,∞), i, j = 1, 2, . . . , n. If every bounded

solution of the equation

(E∗) (−1)m+1z(m)(t) + qz(t− h) = 0

oscillates, where

(1) q = min
1�i�n

{
qii −

n∑

j=1
j �=1

|qji|
}

> 0 and h = min
1�i�n

{hii},

then every bounded solution of (E) oscillates.

�����. Suppose that (E) has a nonoscillatory, bounded and eventually positive
solution y(t) =

[
y1(t), . . . , yn(t)

]T
. There exists a t0 � 0 such that yi(t) > 0 for

t � t0, i = 1, 2, . . . , n. If we let

w(t) =
n∑

j=1

yj(t),
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then

(−1)m+1w(m)(t) = −
n∑

i=1

qiiyi(t− hii)−
n∑

i=n

n∑

j=1
j �=1

qijyj(t− hjj)

� −
n∑

i=1

qiiyi(t− hii) +
n∑

i=n

n∑

j=1
j �=1

|qji|yi(t− hii).

It follows from the above inequality that

(−1)m+1w(m)(t) +
n∑

i=1

[
qii −

n∑

j=1
j �=1

|qji|
]
yi(t− hii) � 0 t � t0,

or

(2) (−1)m+1w(m)(t) + q

n∑

i=1

yi(t− hii) � 0, t � t0.

From the boundedness, nonoscillation and eventual positivity of y1(t), . . . , yn(t), we
see that w(t) is bounded and eventually positive. From the fact that (−1)m+1w(m)(t)
� 0 eventually and by the well-known Kiguradze’s Lemma [4], the function w(t) is
eventually decreasing and satisfies

(3) (−1)kw(k)(t) > 0 eventually, k = 0, 1, . . . , m.

Thus we conclude that yi(t) converges as t →∞, i = 1, 2, . . . , n. We let

lim
t→∞

yi(t) = bi � 0, i = 1, 2, . . . , n.

We claim that bi = 0, i = 1, 2, . . . , n; suppose this is not the case. Then there exists

a t1 > t0 + h∗, h∗ = max
1�i�n

{hii}, such that

yi(t− hii) >
1
2
bi for t � t1 + h∗.

We have from (1) that

(−1)m+1w(m)(t) + 12q
n∑

i=1

bi � 0,

or

(−1)m+1w(m)(t) � − 12q
n∑

i=1

bi for t � t1 + h∗,
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which leads to

(−1)m+1w(m−1)(t) � − 12q
n∑

i=1

bi(t− t1 − h∗)(−1)m+1w(m−1)(t1 + h∗),

implying that (−1)m+1w(m−1)(t) can become negative for all sufficiently large t;
but this is impossible by the well-known lemma of Kiguradze [4]. Thus, we have
n∑

i=1
bi = 0, and hence bi = 0, i = 1, 2, . . . , n; thus

lim
t→∞

yi(t) = 0, i = 1, 2, . . . , n,

and so lim
t→∞

w(t) = 0.

Integrating (2) m-times from t to u, u � t � t2+h for some t2 � t1, using (3) and

letting u →∞, we obtain

w(t) �
∫ ∞

t

(s− t)m−1

(m− 1)! q
[ n∑

i=1

yi(s− hii)
]
ds =

n∑

i=1

q

∫ ∞

t

(s− t)m−1

(m− 1)! yi(s− hii) ds

=
n∑

i=1

q

∫ ∞

t−hii

(v + hii − t)m−1

(m− 1)! yi(v) dv �
n∑

i=1

q

∫ ∞

t−h

(v + h− t)m−1

(m− 1)! yi(v) dv

= q

∫ ∞

t−h

(v + h− t)m−1

(m− 1)!
n∑

i=1

yi(v) dv = q

∫ ∞

t−h

(v + h− t)m−1

(m− 1)! w(v) dv.

Now, we let

Z(t) =
∫ ∞

t−h

(v + h− t)m−1

(m− 1)! w(v) dv,

and derive that

(4) (−1)m+1Z(m)(t) = w(t) � −qZ(t− h) for t � t2 + h.

It follows from (4) that the function Z is a bounded and eventually positive solution

of
(−1)m+1Z(m)(t) + qZ(t− h) � 0 for t � t2 + h.

However, by Corollary 1 of Philos [6], equation (E∗) has a bounded and eventually
positive solution, a contradiction. This completes the proof. �

Remark. From the results in [5], we see that all bounded solutions of (E∗) are
oscillatory if the following condition holds:

(5) q1/m(h/m)e > 1.

Now, we obtain the following oscillation criterion for all bounded solutions of (E).

48



Corollary 1. Let qij , hjj , i, j = 1, 2, . . . , n, q and h be defined as in (1). If

condition (5) is satisfied, then all bounded solutions of (E) are oscillatory.

The following example is illustrative:

Example 1. Consider the system of equations

(E1)

{
(−1)m+1y(m)1 (t) + 2y1(t− 1

2m)− y2(t−m) = 0,

(−1)m+1y(m)2 (t)− y1(t− 1
2m) + 2y2(t−m) = 0.

All conditions of Corollary 1 are satisfied and hence all bounded solutions of (E1)

are oscillatory.

Next, we consider (EN, a) and obtain the following results:

Theorem 2. Let qij ∈ (−∞,∞), g, h ∈ (0,∞) and c ∈ (0, 1), i, j = 1, 2, . . . , n. If

every bounded solution of the equation

(E∗1) (−1)m+1v(m)(t) + q(1− c)v(t− h) = 0

is oscillatory, where q is defined as in (1), then every bounded solution of (EN,−1)
is oscillatory.

Theorem 3. Let qij ∈ (−∞,∞), g, h ∈ (0,∞) and c ∈ (1,∞), i, j = 1, 2, . . . , n.

If h > g and every bounded solution of the equation

(E∗2) (−1)m+1u(m)(t) + q
(
(c− 1)/c2

)
u
(
t− (h− g)

)
= 0

is oscillatory, where q is defined as in (1), then every bounded solution of (EN, 1) is

oscillatory.

Theorem 4. Let qij ∈ (−∞,∞), g, h ∈ (0,∞) and −c = c∗ ∈ (0, 1], i, j =
1, 2, . . . , n. If every bounded solution of the equation

(E∗3) (−1)m+1w(m)(t) + qw(t − h) = 0

is oscillatory, where q is defined as in (1), then every bounded solution of (EN, 1) is
oscillatory.

����� �� �������� 2–4. Let y(t) =
[
y1(t), . . . , yn(t)

]T
be a nonoscillatory

bounded and eventually positive solution of (EN, a). There exists a t0 � 0 such that
yi(t) > 0 for t > t0, i = 1, 2, . . . , n. We let

(6) z(t) =
n∑

i=1

yi(t) + c

n∑

i=1

yi(t− ag)
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and

(7) w(t) =
n∑

i=1

yi(t).

Then

(−1)m+1z(m)(t) +
n∑

i=1

n∑

j=1

qijyj(t− h) = 0.

As in the proof of Theorem 1, we see that

(8) (−1)m+1z(m)(t) + qw(t − h) � 0 for t � t0,

where q is defined as in (1). Clearly z and w are positive and bounded functions on
[t0,∞) provided c > 0 and hence

(9) (−1)m+1z(m)(t) � 0 for t � t0.

As in the proof of Theorem 1, one can easily derive that lim
t→∞

z(t) = 0 and z(t)

satisfies

(10) (−1)kz(k)(t) > 0 eventually, k = 0, 1, . . . , m.

Using this fact, we see form (6) that if a = −1 and c ∈ (0, 1), then

(11) z(t) = w(t) + cw(t+ g)

or
w(t) = z(t)− cw(t+ g) = z(t)− cz(t+ g) + cw(t+ 2g) � (1 − c)z(t)

for all large t, and that if a = 1 and c ∈ (1,∞), then

w(t) = (1/c)[z(t+ g)− w(t + g)](12)

= (1/c)z(t+ g)− (1/c2)[z(t+ 2g)− w(t+ 2g)]

�
(
(c− 1)/c2

)
z(t+ g)

for all large t. Next, we consider the case when a = 1 and −c = c∗ ∈ (0, 1]. Clearly
w(t) is bounded and eventually positive. Since (9) holds, we see that z(t) is either

eventually positive or else eventually negative. If z(t) < 0 eventually, there is a
sequence {tk} such that lim

k→∞
tk = ∞ and lim

k→∞
w(tk) = lim

t→∞
supw(t). Without loss

of generality, we assume that
{
w(tk − g)

}
is convergent. Then

0 > lim
k→∞

z(tk) � lim
t→∞

supw(t)(1 − c∗) � 0,
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and hence we conclude that z(t) < 0 eventually is impossible. As in the proof of

Theorem 1, we see that lim
t→∞

z(t) = 0, (10) holds eventually and

(13) z(t) � w(t)

for all large t. Now, we have the following results:

(i) Suppose a = −1 and c ∈ (0, 1). From (8) and (11), we obtain

(14) (−1)m+1z(m)(t) + q(1− c)z(t− h) � 0

for all large t.

(ii) Suppose a = 1 and c ∈ (1,∞). From (8) and (12), we have

(15) (−1)m+1z(m)(t) + q
(
(c− 1)/c2

)
z
(
(t− (h− g)

)
� 0

for all large t.

(iii) Suppose a = 1 and −c = c∗ ∈ (0, 1]. From (8) and (13), we obtain

(16) (−1)m+1z(m)(t) + qz(t− h) � 0

for all large t.

The rest of the proof is similar to that of Theorem 1 and hence is omitted. �

The following three corollaries are immediate.

Corollary 2. Let qij ∈ (−∞,∞), g, h ∈ (0,∞) and c ∈ (0, 1). If

(17)
(
(1− c)q

)1/m
(h/m)e > 1,

where q is defined as in (1), then every bounded solution of (EN, 1) is oscillatory.

Corollary 3. Let qij ∈ (−∞,∞), h, g ∈ (0,∞) and c ∈ (1,∞). If h > g and

(18)
((
(c− 1)/c2

)
q
)1/m(

(h− g)/m
)
e > 1,

where q is defined as in (1), then every bounded solution of (En, 1) is oscillatory.

Corollary 4. Let qij ∈ (−∞,∞), g, h ∈ (0,∞) and −c = c∗ ∈ (1,∞]. If

(19) q1/m(h/m)e > 1,

where q is defined as in (1), then every bounded solution of (EN, 1) is oscillatory.

The following example is illustrative:
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Example 2. Consider the system of neutral equations

(E,a)

{
(−1)m+1

(
y1(t) + cy1(t− ag)

)(m)
+ 2y1(t−m)− y2(t−m) = 0,

(−1)m+1
(
y2(t) + cy2(t− ag)

)(m) − y1(t−m) + 2y2(t−m) = 0,

where a = ±1, g is a nonnegative real number.

One can easily conclude that the following assertions hold:

(I) If c ∈ (0, 1) and (1− c)1/me > 1, then all conditions of Corollary 2 are satisfied
and hence all bounded solutions of (E,-1) are oscillatory.

(II) If c ∈ [1,∞), m > g and
(
(c−1)/c2

)1/m(
(m−g)/m

)
e > 1, then all conditions

of Corollary 3 are satisfied and hence all solutions of (E,1) are oscillatory.

(III) If c ∈ [−1, 0), then all conditions of Corollary 4 are satisfied, and hence all
bounded solutions of (E,1) are oscillatory.

Remark. It would be interesting to obtain criteria similar to those presented here
for nonautonomous systems (with variable coefficients and variable delays) and also
to nonlinear systems.

Acknowledgement. The author wishes to thank the referee for helpful sugges-
tions which improved the format of the text.
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