Czechoslovak Mathematical Journal

Irena Rachůnková

On four-point boundary value problem without growth conditions

Czechoslovak Mathematical Journal, Vol. 49 (1999), No. 2, 241-248

Persistent URL: http://dml.cz/dmlcz/127484

Terms of use:

© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON FOUR-POINT BOUNDARY VALUE PROBLEM WITHOUT GROWTH CONDITIONS

Irena Rachůnková,* Olomouc

(Received February 19, 1996)

Abstract. We prove the existence of solutions of four-point boundary value problems under the assumption that f fulfils various combinations of sign conditions and no growth restrictions are imposed on f. In contrast to earlier works all our results are proved for the Carathéodory case.

1. Introduction

The paper deals with the four-point boundary value problem

$$
\begin{gather*}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \tag{1}\\
x(a)=x(c), x(d)=x(b) \tag{2}
\end{gather*}
$$

where $a, b, c, d \in \mathbb{R}, a<c \leqslant d<b, J=[a, b]$ and $f: J \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function satisfying the Carathéodory conditions. We prove the existence of solutions of (1), (2) provided f fulfils various combinations of sign conditions. We need no growth restrictions for f. The results presented here complete our earlier existence theorems for problem (1), (2) which contained various linear or Nagumo-type growth restrictions, see [2], [3] or [4]. Our method of proofs was partially motivated by [1], where some two-point BVPs were considered. The results of [1] were generalized in several directions in [6] and [7]. In contrast to the papers mentioned all our results here are

[^0]proved for f satisfying the Carathéodory conditions, i.e.
\[

$$
\begin{aligned}
& f(\cdot, x, y): J \rightarrow \mathbb{R} \text { is measurable for all }(x, y) \in \mathbb{R}^{2}, \\
& f(t, \cdot, \cdot): \mathbb{R}^{2} \rightarrow \mathbb{R} \text { is continuous for a.e. } t \in J, \\
& \sup \{|f(\cdot, x, y)|:|x|+|y|<\varrho\} \in \mathbb{L}_{1}(J) \text { for any } \varrho \in \mathbb{R} .
\end{aligned}
$$
\]

In what follows we denote by $\mathbb{C}(J)$ the Banach space of all continuous functions on J with the norm $\|x\|=\{|x(t)|: t \in J\}, \mathbb{X}=\mathbb{C}^{1}(J)$ the Banach space of all functions having continuous first derivatives on J with the norm $\|x\|^{1}=\|x\|+\left\|x^{\prime}\right\|$, $\mathbb{Y}=\mathbb{L}_{1}(J)$ the Banach space of all Lebesgue integrable functions on J with the norm $\|x\|_{1}=\int_{a}^{b}|x(t)| \mathrm{d} t, \mathbb{\unrhd}_{\infty}(J)$ the Banach space of all totally bounded functions on J with the norm $\|x\|_{\infty}=\operatorname{esssup}\{|x(t)|: t \in J\}, \mathbb{A C}^{1}(J)$ the set of all functions having absolutely continuous first derivatives on J.

2. Main Results

Theorem 1. Let there exist real numbers $R_{1}, R_{2}, R_{3}, R_{4}, r_{1}, r_{2}$ such that $r_{1} \leqslant r_{2}$, $R_{1} \neq R_{3}, R_{2} \neq R_{4}, R_{1} \leqslant 0 \leqslant R_{2}, R_{3} \leqslant 0 \leqslant R_{4}$, and for a.e. $t \in J$ let

$$
\begin{align*}
& f\left(t, r_{1}, 0\right) \leqslant 0, f\left(t, r_{2}, 0\right) \geqslant 0 \tag{3}\\
& f\left(t, x, R_{2}\right) \geqslant 0, f\left(t, x, R_{1}\right) \leqslant 0 \text { for all } x \in\left[r_{1}, r_{2}\right] . \tag{4}
\end{align*}
$$

Further, for a.e. $t \in[d, b]$ and all $x \in\left[r_{1}, r_{2}\right]$ let

$$
\begin{equation*}
f\left(t, x, R_{3}\right) \geqslant 0, f\left(t, x, R_{4}\right) \leqslant 0 \tag{5}
\end{equation*}
$$

Then problem (1), (2) has at least one solution u which for all $t \in J$ fulfils the inequalities

$$
\left.\begin{array}{rl}
r_{1} & \leqslant u(t)
\end{array} \leqslant r_{2}, ~ 子 R^{\prime}(t) \leqslant \max \left\{R_{2}, R_{4}\right\} . ~ \$ R_{1}, R_{3}\right\} \leqslant u^{\prime} .
$$

Example 2. Function f fulfilling the conditions of Theorem 1 can quickly grow in x and y on J, but on the other hand it cannot be monotonous in y on $[d, b]$. Suppose that $h \in[1, \infty), h_{1} \in \mathbb{L}_{1}(J), h_{1}(t)>0$ for a.e. $t \in J, h_{2} \in \mathbb{L}_{\infty}(J)$, $\left\|h_{2}\right\|_{\infty}<h, n, k \in \mathbb{N}, n>k$. Then the function

$$
f(t, x, y)=h_{1}(t)\left(-x^{2 k+1}+y^{2 n+1}+h_{2}(t)\right)\left(y^{2}-h^{2}\right)
$$

satisfies Theorem 1 for $r_{1}=-h, r_{2}=h, R_{1}=-2 h, R_{2}=2 h, R_{3}=-h, R_{4}=h$.

Theorem 3. Let there exist real numbers $R_{1}, R_{2}, R_{3}, R_{4}, r_{1}, r_{2}$ such that $r_{1} \leqslant r_{2}$, $R_{1} \neq R_{3}, R_{2} \neq R_{4}, R_{1} \leqslant 0 \leqslant R_{2}, R_{3} \leqslant 0 \leqslant R_{4}$, and for a.e. $t \in J$ let

$$
\begin{align*}
& f(t, x, 0) \geqslant 0 \text { for all } x \in\left[r_{1}+L_{1}(b-a), r_{1}\right] \tag{8}\\
& f(t, x, 0) \leqslant 0 \text { for all } x \in\left[r_{2}, r_{2}+L_{2}(b-a)\right] \tag{9}
\end{align*}
$$

where $L_{1}=\min \left\{R_{1}, R_{3}\right\}, L_{2}=\max \left\{R_{2}, R_{4}\right\}$. Further, for all $x \in\left[r_{1}+L_{1}(b-a), r_{2}+\right.$ $\left.L_{2}(b-a)\right]$ let

$$
\begin{align*}
& f\left(t, x, R_{2}\right) \geqslant 0, f\left(t, x, R_{1}\right) \leqslant 0 \text { for a.e. } t \in J \tag{10}\\
& f\left(t, x, R_{3}\right) \geqslant 0, f\left(t, x, R_{4}\right) \leqslant 0 \text { for a.e. } t \in[d, b] . \tag{11}
\end{align*}
$$

Then problem (1), (2) has at least one solution u which for all $t \in J$ fulfils the inequalities

$$
\begin{equation*}
r_{1}+L_{1}(b-a) \leqslant u(t) \leqslant r_{2}+L_{2}(b-a), \quad L_{1} \leqslant u^{\prime}(t) \leqslant L_{2} \tag{12}
\end{equation*}
$$

Example 4. A function f fulfilling the conditions of Theorem 2 can have the form

$$
f(t, x, y)=h_{1}(t)(-x+\sin 2 \pi t+7 \sin y)
$$

where $r_{1}=-1, r_{2}=1, R_{1}=-\pi / 2, R_{2}=\pi / 2, R_{3}=-3 \pi / 2, R_{4}=3 \pi / 2$ and $h_{1} \in \mathbb{L}_{1}(J)$ is strictly positive, $J=[0,1]$.

3. Proofs

We will work with a one-parameter system

$$
\begin{equation*}
x^{\prime \prime}=\lambda f^{*}\left(t, x, x^{\prime}, \lambda\right), \quad \lambda \in[0,1] \tag{13}
\end{equation*}
$$

where $f^{*}: J \times\left(\mathbb{R}^{2} \times[0,1]\right) \rightarrow \mathbb{R}$ satisfies the Carathéodory conditions and

$$
f^{*}(t, x, y, 1)=f(t, x, y) \quad \text { on } J \times \mathbb{R}^{2}
$$

Put

$$
\begin{equation*}
f_{0}(x)=\frac{1}{b-d} \int_{d}^{b} \int_{a}^{s} f^{*}(t, x, 0,0) \mathrm{d} t \mathrm{~d} s-\frac{1}{c-a} \int_{a}^{c} \int_{a}^{s} f^{*}(t, x, 0,0) \mathrm{d} t \mathrm{~d} s \tag{14}
\end{equation*}
$$

Our proofs are based on the following lemma.

Lemma 5. Let there exist an open bounded set $\Omega \subset \mathbb{X}$ such that
(a) for any $\lambda \in(0,1)$, each solution u of problem (13), (2) satisfies $u \notin \partial \Omega$;
(b) for any root $x_{0} \in \mathbb{R}$ of the equation $f_{0}(x)=0$, the condition $x_{0} \notin \partial \Omega$ is fulfilled, where x_{0} is considered a constant function on J;
(c) the Brouwer degree $d\left[f_{0}, D, 0\right] \neq 0$, where $D \subset \mathbb{R}$ is the set of constants c such that the functions $u(t) \equiv c$ belong to Ω.

Then problem (1), (2) has at least one solutions in $\bar{\Omega}$.
Proof. See [5].

Lemma 6. Let there exist $r_{1}, r_{2} \in \mathbb{R}, K \in(0, \infty)$ such that $r_{1} \leqslant r_{2}$ and for a.e. $t \in J$ the inequalities (3) and

$$
\begin{equation*}
\int_{a}^{b}|f(t, x, y)| \mathrm{d} t \leqslant K \text { for all } x \in\left[r_{1}, r_{2}\right], y \in \mathbb{R} \tag{15}
\end{equation*}
$$

are satisfied. Then problem (1), (2) has at least one solution u with the property (6).

Proof. Choose an arbitrary fixed $m \in \mathbb{N}, m>1$. For $(t, x, y) \in D$ put

$$
f_{m}(t, x, y)= \begin{cases}f\left(t, r_{2}, 0\right) & \text { for } x \geqslant r_{2}+\frac{1}{m} \\ f\left(t, r_{2}, y\right)+\left[f\left(t, r_{2}, 0\right)-f\left(t, r_{2}, y\right)\right] m\left(x-r_{2}\right) & \text { for } r_{2}<x<r_{2}+\frac{1}{m} \\ f(t, x, y) & \text { for } r_{1} \leqslant x \leqslant r_{2} \\ f\left(t, r_{1}, y\right)-\left[f\left(t, r_{1}, 0\right)-f\left(t, r_{1}, y\right)\right] m\left(x-r_{1}\right) & \text { for } r_{1}-\frac{1}{m}<x<r_{1} \\ f\left(t, r_{1}, 0\right) & \text { for } x \leqslant r_{1}-\frac{1}{m}\end{cases}
$$

and consider system (13), where

$$
f^{*}(t, x, y, \lambda)=\lambda f_{m}(t, x, y)+(1-\lambda)\left[\frac{x-r_{1}}{r_{2}-r_{1}+1}\right] .
$$

Put $r=1+\max \left\{\left|r_{1}\right|,\left|r_{2}\right|\right\}$ and define a set

$$
\begin{equation*}
\Omega=\left\{x \in \mathbb{X}:\|x\|<r,\left\|x^{\prime}\right\|<K+(b-a)\right\} . \tag{16}
\end{equation*}
$$

Let us check that problem (13), (2) fulfils the conditions of Lemma 1 on Ω.
(a): Let us prove that for any $\lambda \in(0,1)$ no solution of (13), (2) belongs to $\partial \Omega$. Let u be a solution of this problem for some $\lambda \in(0,1)$. Put $v(t)=u(t)-r_{2}-\frac{1}{m}$ and suppose that $\max \{v(t): t \in J\}=v\left(t_{0}\right)>0$. Since $v(a)=v(c)$ and $v(b)=v(d)$, we
can suppose that $t_{0} \in(a, b)$. Thus there exists an interval $(\alpha, \beta) \subset(a, b)$ containing t_{0} with $v(t) \geqslant 0$ for each $t \in(\alpha, \beta), v^{\prime}(\alpha) \geqslant 0, v^{\prime}(\beta) \leqslant 0$. Hence we get for a.e. $t \in(\alpha, \beta)$

$$
v^{\prime \prime}(t)=u^{\prime \prime}(t)=\lambda\left(\lambda f_{m}\left(t, u, u^{\prime}\right)+(1-\lambda)\left[\frac{u-r_{1}}{r_{2}-r_{1}+1}\right]\right)>0
$$

Integrating the last inequality, we obtain a contradiction

$$
0 \geqslant v^{\prime}(\beta)-v^{\prime}(\alpha)>0
$$

Thus $v(t) \leqslant 0$ on J, which means that $u(t) \leqslant r_{2}+\frac{1}{m}$ for all $t \in J$. By an analogous argument we prove that $u(t) \geqslant r_{1}-\frac{1}{m}$ for all $t \in J$. Conditions (2) guarantee the existence of at least one zero of u^{\prime} on J, so integrating (13) and using (15) we get $\left\|u^{\prime}\right\|<K+(b-a)$. Therefore $u \notin \partial \Omega$.
(b): In view of (14)

$$
f_{0}(x)=\frac{b+d-a-c}{2} \cdot \frac{x-r_{1}}{r_{2}-r_{1}+1}
$$

thus the equation $f_{0}(x)=0$ has the unique root $x_{0}=r_{1}$, and the constant function $u_{0}(t) \equiv r_{1}$ does not belong to $\partial \Omega$.
(c): Since $D=(-r, r)$ and $f_{0}(-r)<0, f_{0}(r)>0$, the Brouwer degree $d\left[f_{0}, D, 0\right] \neq$ 0 . Therefore Lemma 1 implies that the problem

$$
\begin{equation*}
x^{\prime \prime}=f_{m}\left(t, x, x^{\prime}\right) \tag{17}
\end{equation*}
$$

has at least one solution in $\bar{\Omega}$. Repeating this argument for each $m \in \mathbb{N}$, we obtain a sequence $\left(u_{m}\right)_{1}^{\infty}$ of solutions of problems (17). We can see that the sequence is bounded and equi-continuous in \mathbb{X} and so, by the Arzelà-Ascoli Theorem it is possible to choose a subsequence converging in \mathbb{X} to a function u_{0}. Since $r_{1}-\frac{1}{m} \leqslant u_{m}(t) \leqslant$ $r_{2}+\frac{1}{m}, u_{0}$ satisfies (6) and thus it is a solution of (1), (2).

Lemma 7. Let there exist $r_{1}, r_{2} \in \mathbb{R}, K \in(0, \infty)$ such that $r_{1} \leqslant r_{2}$ and for a.e. $t \in J$ the inequalities

$$
\begin{align*}
& f(t, x, 0) \geqslant 0 \text { for all } x \leqslant r_{1} \tag{18}\\
& f(t, x, 0) \leqslant 0 \text { for all } x \geqslant r_{2} \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{a}^{b}|f(t, x, y)| \mathrm{d} t \leqslant K \text { for all } x, y \in \mathbb{R} \tag{20}
\end{equation*}
$$

are satisfied. Then problem (1), (2) has at least one solution u with the property

$$
\begin{equation*}
r_{1} \leqslant u\left(t_{u}\right) \leqslant r_{2} \tag{21}
\end{equation*}
$$

where t_{u} is a point in (a, b).

Proof. For $t \in J, x, y \in \mathbb{R}, m \in \mathbb{N}$ and $\lambda \in[0,1]$ put

$$
f_{m}(t, x, y)= \begin{cases}f(t, x, y) & \text { for }|y|>\frac{2}{m} \\ f(t, x, y)+[f(t, x, 0)-f(t, x, y)] m\left(\frac{2}{m}-|y|\right) & \text { for } \frac{1}{m}<|y| \leqslant \frac{2}{m} \\ f(t, x, 0) & \text { for }|y| \leqslant \frac{1}{m}\end{cases}
$$

and consider system (13), where

$$
f^{*}(t, x, y, \lambda)=\lambda f_{m}(t, x, y)+(1-\lambda) \frac{r_{2}-x}{\left|r_{2}\right|+|x|}
$$

Put $r=1+\max \left\{\left|r_{1}\right|,\left|r_{2}\right|\right\}+(b-a) K+(b-a)^{2}$ and define a set Ω by (16). Now we can follow the proof of Lemma 2. The only difference is that we prove $\min \{u(t): t \in J\} \leqslant r_{2}$ and $\max \{u(t): t \in J\} \geqslant r_{1}$, which implies (21). Then by Lemma 1 and a limiting proces we get a solution u of (1), (2) with property (21).

Proof of Theorem 1. Suppose that $R_{3}<R_{1}$ and $R_{4}>R_{2}$. Then there exists $n_{0} \in \mathbb{N}$ such that for all $n \in \mathbb{N}, n \geqslant n_{0}$ the inequalities $R_{2}+\frac{2}{n}<R_{4}$, $R_{1}-\frac{2}{n}>R_{3}$ are satisfied. For $n \geqslant n_{0}$ put

$$
h_{n}(t, x, y)= \begin{cases}f\left(t, x, R_{4}\right) & \text { for } R_{4}<y \\ f(t, x, y) & \text { for } R_{2}+\frac{2}{n} \leqslant y \leqslant R_{4} \\ f\left(t, x, R_{2}+\frac{2}{n}\right)+w_{2} & \text { for } \frac{1}{n}+R_{2}<y<R_{2}+\frac{2}{n} \\ f\left(t, x, R_{2}\right) & \text { for } R_{2}<y \leqslant R_{2}+\frac{1}{n} \\ f(t, x, y) & \text { for } R_{1} \leqslant y \leqslant R_{2} \\ f\left(t, x, R_{1}\right) & \text { for }-\frac{1}{n}+R_{1} \leqslant y<R_{1} \\ f\left(t, x, R_{1}-\frac{2}{n}\right)-w_{1} & \text { for } R_{1}-\frac{2}{n}<y<R_{1}-\frac{1}{n} \\ f(t, x, y) & \text { for } R_{3} \leqslant y \leqslant R_{1}-\frac{2}{n} \\ f\left(t, x, R_{3}\right) & \text { for } R_{3}>y\end{cases}
$$

where

$$
\begin{aligned}
& w_{2}=\left[f\left(t, x, R_{2}+\frac{2}{n}\right)-f\left(t, x, R_{2}\right)\right] n\left(y-R_{2}-\frac{2}{n}\right), \\
& w_{1}=\left[f\left(t, x, R_{1}-\frac{2}{n}\right)-f\left(t, x, R_{1}\right)\right] n\left(y-R_{1}+\frac{2}{n}\right) .
\end{aligned}
$$

Then h_{n} fulfils (15) with K given by

$$
K=\int_{a}^{b}\left(\sup \left\{\left|h_{n}(t, x, y)\right|: x \in\left[r_{1}, r_{2}\right], y \in\left[R_{3}, R_{4}\right]\right\}\right) \mathrm{d} t
$$

Since h_{n} fulfils (3), we get by Lemma 2 that the problem

$$
\begin{equation*}
x^{\prime \prime}=h_{n}\left(t, x, x^{\prime}\right),(2 \tag{22}
\end{equation*}
$$

has a solution u_{n} satisfying (6). Let us prove a priori estimates for u_{n}^{\prime} which are independent of u_{n}. It follows from (2) that there exist points $a_{0} \in(a, c), b_{0} \in(d, b)$ with $u_{n}^{\prime}\left(a_{0}\right)=u_{n}^{\prime}\left(b_{0}\right)=0$. Suppose that $\max \left\{u_{n}^{\prime}(t): t \in\left[a, b_{0}\right]\right\}=u_{n}^{\prime}\left(z_{0}\right)>R_{2}+\frac{1}{n}$. Then $z_{0} \neq b_{0}$ and there exists $(\alpha, \beta) \subset\left(a, b_{0}\right)$ such that $u_{n}^{\prime}(\beta)=R_{2}, u_{n}^{\prime}(\alpha)=R_{2}+\frac{1}{n}$ and $R_{2} \leqslant u_{n}^{\prime}(t) \leqslant R_{2}+\frac{1}{n}$ for all $t \in(\alpha, \beta)$. Thus

$$
0>\int_{\alpha}^{\beta} u_{n}^{\prime \prime}(t) \mathrm{d} t=\int_{\alpha}^{\beta} f\left(t, u_{n}, R_{2}\right) \mathrm{d} t \geqslant 0
$$

a contradiction. A similar contradiction occurs provided $\min \left\{u_{n}^{\prime}(t): t \in\left[a, b_{0}\right]\right\}<$ $R_{1}-\frac{1}{n}$. Thus we have proved the estimate on $\left[a, b_{0}\right]$. Now, suppose that $\max \left\{u_{n}^{\prime}(t)\right.$: $\left.t \in\left[b_{0}, b\right]\right\}=u_{n}^{\prime}\left(z_{1}\right)>R_{4}+\frac{1}{n}$. Then $z_{1} \in\left(b_{0}, b\right]$ and there exists $(\alpha, \beta) \subset\left(b_{0}, b\right)$ such that $u_{n}^{\prime}(\alpha)=R_{4}, u_{n}^{\prime}(\beta)=R_{4}+\frac{1}{n}$ and $R_{4} \leqslant u_{n}^{\prime}(t) \leqslant R_{4}+\frac{1}{n}$ for all $t \in(\alpha, \beta)$. Thus

$$
0<\int_{\alpha}^{\beta} u_{n}^{\prime \prime}(t) \mathrm{d} t=\int_{\alpha}^{\beta} f\left(t, u_{n}, R_{4}\right) \mathrm{d} t \leqslant 0
$$

a contradiction. Similarly for $\min \left\{u_{n}^{\prime}(t): t \in\left[b_{0}, b\right]\right\}<R_{3}-\frac{1}{n}$. So, we have proved the estimate on $\left[b_{0}, b\right]$, and therefore

$$
\begin{equation*}
R_{3}-\frac{1}{n} \leqslant u_{n}^{\prime}(t) \leqslant R_{4}+\frac{1}{n} \text { for all } t \in J \tag{23}
\end{equation*}
$$

From (6) and (23) it follows that the sequence of solutions $\left(u_{n}\right)_{n_{0}}^{\infty}$ to problems (22) is bounded and equi-continuous in \mathbb{X} and thus by a limiting process we can get a function u which is a solution of problem

$$
\begin{equation*}
x^{\prime \prime}=h\left(t, x, x^{\prime}\right), \tag{24}
\end{equation*}
$$

where

$$
h(t, x, y)= \begin{cases}f\left(t, x, R_{4}\right) & \text { for } y>R_{4} \\ f(t, x, y) & \text { for } R_{3} \leqslant y \leqslant R_{4} \\ f\left(t, x, R_{3}\right) & \text { for } y<R_{3}\end{cases}
$$

By (23), u fulfils the inequality $R_{3} \leqslant u^{\prime}(t) \leqslant R_{4}$ for all $t \in J$, and thus it is a solution of (1), (2) with the properties (6) and (7).

In the case of $R_{3}>R_{1}, R_{2}<R_{4}$ we replace R_{1} by R_{3} in the formula for h_{n} and prove the existence of a solution u by the same argument. Similarly in the case of $R_{4}<R_{2}$.

Proof of Theorem 2. Using Lemma 3 instead of Lemma 2, we can argue similarly as in the proof of Theorem 1, only in the formula for the auxiliary function h_{n} we use a function g instead of f, where

$$
g(t, x, y)= \begin{cases}f\left(t, r_{2}+R_{4}(b-a), y\right) & \text { for } x>r_{2}+R_{4}(b-a) \\ f(t, x, y) & \text { for } r_{1}+R_{3}(b-a) \leqslant x \leqslant r_{2}+R_{4}(b-a), \\ f\left(t, r_{1}+R_{3}(b-a), y\right) & \text { for } x<r_{1}+R_{3}(b-a)\end{cases}
$$

References

[1] P. Kelevedjiev: Existence of solutions for two-point boundary value problems. Nonlin. Anal. TMA 22 (1994), 217-224.
[2] I. Rachůnková: A four-point problem for differential equations of the second order. Arch. Math. (Brno) 25 (1989), 175-184.
[3] I. Rachůnková: Existence and uniqueness of solutions of four-point boundary value problems for 2 nd order differential equations. Czechoslovak Math. Journal 39 (114) (1989), 692-700.
[4] I. Rachůnková: On a certain four-point problem. Radovi Matem. 8, 1 (1992).
[5] I. Rachuinková: An existence theorem of the Leray-Schauder type for four-point boundary value problems. Acta UP Olomucensis, Fac. rer. nat. 100, Math. 30 (1991), 49-59.
[6] I. Rachůnková and S. Staněk: Topological degree methods in functional boundary value problems. Nonlin. Anal. TMA 27 (1996), 153-166.
[7] I. Rachůnková and S. Staněk: Topological degree methods in functional boundary value problems at resonance. Nonlin. Anal. TMA 27 (1996), 271-285.

Author's address: Department of Mathematics, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: rachunko@risc.upol.cz.

[^0]: * Supported by the Grant Agency of the Czech Republic, Grant No. 301/93/2311 and by the FRVS̆, Grant No. 053/1996.

