Czechoslovak Mathematical Journal

Inheung Chon; Hyesung Min
 Triangular stochastic matrices generated by infinitesimal elements

Czechoslovak Mathematical Journal, Vol. 49 (1999), No. 2, 249-254
Persistent URL: http://dml.cz/dmlcz/127485

Terms of use:

© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

TRIANGULAR STOCHASTIC MATRICES GENERATED BY INFINITESIMAL ELEMENTS

Inheung Chon and Hyesung Min, Seoul

(Received February 19, 1996)

Abstract. We show that each element in the semigroup S_{n} of all $n \times n$ non-singular upper (or lower) triangular stochastic matrices is generated by the infinitesimal elements of S_{n}, which form a cone consisting of all $n \times n$ upper (or lower) triangular intensity matrices.

MSC 2000: 22E99

1. Introduction

Let G be a Lie group, let $L(G)$ be its Lie algebra, and let $\exp : L(G) \rightarrow G$ denote the exponential mapping. Let $\operatorname{gl}(n, \mathbb{R})$ denote the set of all real $n \times n$ matrices and $\mathrm{GL}(n, \mathbb{R})$ the general linear group of degree n over \mathbb{R}. Here \mathbb{R} denotes the set of all real numbers and hereafter we shall use this notation. For $G=\operatorname{GL}(n, \mathbb{R})$ and $L(G)=\operatorname{gl}(n, \mathbb{R})$, it is well known that the exponential map exp: $\operatorname{gl}(n, \mathbb{R}) \rightarrow \operatorname{GL}(n, \mathbb{R})$ is defined by $\exp (t X)=I+t X+\frac{1}{2!}(t X)^{2}+\ldots$ for $X \in \operatorname{gl}(n, \mathbb{R})$.

Let S_{n} be a subsemigroup of $\mathrm{GL}(n, \mathbb{R})$ and let $X(t)$ be a differentiable matrix function of the real parameter t in an interval $0 \leqslant t \leqslant t_{0}$ such that $X(t) \in S_{n}$ for each t and $X(0)=I$. We call the matrix $\left.\left(\frac{\mathrm{d} X(t)}{\mathrm{d} t}\right)\right|_{t=0}$ an infinitesimal element of S_{n} and denote the totality of all infinitesimal elements of S_{n} by $\mathscr{D}\left(S_{n}\right)$. Let $A(t)$ be a sectionwise continuous function of $t\left(0 \leqslant t \leqslant t_{0}\right)$ such that $A(t) \in \mathscr{D}\left(S_{n}\right)$ for each t. It is standard that the differential equation

$$
\frac{\mathrm{d} X(t)}{\mathrm{d} t}=A(t) X(t) ; \quad X(0)=I
$$

This paper was supported by the Natural Science Research Institute of Seoul Women's University, 1994
has a unique continuous solution and $X\left(t_{0}\right) \in S_{n}$. This $X\left(t_{0}\right)$ in S_{n} is called generated by the infinitesimal elements $A(t)\left(0 \leqslant t \leqslant t_{0}\right)$.

Loewner [3] showed that each element in the semigroup of all $n \times n$ non-singular totally positive matrices is generated by the infinitesimal elements of the semigroup, which form a set of all $n \times n$ Jacobi matrices with non-negative off-diagonal elements. In general, a semigroup is not completely recreated from its infinitesimal elements, even if the semigroup is connected, and it is quite difficult to compute a semigroup generated by its infinitesimal elements.

In Section 2, we show that the infinitesimal elements of the semigroup of all $n \times n$ non-singular upper (or lower) triangular stochastic matrices are $n \times n$ upper (or lower) triangular intensity matrices. Finally, in Section 3, we show that each element in the semigroup S_{n} of all $n \times n$ non-singular upper (or lower) triangular stochastic matrices is generated by the infinitesimal elements of S_{n}, which form a cone consisting of all $n \times n$ upper (or lower) triangular intensity matrices.

2. Infinitesimal elements of triangular stochastic matrices

Definition. A matrix $A=\left\|a_{i j}\right\|(i=1,2, \ldots, m ; j=1,2, \ldots, n)$ over \mathbb{R} is called a stochastic matrix if $a_{i j} \geqslant 0$ and $\sum_{j=1}^{n} a_{i j}=1$ for $i=1,2, \ldots, m$. A matrix $B=\left\|b_{k l}\right\|$ $(k=1,2, \ldots, m ; l=1,2, \ldots, n)$ over \mathbb{R} such that $b_{k l} \geqslant 0$ for $k \neq l$ and $\sum_{l=1}^{n} b_{k l}=0$ for $k=1,2, \ldots, m$ is called an intensity matrix. An intensity matrix C is called an extreme intensity matrix if C has only one nonzero off-diagonal element which is equal to 1 . An extreme intensity matrix $C=\left\|c_{k l}\right\|$ is denoted by $E_{p q}(p \neq q)$ if $c_{p p}=-1$ and $c_{p q}=1$.

It is easy to see that the set of all non-singular $n \times n$ stochastic matrices forms a subsemigroup of $\mathrm{GL}(n, \mathbb{R})$.

Lemma 2.1. Let S_{n} be the semigroup of all real $n \times n$ non-singular matrices with non-negative entries. Then $\mathscr{D}\left(S_{n}\right)$ coincides with the set of all real $n \times n$ matrices which are non-negative off the diagonal.

Proof. Let $A=\left\|a_{i j}\right\| \in \mathscr{D}\left(S_{n}\right)$. Then $A=\left.\left(\frac{\mathrm{d} X(t)}{\mathrm{d} t}\right)\right|_{t=0}$ with $X(t) \in S_{n}$ for each t and $X(0)=I$. Since $X(t) \in S_{n}, x_{i j}(t) \geqslant 0$ for $i, j=1,2, \ldots n$. From $X(0)=I$, $x_{i j}(0)=0$ for $i \neq j$. Thus $a_{i j}=\left.\left(\frac{\mathrm{d} x_{i j}(t)}{\mathrm{d} t}\right)\right|_{t=0} \geqslant 0$ for $i \neq j$.

Conversely let $E_{i j}(i \neq j)$ be an extreme intensity matrix as denoted in the above definition. Since $E_{i j}{ }^{2}=-E_{i j}, \exp \left(t E_{i j}\right)=I+t E_{i j}-\frac{t^{2}}{2!} E_{i j}+\frac{t^{3}}{3!} E_{i j}+\ldots=I+$ $\left(1-\mathrm{e}^{-t}\right) E_{i j}$, and hence $\exp \left(t E_{i j}\right) \in S_{n}$ for $t \geqslant 0$. Since $E_{i j}=\left.\frac{\mathrm{d}}{\mathrm{d} t}\left(\exp \left(t E_{i j}\right)\right)\right|_{t=0}$,
$E_{i j} \in \mathscr{D}\left(S_{n}\right)$. Let E_{k} be the matrix whose elements are 0 except that the k-th diagonal element is equal to 1 . Since $E_{k}^{2}=E_{k}, \exp \left(t E_{k}\right)=I+t E_{k}+\frac{t^{2}}{2!} E_{k}+$ $\frac{t^{3}}{3!} E_{k}+\ldots=I+\left(\mathrm{e}^{t}-1\right) E_{k}$, and hence $\exp \left(t E_{k}\right) \in S_{n}$ for $t \geqslant 0$. Thus $E_{k} \in \mathscr{D}\left(S_{n}\right)$. Similarly we may show $-E_{k} \in \mathscr{D}\left(S_{n}\right)$. Since $\mathscr{D}\left(S_{n}\right)$ forms a convex cone in the matrix space $\operatorname{gl}(n, \mathbb{R}), \sum_{1 \leqslant i \neq j \leqslant n} \alpha_{i j} E_{i j}+\sum_{k=1}^{n} \beta_{k} E_{k}-\sum_{k=1}^{n} \gamma_{k} E_{k} \in \mathscr{D}\left(S_{n}\right)$ for all $\alpha_{i j}$, $\beta_{k}, \gamma_{k} \geqslant 0$. Thus every real $n \times n$ matrix which is non-negative off the diagonal is contained in $\mathscr{D}\left(S_{n}\right)$.

Lemma 2.2. Let T_{n} be the semigroup of all real non-singular $n \times n$ matrices with each row sum equal to 1 . Then

$$
\mathscr{D}\left(T_{n}\right)=\left\{\left\|c_{i j}\right\| \in \operatorname{gl}(n, \mathbb{R}): \sum_{j=1}^{n} c_{i j}=0 \text { for } i=1,2, \ldots, n\right\} .
$$

Proof. Let $\Omega=\left\|\omega_{i j}\right\| \in \mathscr{D}\left(T_{n}\right)$. Then there exists $U(t) \in T_{n}$ such that $\Omega=\left.\left(\frac{\mathrm{d} U(t)}{\mathrm{d} t}\right)\right|_{t=0}, \sum_{j=1}^{n} u_{i j}(t)=1$ for $i=1,2, \ldots, n$, and $U(0)=I$. Hence

$$
\begin{aligned}
\sum_{j=1}^{n} \omega_{i j} & =\left.\sum_{j=1}^{n} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(u_{i j}(t)\right)\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\sum_{j=1}^{n} u_{i j}(t)\right)\right|_{t=0} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t}(1)\right|_{t=0}=0 \text { for } i=1,2, \ldots, n
\end{aligned}
$$

Conversely suppose that $C=\left\|c_{i j}\right\|$ with $\sum_{j=1}^{n} c_{i j}=0$ for $i=1,2, \ldots, n$. Let

$$
W=\left\{\left\|b_{i j}\right\| \in \operatorname{gl}(n, \mathbb{R}): \sum_{j=1}^{n} b_{i j}=0 \text { for } i=1,2, \ldots, n\right\}
$$

Then W is a cone in $\operatorname{gl}(n, \mathbb{R})$ and $C \in W$. Also

$$
C=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{e}^{t C}\right|_{t=0}=\lim _{t \rightarrow 0^{+}} \frac{\mathrm{e}^{t C}-I}{t}
$$

Since $C \in W$ and W is a cone, $\exp (t C) \in I+t W=I+W$ for $t \geqslant 0$. Since $\exp (t C)$ is non-singular, $\exp (t C) \in \operatorname{GL}(n, \mathbb{R}) \cap(I+W) \subset T_{n}$. Thus $C \in \mathscr{D}\left(T_{n}\right)$.

Lemma 2.3. Let S_{n} be the semigroup of all $n \times n$ non-singular stochastic matrices. Then $\Omega=\left\|\omega_{i j}\right\|$ is an element of $\mathscr{D}\left(S_{n}\right)$ iff Ω is an $n \times n$ intensity matrix.

Proof. It is clear that if S_{n} and T_{n} are subsemigroups of $\operatorname{GL}(n, \mathbb{R})$, then $\mathscr{D}\left(S_{n} \cap T_{n}\right)=\mathscr{D}\left(S_{n}\right) \cap \mathscr{D}\left(T_{n}\right)$. Thus the lemma is proved from Lemma 2.1 and Lemma 2.2.

Theorem 2.4. Let S_{n} be the semigroup of all $n \times n$ non-singular upper (or lower) triangular stochastic matrices. Then A is an element of $\mathscr{D}\left(S_{n}\right)$ iff A is an $n \times n$ upper (or lower) triangular intensity matrix.

Proof. It is obvious that if T_{n} is the semigroup of all real $n \times n$ non-singular upper (or lower) triangular matrices, A is an element of $\mathscr{D}\left(T_{n}\right)$ iff A is a real $n \times n$ upper (or lower) triangular matrix. Hence the theorem is proved from Lemma 2.3.

3. Infinitesimally generated triangular stochastic matrices

Lemma 3.1. Let A be an $n \times n$ non-singular upper triangular stochastic matrix of the following form:

$$
A=\left(\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & a_{p p} & a_{p p+1} & \ldots & a_{p n} \\
0 & 0 & \ldots & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1
\end{array}\right) .
$$

Then A can be represented as $A=\exp \left(t_{p p+1} E_{p p+1}\right) \exp \left(t_{p p+2} E_{p p+2}\right) \ldots \exp \left(t_{p n} E_{p n}\right)$, where $E_{i j}$ is an extreme intensity matrix as denoted in the definition of Section 2.

Proof. Since A is stochastic, $a_{p p}+a_{p p+1}+\ldots+a_{p n}=1$. Since A is upper triangular and non-singular, determinant of $A=a_{p p}>0$. Let

$$
x_{p+i}=\frac{a_{p p}+a_{p p+i+1}+\ldots+a_{p n}}{a_{p p}+a_{p p+i}+\ldots+a_{p n}} \text { for } i=1,2, \ldots, n .
$$

Then $0<x_{p+i} \leqslant 1$ for $i=1,2, \ldots, n$ since $a_{p p}>0$. For $i=1, x_{p+1}=a_{p p}+a_{p p+2}+$ $\ldots+a_{p n}$. Thus $a_{p p+1}=1-x_{p+1}$. Now,

$$
x_{p+2}=\frac{a_{p p}+a_{p p+3}+\ldots+a_{p n}}{a_{p p}+a_{p p+2}+\ldots+a_{p n}}=\frac{a_{p p}+a_{p p+3}+\ldots+a_{p n}}{x_{p+1}} .
$$

Hence $a_{p p+2}=x_{p+1}-x_{p+1} x_{p+2}=x_{p+1}\left(1-x_{p+2}\right)$. Inductively,

$$
x_{p+1} x_{p+2} \ldots x_{p+k-1}=a_{p p}+a_{p p+k}+\ldots+a_{p n}
$$

for $k=2, \ldots, n-p$ and

$$
x_{p+1} x_{p+2} \ldots x_{p+k-1} x_{p+k}=a_{p p}+a_{p p+k+1}+\ldots+a_{p n} .
$$

Therefore

$$
a_{p p+k}=x_{p+1} \ldots x_{p+k-1}\left(1-x_{p+k}\right) \quad \text { for } k=2, \ldots, n-p
$$

We have

$$
\begin{aligned}
1 & =a_{p p}+a_{p p+1}+a_{p p+2}+\ldots+a_{p n} \\
& =a_{p p}+\left(1-x_{p+1}\right)+x_{p+1}\left(1-x_{p+2}\right)+\ldots+x_{p+1} \ldots x_{n-1}\left(1-x_{n}\right) \\
& =a_{p p}+1-x_{p+1} \ldots x_{n} .
\end{aligned}
$$

Hence $a_{p p}=x_{p+1} x_{p+2} \ldots x_{n}$. Let $A_{x_{p+j}}(j=1,2, \ldots, n-p)$ be an $n \times n$ upper triangular stochastic matrix of the following form:

$$
A_{x_{p+j}}=\left(\begin{array}{cccccccccc}
1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ldots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & x_{p+j} & 0 & \ldots & 1-x_{p+j} & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & 1 & \ldots & 0 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ddots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & \ldots & 1
\end{array}\right),
$$

where x_{p+j} is in the p th low and p th column and $1-x_{p+j}$ is in the p th low and $p+j$ th column. Then $A=A_{x_{p+1}} A_{x_{p+2}} \ldots A_{x_{n}}$. Since $0<x_{p+j} \leqslant 1, A_{x_{p+j}}=$ $\exp \left(t_{p p+j} E_{p p+j}\right)$ for some $t_{p p+j} \geqslant 0$. Thus $A=\exp \left(t_{p p+1} E_{p p+1}\right) \exp \left(t_{p p+2} E_{p p+2}\right) \ldots$ $\exp \left(t_{p n} E_{p n}\right)$.

Lemma 3.2. If U is an $n \times n$ non-singular upper triangular stochastic matrix, then it can be represented as $U=C_{n-1} C_{n-2} \ldots C_{1}$, where $C_{p}=\exp \left(t_{p p+1} E_{p p+1}\right) \ldots$ $\exp \left(t_{p n} E_{p n}\right)$ for $p=1,2, \ldots, n-1$ and $t_{i j} \geqslant 0$.

Analogously, if L is an $n \times n$ non-singular lower triangular stochastic matrix, then it can be represented as $L=H_{2} H_{3} \ldots H_{n}$, where $H_{p}=\exp \left(s_{p 1} E_{p 1}\right) \exp \left(s_{p 2} E_{p 2}\right) \ldots$ $\exp \left(s_{p p-1} E_{p p-1}\right)$ for $p=2, \ldots, n$ and $s_{i j} \geqslant 0$.

Proof. Let U_{1}, \ldots, U_{n} be the rows of U such that $U=\left(U_{1}, \ldots, U_{n}\right)^{t}$ and I_{j} be the j th row of $n \times n$ identity matrix. Then $U=C_{n-1} C_{n-2} \ldots C_{1}$, where C_{p} is an $n \times n$ matrix such that $C_{p}=\left(I_{1}, I_{2}, \ldots, I_{p-1}, U_{p}, I_{p+1}, \ldots, I_{n}\right)^{t}$ for $p=1,2, \ldots, n-1$. According to the Lemma 3.1, $C_{p}=\exp \left(t_{p p+1} E_{p p+1}\right) \ldots \exp \left(t_{p n} E_{p n}\right)$.

The proof for the lower triangular case is similar to that for the upper triangular case.

Theorem 3.3. Each element in the semigroup S_{n} of all $n \times n$ non-singular upper (or lower) triangular stochastic matrices is generated from the infinitesimal elements of S_{n}, which form a cone consisting of all $n \times n$ upper (or lower) triangular intensity matrices.

Proof. Immediate from Theorem 2.4 and Lemma 3.2.

References

[1] I. Chon: Lie group and control theory. Ph.D. thesis at Louisiana state university, 1988.
[2] F. R. Gantmacher: The Theory of Matrices vol. 1 and vol. 2. Chelsea Publ. Comp., New York, 1960.
[3] C. Loewner: On totally positive matrices. Math. Zeitschr. 63 (1955), 338-340.
[4] C. Loewner: A theorem on the partial order derived from a certain transformation semigroup. Math. Zeitschr. 72 (1959), 53-60.
[5] H. Min: One parameter semigroups in Lie groups. Master's thesis at Seoul women's university, 1995.
[6] V. S. Varadarajan: Lie Groups, Lie Algebras, and Their Representations. SpringerVerlag, New York, 1984.

Authors' address: Department of Mathematics, Seoul Women's University, Kongnung 2-Dong, Nowon-Ku, Seoul, 139-774, Korea.

