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Abstract. We show that each element in the semigroup Sn of all n×n non-singular upper
(or lower) triangular stochastic matrices is generated by the infinitesimal elements of Sn,
which form a cone consisting of all n× n upper (or lower) triangular intensity matrices.

MSC 2000 : 22E99

1. Introduction

Let G be a Lie group, let L(G) be its Lie algebra, and let exp: L(G)→ G denote

the exponential mapping. Let gl(n,�) denote the set of all real n× n matrices and
GL(n,�) the general linear group of degree n over �. Here � denotes the set of

all real numbers and hereafter we shall use this notation. For G = GL(n,�) and
L(G) = gl(n,�), it is well known that the exponential map exp: gl(n,�) → GL(n,�)

is defined by exp(tX) = I + tX + 1
2! (tX)

2 + . . . for X ∈ gl(n,�).

Let Sn be a subsemigroup of GL(n,�) and let X(t) be a differentiable matrix
function of the real parameter t in an interval 0 � t � t0 such that X(t) ∈ Sn for

each t and X(0) = I. We call the matrix ( dX(t)dt )|t=0 an infinitesimal element of Sn

and denote the totality of all infinitesimal elements of Sn by D(Sn). Let A(t) be a

sectionwise continuous function of t (0 � t � t0) such that A(t) ∈ D(Sn) for each t.
It is standard that the differential equation

dX(t)
dt

= A(t)X(t); X(0) = I
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has a unique continuous solution andX(t0) ∈ Sn. ThisX(t0) in Sn is called generated

by the infinitesimal elements A(t) (0 � t � t0).

Loewner [3] showed that each element in the semigroup of all n× n non-singular
totally positive matrices is generated by the infinitesimal elements of the semigroup,

which form a set of all n×n Jacobi matrices with non-negative off-diagonal elements.
In general, a semigroup is not completely recreated from its infinitesimal elements,

even if the semigroup is connected, and it is quite difficult to compute a semigroup
generated by its infinitesimal elements.

In Section 2, we show that the infinitesimal elements of the semigroup of all n×n

non-singular upper (or lower) triangular stochastic matrices are n×n upper (or lower)

triangular intensity matrices. Finally, in Section 3, we show that each element in the
semigroup Sn of all n×n non-singular upper (or lower) triangular stochastic matrices

is generated by the infinitesimal elements of Sn, which form a cone consisting of all
n× n upper (or lower) triangular intensity matrices.

2. Infinitesimal elements of triangular stochastic matrices

Definition. A matrix A = ‖aij‖ (i = 1, 2, . . . , m; j = 1, 2, . . . , n) over � is called
a stochastic matrix if aij � 0 and

n∑
j=1

aij = 1 for i = 1, 2, . . . , m. A matrix B = ‖bkl‖

(k = 1, 2, . . . , m; l = 1, 2, . . . , n) over � such that bkl � 0 for k �= l and
n∑

l=1
bkl=0

for k = 1, 2, . . . , m is called an intensity matrix. An intensity matrix C is called an

extreme intensity matrix if C has only one nonzero off-diagonal element which is
equal to 1. An extreme intensity matrix C = ‖ckl‖ is denoted by Epq (p �= q) if
cpp = −1 and cpq = 1.

It is easy to see that the set of all non-singular n× n stochastic matrices forms a

subsemigroup of GL(n,�).

Lemma 2.1. Let Sn be the semigroup of all real n×n non-singular matrices with

non-negative entries. Then D(Sn) coincides with the set of all real n × n matrices

which are non-negative off the diagonal.

�����. Let A = ‖aij‖ ∈ D(Sn). Then A = ( dX(t)dt )|t=0 with X(t) ∈ Sn for each
t and X(0) = I. Since X(t) ∈ Sn, xij(t) � 0 for i, j = 1, 2, . . . n. From X(0) = I,

xij(0) = 0 for i �= j. Thus aij = (
dxij(t)
dt )|t=0 � 0 for i �= j.

Conversely let Eij(i �= j) be an extreme intensity matrix as denoted in the above

definition. Since Eij
2 = −Eij , exp(tEij) = I + tEij − t2

2!Eij + t3

3!Eij + . . . = I +
(1 − e−t)Eij , and hence exp(tEij) ∈ Sn for t � 0. Since Eij = d

dt (exp(tEij))|t=0,
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Eij ∈ D(Sn). Let Ek be the matrix whose elements are 0 except that the k-th

diagonal element is equal to 1. Since Ek
2 = Ek, exp(tEk) = I + tEk + t2

2!Ek +
t3

3!Ek + . . . = I + (et − 1)Ek, and hence exp(tEk) ∈ Sn for t � 0. Thus Ek ∈ D(Sn).
Similarly we may show −Ek ∈ D(Sn). Since D(Sn) forms a convex cone in the

matrix space gl(n,�),
∑

1�i�=j�n

αijEij +
n∑

k=1
βkEk −

n∑
k=1

γkEk ∈ D(Sn) for all αij ,

βk, γk � 0. Thus every real n × n matrix which is non-negative off the diagonal is

contained in D(Sn). �

Lemma 2.2. Let Tn be the semigroup of all real non-singular n × n matrices

with each row sum equal to 1. Then

D(Tn) =

{
‖cij‖ ∈ gl(n,�) :

n∑

j=1

cij = 0 for i = 1, 2, . . . , n

}
.

�����. Let Ω = ‖ωij‖ ∈ D(Tn). Then there exists U(t) ∈ Tn such that

Ω = ( dU(t)dt )|t=0,
n∑

j=1
uij(t) = 1 for i = 1, 2, . . . , n, and U(0) = I. Hence

n∑

j=1

ωij =
n∑

j=1

d
dt
(uij(t))|t=0 =

d
dt

( n∑

j=1

uij(t)

)∣∣∣∣
t=0

=
d
dt
(1)

∣∣∣
t=0
= 0 for i = 1, 2, . . . , n.

�

Conversely suppose that C = ‖cij‖ with
n∑

j=1
cij = 0 for i = 1, 2, . . . , n. Let

W =

{
‖bij‖ ∈ gl(n,�) :

n∑

j=1

bij = 0 for i = 1, 2, . . . , n

}
.

Then W is a cone in gl(n,�) and C ∈ W . Also

C =
d
dt
etC

∣∣∣
t=0
= lim

t→0+
etC − I

t
.

Since C ∈ W and W is a cone, exp(tC) ∈ I + tW = I +W for t � 0. Since exp(tC)
is non-singular, exp(tC) ∈ GL(n,�) ∩ (I +W ) ⊂ Tn. Thus C ∈ D(Tn).

Lemma 2.3. Let Sn be the semigroup of all n × n non-singular stochastic

matrices. Then Ω = ‖ωij‖ is an element of D(Sn) iff Ω is an n× n intensity matrix.

�����. It is clear that if Sn and Tn are subsemigroups of GL(n,�), then

D(Sn ∩ Tn) = D(Sn) ∩ D(Tn). Thus the lemma is proved from Lemma 2.1 and
Lemma 2.2. �
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Theorem 2.4. Let Sn be the semigroup of all n × n non-singular upper (or

lower) triangular stochastic matrices. Then A is an element of D(Sn) iff A is an

n× n upper (or lower) triangular intensity matrix.

�����. It is obvious that if Tn is the semigroup of all real n × n non-singular
upper (or lower) triangular matrices, A is an element of D(Tn) iff A is a real n× n

upper (or lower) triangular matrix. Hence the theorem is proved from Lemma 2.3.
�

3. Infinitesimally generated triangular stochastic matrices

Lemma 3.1. Let A be an n×n non-singular upper triangular stochastic matrix

of the following form:

A =




1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...
...
. . .

...
...

...
...

...

0 0 . . . 1 0 0 . . . 0

0 0 . . . 0 app app+1 . . . apn

0 0 . . . 0 0 1 . . . 0
...
...
...
...
...

...
. . .

...

0 0 . . . 0 0 0 . . . 1




.

Then A can be represented as A = exp(tpp+1Epp+1) exp(tpp+2Epp+2) . . . exp(tpnEpn),
where Eij is an extreme intensity matrix as denoted in the definition of Section 2.

�����. Since A is stochastic, app + app+1 + . . . + apn = 1. Since A is upper

triangular and non-singular, determinant of A = app > 0. Let

xp+i =
app + app+i+1 + . . .+ apn

app + app+i + . . .+ apn
for i = 1, 2, . . . , n.

Then 0 < xp+i � 1 for i = 1, 2, . . . , n since app > 0. For i = 1, xp+1 = app + app+2 +
. . .+ apn. Thus app+1 = 1− xp+1. Now,

xp+2 =
app + app+3 + . . .+ apn

app + app+2 + . . .+ apn
=

app + app+3 + . . .+ apn

xp+1
.

Hence app+2 = xp+1 − xp+1xp+2 = xp+1(1− xp+2). Inductively,

xp+1xp+2 . . . xp+k−1 = app + app+k + . . .+ apn
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for k = 2, . . . , n− p and

xp+1xp+2 . . . xp+k−1xp+k = app + app+k+1 + . . .+ apn.

Therefore

app+k = xp+1 . . . xp+k−1(1− xp+k) for k = 2, . . . , n− p.

We have

1 = app + app+1 + app+2 + . . .+ apn

= app + (1− xp+1) + xp+1(1− xp+2) + . . .+ xp+1 . . . xn−1(1− xn)

= app + 1− xp+1 . . . xn.

Hence app = xp+1xp+2 . . . xn. Let Axp+j (j = 1, 2, . . . , n − p) be an n × n upper

triangular stochastic matrix of the following form:

Axp+j =




1 0 . . . 0 0 0 . . . 0 . . . 0

0 1 . . . 0 0 0 . . . 0 . . . 0
...
...
. . .

...
...

... . . .
... . . .

...

0 0 . . . 1 0 0 . . . 0 . . . 0
0 0 . . . 0 xp+j 0 . . . 1− xp+j . . . 0

0 0 . . . 0 0 1 . . . 0 . . . 0
...
... . . .

...
...

...
. . .

... . . .
...

0 0 . . . 0 0 0 . . . 1 . . . 0
...
... . . .

...
...

... . . .
...

. . .
...

0 0 . . . 0 0 0 . . . 0 . . . 1




,

where xp+j is in the pth low and pth column and 1 − xp+j is in the pth low and

p + jth column. Then A = Axp+1Axp+2 . . . Axn . Since 0 < xp+j � 1, Axp+j =
exp(tpp+jEpp+j) for some tpp+j � 0. Thus A = exp(tpp+1Epp+1) exp(tpp+2Epp+2) . . .

exp(tpnEpn). �

Lemma 3.2. If U is an n × n non-singular upper triangular stochastic matrix,

then it can be represented as U = Cn−1Cn−2 . . . C1, where Cp = exp(tpp+1Epp+1) . . .

exp(tpnEpn) for p = 1, 2, . . . , n− 1 and tij � 0.
Analogously, if L is an n×n non-singular lower triangular stochastic matrix, then

it can be represented as L = H2H3 . . . Hn, where Hp = exp(sp1Ep1) exp(sp2Ep2) . . .
exp(spp−1Epp−1) for p = 2, . . . , n and sij � 0.
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�����. Let U1, . . . , Un be the rows of U such that U = (U1, . . . , Un)t and Ij be

the jth row of n × n identity matrix. Then U = Cn−1Cn−2 . . . C1, where Cp is an
n×n matrix such that Cp = (I1, I2, . . . , Ip−1, Up, Ip+1, . . . , In)t for p = 1, 2, . . . , n−1.
According to the Lemma 3.1, Cp = exp(tpp+1Epp+1) . . . exp(tpnEpn).

The proof for the lower triangular case is similar to that for the upper triangular
case. �

Theorem 3.3. Each element in the semigroup Sn of all n×n non-singular upper

(or lower) triangular stochastic matrices is generated from the infinitesimal elements

of Sn, which form a cone consisting of all n×n upper (or lower) triangular intensity

matrices.

�����. Immediate from Theorem 2.4 and Lemma 3.2. �
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