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Czechoslovak Mathematical Journal, 49 (124) (1999), 291–301

LATTICES OF QUASIORDERS ON UNIVERSAL ALGEBRAS

I. Chajda, Olomouc, A. Pinus, A. Denisov, Novosibirsk

(Received April 15, 1996)

Lattices of quasiorders were studied mainly by G. Czédli and A. Lenkehegyi [2] and
by A.G. Pinus and I. Chajda [9]. These investigations were done both for universal

algebras and algebras of special sorts: lattices, semilattices etc. In some cases, the
lattice of all quasiorders of an algebra A has similar properties as the congruence

lattice ConA , however, there are also essential distinctions. One of the traditional
questions concerning congruence lattices is a characterization of congruence lattices

satisfying given identities. It was partly solved for quasiorder lattices and for varieties
of algebras in [2], [8], [9]. An abstract algebraic characterization of quasiorder lattices

was settled in [1], [8]. The aim of this paper is to characterize concrete quasiorder
lattices and to represent these lattices by quasiorder lattices of algebras of restricted

similarity types.

By a quasiorder on an algebra A = (A, F ) we mean a reflexive and transitive bi-
nary relation on A which has the substitution property with respect to all operations

of F , i.e. for all pairs 〈ai, bi〉 of this relation (i = 1, . . . , n) and each n-ary f ∈ F

also the pair 〈f(a1, . . . , an), f(b1, . . . , bn)〉 is its member. Hence, quasiorders on A

are reflexive and transitive subalgebras of A 2. The set QuordA of all quasiorders
on A forms an algebraic lattice with respect to set inclusion. Of course, ConA is a
sublattice of QuordA with the same least and greatest elements.

§ 1.

As was shown in [1], [8], every algebraic lattice is isomorphic to QuordA for some

algebra A . This raises the question on a concrete characterization of QuordA ,
i.e. a question whether a lattice L of reflexive and transitive binary relations on a

set A is isomorphic to QuordA for some algebra A = (A, F ). For equivalences and
congruences, an analogous problem was solved by B. Jónsson [4].
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Let ϕ be a mapping of A2 into the set of all reflexive and transitive binary relations

on A and let a, b ∈ A. Denote by Sta,b(ϕ) the set of all pairs 〈f(a), f(b)〉, where f

runs over the set of all mappings A → A satisfying

〈f(c), f(d)〉 ∈ ϕ(〈c, d〉).

Denote by Qa,b(ϕ) the reflexive and transitive relation on A generated by Sta,b(ϕ).

Denote by ∆A the diagonal of A2, i.e. ∆A = {〈a, a〉 ; a ∈ A}.
A set S of subsets of a given set C is called an algebraic closure system if S is closed

under arbitrary intersections and is up-directed with respect to inclusion. Evidently,
the set of all quasiorders on an algebra A is an algebraic closure system.

Theorem 1. LetQ be an algebraic closure system of some reflexive and transitive
binary relations on a set A, let ∆A ∈ Q and let a, b ∈ A, a �= b. The following

conditions are equivalent:

(1) there exists an algebra A = (A, F ) with Q = QuordA ;

(2) for every mapping ϕ : A2 → Q, Qa,b(ϕ) ∈ Q.

�����. SupposeQ = QuordA for some algebraA = (A, F ). Denote by qc,d(A )
the least quasiorder on A containing the pair 〈c, d〉, the so called principal quasiorder
generated by 〈c, d〉. Taking into account the definition of Qa,b(ϕ), we need only
to prove that for every ϕ : A2 → Q, the relation Sta,b(ϕ) is compatible with all
operations of F . With respect to reflexivity and transitivity, we need only to show

compatibility with respect to all unary polynomials over A . Let 〈c, d〉 ∈ Sta,b(ϕ)
and let g(x) be a unary polynomial over A . By the definition of Sta,b(ϕ), there

exists a mapping f : A → A with 〈c, d〉 = 〈f(a), f(b)〉 and for each u, v ∈ A we have
〈f(u), f(v)〉 ∈ ϕ(〈u, v〉), i.e. qf(u),f(v)(A ) ⊆ ϕ(〈u, v〉). Evidently, gf is a mapping of

A into itself with

〈g (f(u)) , g (f(v))〉 ∈ gf(u),f(v)(A ) ⊆ ϕ(〈u, v〉),

i.e.

〈g(c), g(d)〉 = 〈g (f(a)) , g (f(b))〉 ∈ Sta,b(ϕ).

By the foregoing remark, we conclude that Qa,b(ϕ) is a quasiorder of the algebra A ,

i.e. Qa,b(ϕ) ∈ Q. This completes the proof of (1)⇒ (2).
(2) ⇒ (1): Let Q satisfy (2). Evidently, for each c, d ∈ A and every ϕ : A2 → Q

we have Qc,d(ϕ) ∈ Q. Denote p(c, d) =
⋂{r ∈ Q ; 〈c, d〉 ∈ r}. Hence p : A2 → Q.

Denote by G the set all mappings A → A preserving p(c, d) for every c, d ∈ A. Let
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A = (A, G). We are going to show that Q = QuordA . The inclusion Q ⊆ QuordA

is clear. To prove the converse inclusion we need to show that qc,d(A ) = p(c, d)
for every c, d of A. The inclusion qc,d(A ) ⊆ p(c, d) follows by Q ⊆ QuordA . We
prove p(c, d) ⊆ qc,d(A ). By definition, Stc,d(p) = {〈f(c), f(d)〉 ; f ∈ G}. Hence
Stc,d(p) ⊆ qc,d(A ), i.e. Qc,d(p) ⊆ qc,d(A ). However, Qc,d(p) ∈ Q and p(c, d) ⊆
Qc,d(p) ⊆ qc,d(A ). Together, p(c, d) = qc,d(A ), which yields Q = QuordA . �

§ 2.

It is known that for an algebra A = (A, F ) there exist algebras B with restricted
similarity types such that ConA ∼= ConB. These results were settled by R. Freese,

W. Lampe, W. Taylor [3], [6], [7], B. Jónsson [4] and S. R. Kogalovskij and V. V.
Soldatova [5]. We are now going to prove similar results for lattices QuordA instead

of ConA by heavily using the methods for congruence lattices in the quoted papers.

Theorem 2. For any finite algebra A there exists a finite algebra B with only 4
unary operations such that QuordA ∼= QuordB.

�����. Since A is finite, we may assume that A is of a finite similarity type
F . Let f ∈ F be n-ary, let a1, . . . , an, b1, . . . , bn be elements of A and let Q be a

reflexive and transitive relation on A . Put ui(x) = f(b1, . . . , bi−1, x, ai+1, . . . , an).
Evidently, 〈ui(ai), ui(bi)〉 ∈ Q for i = 1, . . . , n imply also

〈f(a1, . . . , an), f(b1, . . . , bn)〉 ∈ Q

because of reflexivity and transitivity of Q. Hence, A can be considered to be unary.

Let f1, . . . , fn be all unary operations of A and let {a1, . . . , am} be the support of
A . Put

B = {a1, . . . , am}m+n+1

and B = (B; {g1, g2, g3, g4}), where g1, g2, g3, g4 are unary operations on B defined

as follows: for x = (x1, x2, . . . , xm+n+1) let

g1(x) = (a1, . . . , am, f1(x1), f2(x1), . . . , fn(x1), x1),

g2(x) = (x2, x2, x3, . . . , xm+n+1),

g3(x) = (xm+n+1, x1, x2, . . . , xm+n),

g4(x) = (x2, x1, x3, x4, . . . , xm+n+1).

It is an easy excercise to show that for any mapping π of {1, 2, . . . , m+ n+ 1} into
itself the mapping Hπ : B → B given by

Hπ(x) = (xπ(1), . . . , xπ(m+n+1))
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is a term operation of B.

Let R ⊆ A×A be a binary relation. Define R ⊆ B ×B as follows:

〈x, y〉 ∈ R iff 〈xk, yk〉 ∈ R for k = 1, 2, . . . , m+ n+ 1,

where x = (x1, x2, . . . , xm+n+1), y = (y1, y2, . . . , ym+n+1). Evidently, R ⊆ S if and
only if R ⊆ S, and hence the mapping of the system of all subsets of A×A into the

system of all subsets of B × B defined by R 	→ R is an injection. It is also obvious
that if R is reflexive and transitive then also R has these properties. By virtue of the

definition of g1, g2, g3, g4, R has the substitution property with respect to f1, . . . , fn

if and only if R has the substitution property with respect to g1, g2, g3, g4. So

Q ∈ QuordA if and only if Q ∈ QuordB. It remains to show that the mapping
Q 	→ Q is a surjection of QuordA onto QuordB.

Let S ∈ QuordB. Introduce Q ⊆ A×A as follows:

Q = {〈u, v〉 ∈ A×A; 〈(u, u, . . . , u), (v, v, . . . , v)〉 ∈ S}.

Clearly Q is reflexive and transitive. By using the term operations Hπ (with π as a
constant map) we conclude that

〈x, y〉 ∈ S ⇒ 〈xk, yk〉 ∈ Q for k = 1, . . . , m+ n+ 1.

We prove the converse implication. If 〈x, y〉 ∈ S and r � m + n + 1 and x′, y′ ∈ B

are such that
x′r = xr, y′r = yr and x′k = xk for r �= k

then also 〈x′, y′〉 ∈ S. (Indeed, we can assume r = 0 and x′, y′ are obtained from

x, y by first applying g1 and then, since all elements of A occur among the first m

coordinates, applying a suitable term Hπ ; hence 〈x′, y′〉 ∈ S).
Now, let

z(k) = (y1, . . . , yk, xk+1, . . . , xm+n+1).

If 〈xk, yk〉 ∈ Q then 〈x(k), z(k+1)〉 ∈ S. Since S is reflexive and transitive and
x = z(1), y = z(m+n+1), we conclude

〈xk, yk〉 ∈ Q for k = 1, . . . , m+ n+ 1⇒ 〈x, y〉 ∈ S.

Hence Q = S. It remains to show the substitution property of Q. Suppose 〈u, v〉 ∈ Q

and put x = (u, u, . . . , u), y = (v, v, . . . , v). Then 〈x, y〉 ∈ S, but S ∈ QuordB

implies

〈g1(x), g1(y)〉 ∈ S,

thus also 〈g1(x)k, g1(y)k〉 ∈ Q for k = 1, . . . , m+n+1. Since fi(u) or fi(v) occurs as

the first m coordinates in g1(x) or g1(y), respectively, clearly also 〈fi(u), fi(v)〉 ∈ Q

for i = 1, . . . , n completing the proof. �
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Theorem 3. For every finite algebra A of finite similarity type there exists a

finite algebra B of type (2, 1, 1) such that QuordA ∼= QuordB.

�����. For A = (A, F ) suppose F = {f1, . . . , fn} where each fi is considered
to be n-ary. Let C = An and introduce one binary and two unary operations of C

as follows: for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn)

x • y = (x1, y1, y2, . . . , yn−1),

g(x) = (f1(x), f2(x), . . . , fn(x)),

h(x) = (x2, x3, . . . , xn, x1).

Then C = (C; {•, g, h}) is a finite algebra of type (2, 1, 1). For x(1), x(2), . . . , x(k) ∈ C

(k � 2) we put

(∗) x(1) • x(2) • . . . • x(k) = x(1) •
(
x(2) •

(
. . . x(k)

)
. . .

)
.

Define the mapping ϕ : QuordA → QuordC as follows:

〈(x1, . . . , xn), (y1, . . . , yn)〉 ∈ ϕ(R) iff 〈xi, yi〉 ∈ R

for i = 1, 2, . . . , n and R ∈ QuordA . Clearly, ϕ(R) is reflexive and transitive binary
relation on C and, by the definition of operations •, g, h, ϕ(R) ∈ QuordC . Evidently,

for R, S ∈ QuordA we have R ⊆ S if and only if ϕ(R) ⊆ ϕ(S), i.e. ϕ is an injection.
It remains to prove that ϕ is a surjection.

For x = (x1, x2, . . . , xn) ∈ C we put I(x) = x1. Let R ∈ QuordC . Let T ⊆ A×A

be such that 〈u, v〉 ∈ T if and only if there exist x, y ∈ C with 〈x, y〉 ∈ R and

I(x) = u, I(y) = v. Evidently, T is reflexive. Suppose 〈u, v〉 ∈ T and 〈v, w〉 ∈ T .
Hence, there exist x, y(1), y(2), z ∈ C with 〈x, y(1)〉 ∈ R, 〈y(2), z〉 ∈ R and I(x) =

u, I(y(1)) = v = I(y(2)), I(z) = w. By (∗) and the definition of • we have xn =
x • x • . . . • x = (u, u, . . . , u). Analogously,

(y(1))n = (v, v, . . . , v) = (y(2))n, zn = (w, w, . . . , w).

Hence 〈xn, (y(1))n〉 ∈ R,〈(y(2))n, zn〉 ∈ R and, by the transitivity ofR, also 〈xn, zn〉 ∈
R. Thus I(xn) = u, I(zn) = w give 〈u, w〉 ∈ T proving transitivity of T .

Now we show that 〈(x1, x2, . . . , xn), (y1, y2, . . . , yn)〉 ∈ R whenever 〈xi, yi〉 ∈ T for
all i = 1, 2, . . . , n. Assume 〈xi, yi〉 ∈ T . Then there exist x(i), y(i) ∈ C such that

〈x(i), y(i)〉 ∈ R and I(x(i)) = xi, I(y(i)) = yi. However,

x = (x1, . . . , xn) = x(1) • x(2) • . . . • x(n),

y = (y1, . . . , yn) = y(1) • y(2) • . . . • y(n),
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so 〈x, y〉 ∈ R.

It remains to show that T ∈ QuordA . Let 〈xi, yi〉 ∈ T for i = 1, 2, . . . , n. Then
〈x, y〉 ∈ R for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn). Hence 〈g(x), g(y)〉 ∈ R and so
〈f1(x), f1(y)〉 ∈ T . Analogously, for k = 1, 2, . . . , n−1 we have 〈hkg(x), hkg(y)〉 ∈ R,

so 〈fi(x), fi(y)〉 ∈ T for i = 2, 3, . . . , n. Thus T ∈ QuordA .
Finally we show that R = ϕ(T ). Suppose 〈x, y〉 = 〈(x1, . . . , xn), (y1, . . . yn)〉 ∈ R.

Then 〈hk(x), hk(y)〉 ∈ R for k = 1, 2 . . . , n− 1, i.e. 〈xi, yi〉 ∈ T for i = 1, . . . , n. This
gives 〈x, y〉 ∈ ϕ(T ), i.e. R ⊆ ϕ(T ). Assume 〈x, y〉 ∈ ϕ(T ). Then 〈xi, yi〉 ∈ T for

i = 1, . . . , n, thus also 〈x, y〉 ∈ R, i.e. ϕ(T ) ⊆ R. �

The foregoing construction can be generalized also for algebras which need not be
finite:

Theorem 4. For every algebra A of finite similarity type there exists an algebra

B of type (2, 1, 1) such that QuordA ∼= QuordB.

�����. Let A = (A; {fn, . . . , fm}). Without loss of generality suppose that all
fi are n-ary. Let B be the set of all (infinite) sequences

u = (a1, a2, a3, . . .) of elements ai ∈ A such that

for some n0 ∈ �, aj = ak for j, k � n0.

Introduce one binary and two unary operations on B as follows: for u = (x1, x2, . . .),
v = (y1, y2, . . .)

d(u, v) =
(
f1(y1, . . . , yn), . . . , fm(y1, . . . , yn), x1, y1, y2, y3, . . .

)

g1(u) = (x1, x1, x1, . . .)

g2(u) = (x2, x3, x4, . . .).

Put B = (B; {d, g1, g2}). For each p ∈ � we put

hp(u
(1), . . . , u(p+1), v) = (x(1)1 , x

(2)
1 , . . . x

(p+1)
1 , y1, y2, . . .),

where u(s) = (u(s)1 , u
(s)
2 , . . .), v = (y1, y2, . . .). Hence, hp is a (p+2)-ary operation on

B and, moreover,

h1(u, v) = gm
2

(
d(u(1), gm

2 (d(u
(2), v)))

)
,

hp+1(u
(1), . . . , u(p+2), v) = h1

(
u(1), hp(u

(2), u(3), . . . , u(p+2), v)
)

(where g02(x) = x, gm
2 (x) = g2

(
gm−1
2 (x)

)
), thus all hp are term operations of B.
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For Q ∈ QuordA we put ϕ(Q) = Q∗, where Q∗ ⊆ B × B and 〈u, v〉 ∈ Q∗ iff

〈xk, yk〉 ∈ Q for k = 1, 2 . . .. It is easy to show that for each Q ∈ QuordA , ϕ(Q) is
reflexive and transitive. Further, Q1 ⊆ Q2 iff ϕ(Q1) ⊆ ϕ(Q2), thus ϕ is an injection.
Let us prove ϕ(Q) ∈ QuordB:

Let 〈u, v〉 ∈ Q∗ = ϕ(Q). Then 〈xk, yk〉 ∈ Q for all k ∈ � whence 〈g1(u), g1(v)〉 ∈
Q∗ and 〈g2(u), g2(v)〉 ∈ Q∗. Also 〈u, v〉 ∈ Q∗, 〈w, t〉 ∈ Q∗ imply

〈d(u, w), d(v, t)〉 ∈ Q∗

directly by the definition of d. Thus Q∗ ∈ QuordB.
It remains to show that ϕ is a surjection of QuordA onto QuordB. Sup-

pose R ∈ QuordB. Put Q = {〈x, y〉 ∈ A × A ; 〈(x, x, x, . . .), (y, y, y, . . .)〉 ∈ R}.
Trivially, Q is reflexive and transitive. Suppose 〈u, v〉 ∈ R for u = (x1, x2, . . .),
v = (y1, y2, . . .). Since R has the substitution property with respect to g1, g2, d

we obtain 〈g1gk−1
2 (u), g1g

k−1
2 (v)〉 ∈ R, i.e. 〈(xk, xk, . . .), (yk, yk, . . .)〉 ∈ R. Hence

〈xk, yk〉 ∈ Q for all k ∈ �. Conversely, let u = (x1, x2, . . .), v = (y1, y2, . . .) and

〈xk, yk〉 ∈ Q for all k ∈ �. Let p ∈ � be such a number that for all i > p both
sequences u, v are constant, and for k = 1, 2, . . . , p we put

x(k) = (xk, xk, xk, . . .), y(k) = (yk, yk, yk, . . .).

Then 〈x(k), y(k)〉 ∈ R for k = 1, . . . , p and

u = hp(x(1), . . . , x(p)), v = hp(y(1), . . . , y(p)),

whence 〈u, v〉 ∈ R. Thus ϕ(Q) = R. It remains to prove the substitution property
of Q. Suppose 〈x1, y1〉 ∈ Q, . . . , 〈xn, yn〉 ∈ Q and for an arbitrary a ∈ A put

u = (x1, x2, . . . , xn, a, a, . . .), v = (y1, y2, . . . , yn, a, a, . . .).

Then u, v ∈ B and 〈u, v〉 ∈ R. Hence 〈d(u, u), d(v, v)〉 ∈ R, which implies

〈d(u, u)k, d(v, v)k〉 ∈ Q for all k ∈ �.

This gives 〈fi(x1, . . . , xn), fi(y1, . . . , yn)〉 ∈ Q by the definition of d. Thus Q ∈
QuordA . �

An element α ∈ A is called a “zero of A = (A, F )” if for each n-ary f ∈ F and

each i ∈ {1, . . . , n} and all a1, . . . , an ∈ A such that ai = α we have

f(a1, . . . , ai−1, α, ai+1, . . . , an) = α.
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Theorem 5. For every countable (finite) algebra A with zero there exists a

countable (finite) algebra B with only two unary operations such that QuordA ∼=
QuordB.

�����. Suppose that A is countable. Similarly as in the proof of Theorem 2,

we can consider (without loss of generality) that all operations of A are unary. For
each quadruple γ = 〈a, b, c, d〉 ∈ A4, the function f : A → A is called γ-compatible

if f(a) = c and f(b) = d. A quadruple γ = 〈a, b, c, d〉 ∈ A4 is called accessible
if there exists a term function f(x) of A such that f(a) = c and f(b) = d. Let

Γ(A ) be the set of all accessible γ ∈ A4 and let Ψ be a function which maps every
γ ∈ Γ(A ) onto some γ-compatible term of A . Then, of course, QuordA ∼= QuordB

for B = (A,Ψ(Γ(A ))). Hence A can be considered to be of countable signature,
i.e. A = (A; f1(x), f2(x), . . .). Suppose now that for each n ∈ � we have fn(α) = α,

where α is a zero of A . Take the class {A1, A2, . . .} of sets Ai with |A| = |Ai|,
A0 = A and Ai ∩ Aj = {α} for each i, j ∈ �, i �= j. Put B =

∞⋃
i=0

Ai. Let h be a

mapping of B into itself such that h(α) = α and h maps Ai bijectively on Ai+1. Let
k be a mapping of B into itself such that k(h(b)) = b for each b ∈ B and k(a) = a

for a ∈ A0. Introduce g : B → B as follows:

(∗) g(b) =





α if b ∈ A0,

h(a) if b = h(a) for some a ∈ A0,

fi−1(a) if b = hi(a) for some a ∈ A0 and some i > 1.

Consider an algebra B = (B; {h, k, g}). Evidently α is the (unique) zero of B.
For every subset E ⊆ B2 we consider the following properties of the quadruple

λ = 〈A , B, E, α〉:
(a) E ∩A2 ∈ QuordA ;

(b) for each n, m ∈ � we have 〈hm(a), hn(b)〉 ∈ E ⇒ 〈hn(a), hn(b)〉 ∈ E for every
a, b of A;

(c) for each m, n ∈ �, m �= n and each a, b ∈ A, 〈hm(a), hn(b)〉 ∈ E ⇒ 〈a, α〉 ∈ E

and 〈α, b〉 ∈ E;

(d) for each a, b ∈ A and each m, n ∈ �, 〈a, α〉 ∈ E and 〈α, b〉 ∈ E ⇒
〈hm(a), hn(b)〉 ∈ E;

(e) for each a, b ∈ A and each m, n ∈ �, 〈hm(a), hn(b)〉 ∈ E ⇒ 〈a, b〉 ∈ E.

Of course, for every E ∈ QuordB the quadruple 〈A , B, E, α〉 satisfies (a)–(e). It
is routine to verify the converse, i.e. that for 〈A , B, E, α〉 satisfying (a)–(e) we have
E ∈ QuordB.

For T ⊆ A2 let the symbol B(T ) denote the quasiorder on B generated by T .
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We prove B(A2 ∩E) = E for every E ∈ QuordB. For this we need only to show

E ⊆ B(A2 ∩ E). Let 〈hm(a), hn(b)〉 ∈ E for some a, b ∈ A and m, n ∈ �. Then
〈a, b〉 = 〈hn+m(hm(a)), kn+m(hn(b))〉 ∈ E ∩ A2. If m = n then 〈hm(a), hn(b)〉 ∈
B(A2 ∩ E). If m �= n and e.g. m < n then

〈α, b〉 = 〈k(g(kn−1(hm(a)))), k(g(kn−1(hn(b))))〉 ∈ A2 ∩E

and

〈a, α〉 = 〈k(g(km−1(hm(a)))), k(g(kn−1(hn(b))))〉 ∈ A2 ∩ E.

Hence 〈hm(a), α〉 = 〈hm(a), hm(α)〉 ∈ B(A2 ∩ E) and 〈α, hn(b)〉 = 〈hn(α), hn(b)〉 ∈
B(A2 ∩ E). This yields 〈hm(a), hn(b)〉 ∈ B(A2 ∩E).
Analogously we can prove A2 ∩B(Q) = Q for every Q ∈ QuordA .

The previous equalities imply QuordA ∼= QuordB, i.e. for every countable A

there exists B with only three unary operations such that they have isomorphic

lattices of quasiorders.
Moreover, if A is finite, we can consider only a finite number of unary operations

on A .
Hence, we can consider only algebras A which are countable or finite and whose

similarity types are finite. Let A = (A; f1(x), . . . , fk(x)) be such an algebra. Let
A0, A1, . . . , Ak+1 be a collection of sets with |Ai| = |A0|, A0 = A, Ai ∩Aj = {α} for
all i, j ∈ {0, . . . , k+1}, i �= j. We set B = A0∪A1∪. . .∪Ak+1. Let h be a bijection of
B onto itself such that h(Ai) = Ai+1 for i = 0, . . . , k and h(Ak+1) = A0 and hk+2 is

the identity mapping on B. Further, let h(α) = α. The mapping g can be defined by
the aabove formula (∗). We can easily verify that QuordA ∼= Quord (B; {h, g}). �

Theorem 6. For every algebra A with zero whose lattice QuordA has only a

countable set of compact elements there exists an algebra B with only two unary

operations such that QuordA ∼= QuordB.

�����. Let A = (A, G) be an algebra with zero such that QuordA contains

only countable many compact elements. We can construct an algebra C ′ = (C′, G′)
where C′ ⊆ A and G′ ⊆ G and QuordA ∼= QuordC ′ for countable sets C′ and G′.

Let (Xn)n∈� be a sequence of finite subsets of A2 such that {A (Xn) ; n ∈ �} is
a set of all compact quasiorders of A and A (Xi) �= A (Xj) for i �= j. Of course,

A (Xi) means a quasiorder generated by the finite set Xi. Let C0 be a countable
set of elements of A which are entries of pairs of elements of

⋃
i∈�

Xi and containing

elements amn, bmn where 〈amn, bmn〉 is a fixed pair of A (Xm) \A (Xn) provided it

is a non–void set. Set G0 = ∅. By induction we construct sets Cn ⊆ A and Gn ⊆ G

as follows: suppose Cn = (Cn, Gn) is done and X is an arbitrary finite subset of C2n.

299



Evidently, Cn(X) ⊆ C2n ∩ A (X). To any 〈a, b〉 ∈ (C2n ∩ A (X)) \ Cn(X) we assign

a subset g(a, b) ⊆ A2 and a finite collection Ga,b of functions of G such that every
subset of A2 containing g(a, b) and Cn(X) and closed under all functions of Ga,b

contains also the pair 〈a, b〉.
Let Dn+1 be a set which consists of elements of Cn and of all elements contained

in all pairs of g(a, b), where X is an arbitrary finite subset of C2n and 〈a, b〉 ∈ (C2n ∩
A (X)) \ Cn(X). Now, we take for Cn+1 the closure of Dn+1 with respect to all
operations of

Gn+1 = Gn ∪
⋃
{Ga,b ; 〈a, b〉 ∈ (C2n ∩A (X)) \ Cn(X) for a finite X ⊆ C2n}.

Since both Cn and Gn are countable, also Cn+1 and Gn+1 have this property. Put

C′ =
⋃

n∈�
Cn, G′ =

⋃

n∈�
Gn and C = (C′, G′).

Since C′ contains all elements of all pairs of
⋃

n∈�
Xn, hence C ′(Xn) are pairwise

distinct quasiorders of C ′. Let X be a finite subset of (C′)2. By our construction of
C ′, we have C ′(X) = (C′)2 ∩A (X). Because A (X) = A (Xm) for some m ∈ �, we

conclude

C ′(X) = (C′)2 ∩A (X) = (C′)2 ∩A (Xm) = C ′(Xm).

Hence, the quasiorders of the form C ′(Xm), m ∈ �, are all compact quasiorders

of C ′. Moreover, A (Xn) ⊆ A (Xm) if and only if C ′(Xn) ⊆ C ′(Xm), thus the
semilattices of compact quasiorders on A and on C ′ are isomorphic. This yields

QuordA ∼= QuordC ′. By applying Theorem 5 to the algebra C ′ we obtain an
algebra B as required. �
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