Czechoslovak Mathematical Journal

Athanasios Andrikopoulos; John Stabakis
 The coregular property on γ-spaces

Czechoslovak Mathematical Journal, Vol. 49 (1999), No. 2, 431-442
Persistent URL: http://dml.cz/dmlcz/127499

Terms of use:

© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE COREGULAR PROPERTY ON γ-SPACES

A. Andrikopoulos and J. Stabakis, Patras

(Received December 12, 1996)

1. Introduction

A γ-space stands for a T_{1} locally quasi-uniform space with a countable base [LF, p. 234]. A filter \mathscr{U} of neighbornets on a topological space (X, τ) is a filter of entourages in $X \times X$ which induces on X the topology τ itself, in which case we write $\tau=\tau(\mathscr{U})$ and say that \mathscr{U} is compatible with τ. As always \mathscr{U}^{-1} stands for the dual (or conjugate) of \mathscr{U} and \mathscr{U}^{*} for the supremum of \mathscr{U} and \mathscr{U}^{-1}. If \mathscr{U}^{-1} also induces a topology on X, then the $\tau\left(\mathscr{U}^{-1}\right) \times \tau(\mathscr{U})$-neighborhoods of the diagonal constitute a filter \mathscr{W} of neighbornets which induces on X the topology $\tau(\mathscr{U})$ as well. It is well known that the filter \mathscr{W} in some cases induces on X a local quasi-uniformity even if \mathscr{U} does not.

The γ-space conjecture is the conjecture that "every γ-space is quasi-metrizable." Although Fox's counterexample (in [F1]) proved that the conjecture is false, it remains for many topologists a great task to characterize these γ-spaces which are quasi-metrizable. To state some of them we refer to [FL], [FK], [Ku1] [Ku2], [Ku3], [LF], [Ko] etc. Despite the wide variety of views on the subject, it seems that the following characterization of the quasi-metrizability of γ-spaces remains the stronger conclusion (cf. [FL p. 162, th. 2.15], [Ku3, p. 62, th. 5], as well in [Kop, p. 103, th. 2.2]):
$(*) \quad$ "If in a bitopological space $\left(X, \mathscr{U}, \mathscr{U}^{-1}\right) \mathscr{U}$ is a T_{1} local quasi-uniformity with a countable base and also \mathscr{U}^{-1} is a local quasi-uniformity, then there may be defined a quasi-uniformity with a countable base, hence a quasimetrizable space, which induces on X the topology induced by \mathscr{U}."

Our main purpose in this paper is to weaken the conditions cited in $(*)$, especially those refering to \mathscr{U}^{-1}, and thus to enlarge the category of the spaces which the $(*)$ theorem determines. To this end we introduce the notion of "coregularity." A
locally quasi-uniform space is coregular but not inversely. We also make use of the well known (cf. [W]) neighborhood property.

The remark 2.12 gives the suppositions for a coregular \mathscr{U}^{-1} to solve the problem although the so called "property α " is not expressed in simple topological terms. It is worth noting that the omission of the local quasi-uniformity from \mathscr{U}^{-1}, causes the space to lose some crucial properties, even if \mathscr{U}^{-1} is coregular; for instance the second countability of \mathscr{U} does not imply the second countability of the filter which forms the $\tau\left(\mathscr{U}^{-1}\right) \times \tau(\mathscr{U})$-neighborhoods of the diagonal (a filter which plays a central role in the whole subject) or the relation $V[x] \subseteq U[x]$ does not imply $V^{2}[x] \subseteq U^{2}[x]$ etc. Thus there is room for serious changes like those of the theorem 2.10 and the remark 2.12 which are far enough removed from the current properties. Inversely, in paragraph 3 the suppositions of the statements mostly refer to the usual ones with emphasis in the symmetry, but they also have to do with the neighborhood property.

As always, theorems of this kind may be presented into the Nagata-Smirnov metrization theorem's form, as for instance occurs also for the theorems 3.2, 3.3 etc.

Let X be any non void set.
1.1 Definition. We call generalized quasi-uniformity (GQUU in brief) a filter \mathscr{U} of reflexive relations on X which is a filter of neighbornets for a topology on X. We denote the structure by (X, \mathscr{U}) and we also call entourages the elements of \mathscr{U}.

Not any filter \mathscr{U} on $X \times X$ is a $G Q \mathscr{U}$. A sufficient condition to be so is the following:

$$
\begin{equation*}
(\forall x \in X) \quad(\forall U \in \mathscr{U})(\forall y \in U[x])(\exists V \in \mathscr{U})[V[y] \subseteq U[x]] . \tag{1}
\end{equation*}
$$

If \mathscr{U} and \mathscr{U}^{-1} are $\mathrm{GQ} \mathscr{U}$ s, then-as well as in the case of quasi-uniform spacesthe $\tau\left(\mathscr{U}^{-1}\right) \times \tau(\mathscr{U})$-open sets in $X \times X$ constitute a base for the family of the neighborhoods of the diagonal.
1.2 Proposition. If \mathscr{U} is a $G Q \mathscr{U}$, then $\mathscr{U}^{2}=\left\{U \in \mathscr{U} \mid(\exists V \in \mathscr{U})\left[V^{2} \subseteq U\right]\right\}$ is too.

Proof. Since \mathscr{U} is $G Q \mathscr{U}$, for any $U \in \mathscr{U}$ and any $x \in X$, the set $(U[x])^{\circ}=\{y \in$ $X /(\exists V \in \mathscr{U})[V[y] \subseteq U[x]\}$ is a $\tau(\mathscr{U})$-open neighborhood of x. If $W=U \cap V$, then $W^{2}[y]=W(W[y]) \subseteq W(U[x]) \subseteq U^{2}[x]$, hence the set $\left(U^{2}[x]\right)^{\circ}=\{y \in X /(\exists W \in$ $\mathscr{U})\left[W^{2}[y] \subseteq U^{2}[x]\right\}$ is also a $\tau\left(\mathscr{U}^{2}\right)$-open neighborhood of x.
1.3 Proposition. If \mathscr{U} and \mathscr{U}^{-1} are $G Q \mathscr{U}$, then \mathscr{U}^{*} is too.

Proof. For any $x \in X$, if $U \in \mathscr{U}$ and $V^{-1} \in \mathscr{U}^{-1},(U[x])^{\circ}$ and $\left(V^{-1}[x]\right)^{\circ}$ are $\tau(\mathscr{U})$ —and $\tau\left(\mathscr{U}^{-1}\right)$-neighborhoods of x for $\tau(\mathscr{U})$ and $\tau\left(\mathscr{U}^{-1}\right)$ respectively, then $(U[x])^{\circ} \cap\left(V^{-1}[x]\right)^{\circ}$ is a $\tau\left(\mathscr{U}^{*}\right)$-neighborhood of x.

2. Coregularity and the neighborhood property

From now on we denote by $L Q \mathscr{U}$ any locally quasi-uniform space (or any local quasi-uniformity).
2.1 Definition. (Cf. [Ke, p. 73, def. 2.4]). A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is called coregular (with respect to τ_{1} as first, and τ_{2} as second topology) if for any $x \in X$ and any τ_{1}-neighborhood A of x there is another τ_{1}-neighborhood B of x such that

$$
\bar{B}^{\tau_{2}} \subseteq A
$$

where $\bar{B}^{\tau_{2}}$ is the closure of B with respect to τ_{2}.
If we say in particular that the space $\left(X, \mathscr{U}, \mathscr{U}^{-1}\right)$ is coregular, we mean that \mathscr{U} and \mathscr{U}^{-1} are $G Q \mathscr{U} s$ and that $\tau(\mathscr{U})$ is the first, and $\tau\left(\mathscr{U}^{-1}\right)$ the second topology.

If the spaces $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(X, \tau_{2}, \tau_{1}\right)$ are coregular, then X is called pairwise regular, as it is well known.
2.2 Example of a coregular non $L Q \mathscr{U}$ space (Cf. [EL, ex. 4.3, p. 55]).
 numbers, τ_{1} (resp. τ_{2}) the topology defined by taking as basic neighborhoods of any $x \in \mathbb{R}$ to be the intervals $[x, x+\varepsilon$) (resp. $(x-\varepsilon, x])$ if $x \in \mathbb{J}$ and $(x-\varepsilon, x]$ (resp. $[x, x+\varepsilon)$) if $x \in \mathbb{Q} ; \varepsilon>0$. Since for any τ_{1}-basic neighborhood $V_{\varepsilon}[x]$ of a x, say irrational, the set $V_{\varepsilon}^{2}[x]=\bigcup_{t \in V_{\varepsilon}[x]} V_{\varepsilon}[t]$ contains points cited at the left of x, the topology does not arise a $\tau_{1}-$ as well as a $\tau_{2}-L Q \mathscr{U}$. On the other hand, the requirement (1) of $\S 1$ is fulfilled, the τ_{2}-closure of $V_{\varepsilon_{0}}[x]$ for $\varepsilon_{0}<\varepsilon$, is subset of $[x, x+\varepsilon)$ and the $\left(\mathbb{R}, \tau_{1}, \tau_{2}\right)$ is coregular with respect to τ_{1} as the first, and τ_{2} as the second space.

The following theorem is basic in our procedure.
2.3 Theorem. The topology of an LQU space is coregular. Conversely; in a coregular space the set of the neighborhoods of the diagonal induces an $L Q \mathscr{U}$ space compatible with the given topology.

Proof. Let (X, \mathscr{U}) be the $L Q \mathscr{U}$ space, $x \in X$ and $U \in \mathscr{U}$. Then, there is a $V_{x} \in \mathscr{U}$ such that $V_{x} \circ V_{x}[x] \subseteq U[x]$. On the other hand (cf. [MN, th. 1.15])

$$
{\overline{V_{x}[x]}}^{\tau\left(\mathscr{U}^{-1}\right)}=\bigcap_{U}\left\{U\left(V_{x}[x]\right): U \in \mathscr{U}\right\},
$$

hence $\overline{V_{x}[x]}{ }^{\tau\left(\mathscr{U}^{-1}\right)} \subseteq V_{x}\left(V_{x}[x]\right) \subseteq U[x]$.
Conversely; let $\left(X, \mathscr{U}, \mathscr{U}^{-1}\right)$ be the coregular space, and \mathscr{W} a base for the $\tau\left(\mathscr{U}^{-1}\right) \times \tau(\mathscr{U})$ neighborhoods of the diagonal. Then for $U \in \mathscr{W}, U[x]$ is a $\tau(\mathscr{U})$ neighborhood of x and there are $\tau(\mathscr{U})$-neighborhoods A_{x}, B_{x} and C_{x} of x such that

$$
\bar{C}_{x}^{\tau\left(\mathscr{U}^{-1}\right)} \subseteq B_{x} \subseteq{\overline{B_{x}}}^{\tau\left(\mathscr{U}^{-1}\right)} \subseteq A_{x} \subseteq U[x] .
$$

Consider, as x runs through X, the sets

$$
V_{x}=\left(X \times B_{x}\right) \cup\left[\left(X \backslash{\overline{C_{x}}}^{\tau\left(\mathscr{U}^{-1}\right)}\right) \times A_{x}\right] \cup\left[\left(X \backslash{\overline{B_{x}}}^{\tau\left(\mathscr{U}^{-1}\right)}\right) \times X\right] .
$$

Each V_{x} is $\tau\left(\mathscr{U}^{-1}\right) \times \tau(\mathscr{U})$-open, contains the diagonal and fulfils $V_{x}^{2}[x] \subseteq U[x]$. In fact, for the latter, there holds that $V_{x}^{2}[x]=V_{x}\left(V_{x}[x]\right)=V_{x}\left[B_{x}\right]$. On the other hand, if $t \in{\overline{C_{x}}}^{\tau\left(\mathscr{U}^{-1}\right)}\left(t \in B \backslash{\overline{C_{x}}}^{\tau\left(\mathscr{U}^{-1}\right)}\right)$, then $V_{x}(t)=B_{x}\left(V_{x}(t)=A_{x}\right)$ and $B_{x} \subseteq A_{x} \subseteq U[x]$.
2.4 Notation. For a GQ $\mathscr{U} \mathscr{U}$ we put $\mathscr{U}^{n}=\left\{U \in \mathscr{U} \mid(\exists V \in \mathscr{U})\left[V^{n} \subseteq\right.\right.$ $U]\} \operatorname{and}\left(\mathscr{U}^{-1}\right)^{n}=\mathscr{U}^{-n}$, for any $n \in \mathbb{N} \backslash\{0,1\}$ and \mathbb{N} the set of natural numbers.
2.5 Proposition (Cf. [W, th. 1.10]). For any $L Q \mathscr{U} \mathscr{U}\left(\right.$ resp. $\left.\mathscr{U}^{-1}\right)$ on a space X and any $n \in \mathbb{N}, n \geqslant 2, \mathscr{U}^{n}$ (resp. \mathscr{U}^{-n}) is an LQU compatible with $\tau(\mathscr{U})$ (resp. $\tau\left(\mathscr{U}^{-1}\right)$).

Proof. It suffices to prove the theorem for \mathscr{U}^{2} : firstly, for $x \in X$ and $V \in \mathscr{U}$ there is a $W_{x} \in \mathscr{U}$ such that $W_{x}^{2}[x] \subseteq V[x], W_{x}^{2} \in \mathscr{U}^{2}$, hence $\tau(\mathscr{U}) \subseteq \tau\left(\mathscr{U}^{2}\right)$. On the other hand, if $W \in \mathscr{U}^{2}$ and $x \in X$, then there is $V \in \mathscr{U}$ such that $V^{2} \subseteq W$, hence $V[x] \subseteq V^{2}[x] \subseteq W[x]$ and $\tau\left(\mathscr{U}^{2}\right) \subseteq \tau(\mathscr{U})$.

Next, we prove that \mathscr{U}^{2} is an $L Q \mathscr{U}:$ if $U \in \mathscr{U}^{2}$, there are W_{1}, W_{2}, W_{3} elements of \mathscr{U} such that $W_{3}^{4}[x] \subseteq W_{2}^{2}[x] \subseteq W_{1}[x] \subseteq W_{1}^{2}[x] \subseteq U[x]$, hence $W_{3}^{4}[x] \subseteq U[x]$.
2.6 Definition. (Cf. [W, def. 1]). We say that a bitopological space (X, \mathscr{U}, \mathscr{U}^{-1}), where \mathscr{U} and \mathscr{U}^{-1} are $\mathrm{GQ} \mathscr{U} \mathrm{s}$, has the neighborhood property if

$$
(\forall U \in \mathscr{U})(\forall x \in X)\left(\exists V_{x} \in \mathscr{U}\right)\left[V_{x}^{-1}(x) \times V_{x}(x) \subseteq U\right] .
$$

In such a case the subsets of the form $\bigcup_{x}\left\{V_{x}^{-1}[x] \times V_{x}[x]\right\}$ constitute a base for the neighborhood system of the diagonal.
2.7 Proposition. If in the space $\left(X, \mathscr{U}, \mathscr{U}^{-1}\right), \mathscr{U}$ and \mathscr{U}^{-1} are $L Q \mathscr{U}$ s, then \mathscr{U}^{2} has the neighborhood property.

Proof. Let $U \in \mathscr{U}^{2}$ and $x \in X$. There are $W \in \mathscr{U}$ such that $W^{2} \subseteq U$ and $V_{1 x}, V_{2 x}$ in \mathscr{U} such that $V_{1 x}^{2}[x] \subseteq W[x]$ and $V_{2 x}^{-2}[x] \subseteq W^{-1}[x]$. If $V_{x}=V_{1 x} \cap V_{2 x}$, then $V_{x}^{2}[x] \subseteq W[x]$ and $V_{x}^{-2}[x] \subseteq W^{-1}[x]$.

On the other hand for every $W \in \mathscr{U}$ and every $x \in X$, there holds $W^{-1}[x] \times W[x] \subseteq$ W^{2}, since $\left(t_{1}, t_{2}\right) \in W^{-1}[x] \times W[x]$ implies that $\left(t_{1}, x\right) \in W,\left(x, t_{2}\right) \in W$ and thus $\left(t_{1}, t_{2}\right) \in W^{2}$, hence $V_{x}^{-2}[x] \times V_{x}^{2}[x] \subseteq W^{-1}[x] \times W[x] \subseteq W^{2} \subseteq U$ and $V_{x}^{2} \in \mathscr{U}^{2}$.
2.8 Proposition. If (X, \mathscr{U}) is an $L Q \mathscr{U}$ space and the bitopological space $\left(X, \mathscr{U}^{-1}, \mathscr{U}\right)$ is coregular, then \mathscr{W}^{2}, where \mathscr{W} is the set of all $\tau\left(\mathscr{U}^{-1}\right) \times \tau(\mathscr{U})$ neighborhoods of the diagonal, has the neighborhood property.

Proof. After Theorem 2.3, \mathscr{W} and \mathscr{W}^{-1} are LQ \mathscr{U} s and by proposition 2.7, \mathscr{W}^{2} has the neighborhood property.

The following proposition is a necessary lemma for the 2.10 Theorem; we shall make use of it in some other case, as well.
2.9 Proposition. If \mathscr{U} and \mathscr{U}^{-1} are $G Q \mathscr{U}$ s the following statements are equivalent:
(1) \mathscr{U} and \mathscr{U}^{-1} are $L Q \mathscr{U}$ s.
(2) $(\forall U)(\forall x)\left(\exists V_{x}\right)\left(\forall \alpha \in V_{x}^{-1}[x]\right)\left(\forall \beta \in V_{x}[x]\right)\left[V_{x}^{-1}[\alpha] \times V_{x}[\beta] \subseteq U\right]$.

Proof. (1) \Rightarrow (2).
Firstly: $(\forall W \in \mathscr{U})\left(\exists V_{x} \in \mathscr{U}\right)\left[V_{x}^{-2}[x] \subseteq W^{-1}[x]\right.$ and $\left.V_{x}^{2}[x] \subseteq W[x]\right] .(*)$
From the proposition 2.7 we may assume that \mathscr{U} has the neighborhood property. There holds:

$$
\begin{equation*}
(\forall U \in \mathscr{U})(\forall x \in X)\left(\exists W_{x} \in \mathscr{U}\right)\left[W_{x}^{-1}[x] \times W_{x}[x] \subseteq U\right] . \tag{**}
\end{equation*}
$$

The relations $(*)$ and $(* *)$ imply that:

$$
(\forall U \in \mathscr{U})(\forall x \in X)\left(\exists V_{x} \in \mathscr{U}\right)\left[V_{x}^{-2}[x] \times V_{x}^{2}[x] \subseteq U\right] .
$$

Let $\alpha \in V_{x}^{-1}[x]$ and $\beta \in V_{x}[x]$, then

$$
\left.V_{x}^{-1}[\alpha] \times V_{x}[\beta] \subseteq V_{x}^{-1}\left(V_{x}^{-1}[x]\right) \times V_{x}\left(V_{x}[x]\right)\right) \subseteq V_{x}^{-2}[x] \times V_{x}^{2}[x] \subseteq U
$$

$(2) \Rightarrow(1)$. If $t \in V_{x}^{2}[x]$, then there is a λ, such that $(x, \lambda) \in V_{x}$ and $(\lambda, t) \in V_{x}$. We have $\lambda \in V_{x}[x]$ and, because of (2) and the fact that $x \in V_{x}^{-1}[x]$, we have $V_{x}^{-1}[x] \times V_{x}[\lambda] \subseteq U$. Since $t \in V_{x}[\lambda],(x, t) \in V_{x}^{-1}[x] \times V_{x}[\lambda] \subseteq U$, hence $t \in U[x]$, that is $V_{x}^{2}[x] \subseteq U[x]$. Similarly we conclude that \mathscr{U}^{-1} is $L Q \mathscr{U}$.

We now reach the main theorem of this paragraph.
2.10 Theorem. If (X, \mathscr{U}) is an $L Q \mathscr{U}$ space with a countable base, the space $\left(X, \mathscr{U}^{-1}, \mathscr{U}\right)$ is coregular and the space $\left(X, \mathscr{U}^{*}\right)$ is Lindelöf, then the space (X, \mathscr{U}) admits a quasi-uniformity with a countable base.

Proof. Let $\mathscr{A}=\left\{U_{n} \mid n \in \mathbb{N}\right\}$ be a base for \mathscr{U}, which may consist of $\tau\left(\mathscr{U}^{-1}\right) \times \tau(\mathscr{U})$-neighborhoods of the diagonal, and \mathscr{W} be the set of all $\tau\left(\mathscr{U}^{-1}\right) \times$ $\tau(\mathscr{U})$-neighborhoods of the diagonal. Then \mathscr{W} and \mathscr{W}^{-1} are LQ \mathscr{U} s and \mathscr{W}^{2} has the neighborhood property (see prop. 2.8). On the other hand, since \mathscr{U}^{2} is an $L Q \mathscr{U}$, and $\tau(\mathscr{U})=\tau\left(\mathscr{U}^{2}\right)$, without loss of the generality, we may assume that \mathscr{W} has the neighborhood property and \mathscr{U} is an LQ \mathscr{U} with a countable base. We also assume that \mathscr{A} is nested.

We define a sequence $\left\{V_{n} \mid n \in \mathbb{N}\right\}$ of entourages with the above cited requirements. Firstly, consider any member of \mathscr{A}, say U_{1}, and put

$$
V_{1}=\bigcup_{x}\left\{U_{1}^{-1}[x] \times U_{1}[x]\right\}
$$

Since $V_{1} \in \mathscr{W}, \mathscr{W}$ and \mathscr{W}^{-1} are LQ \mathscr{U} s and \mathscr{W} has the neighborhood property, we conclude from proposition 2.9, that for any $x \in X$ there exists a $W_{1 x} \in \mathscr{W}$ such that

$$
\left(\forall \alpha \in W_{1 x}^{-1}[x]\right)\left(\forall \beta \in W_{1 x}[x]\right)\left[W_{1 x}^{-3}[\alpha] \times W_{1 x}^{3}[] \subseteq V_{1}\right]
$$

or

$$
\left(\forall y \in W_{1 x}^{-1}[x] \bigcap W_{1 x}[x]\right)\left[W_{1 x}^{-3}[y] \times W_{1 x}^{3}[y] \subseteq V_{1}\right] .
$$

The latter relation implies that

$$
\left(\forall y \in W_{1 x}^{-1}[x] \bigcap W_{1 x}[x]\right)\left[W_{1 x}^{-3}[y] \times W_{1 x}^{3}[y] \subseteq V_{1}\right],
$$

an easy result in the case of an $L Q \mathscr{U}$ space whose the dual is an $L Q \mathscr{U}$ as well.
Put $W_{1 x}^{*}=W_{1 x} \cap U_{2}$ and $\left(W_{1 x}^{*}\right)^{-1}=W_{1 x}^{-1} \cap U_{2}^{-1}$ and the latter relation comes into:

$$
\begin{equation*}
\left(\forall y \in\left(W_{1 x}^{*}\right)^{-1}[x] \bigcap W_{1 x}^{*}[x]\right)\left[\left(W_{1 x}^{*}\right)^{-3}[y] \times\left(W_{1 x}^{*}\right)^{3}[y] \subseteq V_{1}\right] . \tag{1}
\end{equation*}
$$

On the other hand the class $\left\{\left(W_{1 x}^{*}\right)^{-1}[x] \times W_{1 x}^{*}[x] \mid x \in X\right\}$ constitutes a covering of the diagonal and the subsets $\left(W_{1 x}^{*}\right)^{-1}[x] \cap W_{1 x}^{*}[x]$ a covering of X. Since the space is Lindelöf, the class $\left\{W_{1 x}^{*}[x] \mid x \in X\right.$ and $W_{1 x}^{*}[x]$ fulfils (1) $\}$ can be refined into a countable subcovering $\left\{W_{\overline{1 n_{x}}}{ }^{*}\left[x_{n_{x}}\right] \mid \overline{1 n_{x}}, n_{x}\right.$ in $\left.\mathbb{N}\right\}$.

Let $\overline{\overline{1 n_{x}}}=\min \left\{\overline{1 n_{x}}: x \in\left(W_{\overline{1 n_{x}}}^{*}\right)^{-1}\left[x_{n}\right] \cap W_{\overline{1}}^{1 n_{x}}\left[x_{n}\right]\right\}$. We form from this countable subcovering, a nested family: $W_{1 n_{x}}^{*}=\bigcap_{\overline{\overline{1 k_{x}}} \leqslant \overline{\overline{1 n_{x}}}} W_{\overline{\overline{1 k_{x}}}}{ }^{*}$. For this nested family there holds:

$$
\left(W_{1 n_{x}}^{*}\right)^{-3}[x] \times\left(W_{1 n_{x}}^{*}\right)^{3}[x] \subseteq V_{1} .
$$

Next, we put

$$
V_{2}=\bigcup_{x}\left\{\left(W_{1 n_{x}}^{*}\right)^{-1}[x] \times W_{1 n_{x}}^{*}[x] \mid x \in X, 1 n_{x} \geqslant 2\right\} .
$$

We shall prove that $V_{2}^{2} \subseteq V_{1}$ and $V_{2} \subseteq U_{2}^{2}$
Let $(x, y) \in V_{2}^{2}$; there is a $z \in X$ such that $(x, z) \in V_{2},(z, y) \in V_{2}$. The latter relations mean that there are $x_{n_{k}}$ and $x_{n_{\lambda}}$ such that $x \in\left(W_{1 n_{k}}^{*}\right)^{-1}\left[x_{n_{k}}\right], z \in W_{1 n_{k}}^{*}\left[x_{n_{k}}\right]$ and $z \in\left(W_{1 n_{\lambda}}^{*}\right)^{-1}\left[x_{n_{\lambda}}\right], y \in W_{1 n_{\lambda}}^{*}\left[x_{n_{\lambda}}\right]$.

Assume that $W_{1 n_{k}}^{*} \subseteq W_{1 n_{\lambda}}^{*}$.
Then $\left(x_{n_{k}}, x\right) \in\left(W_{1 n_{k}}^{*}\right)^{-1},\left(z, x_{n_{k}}\right) \in\left(W_{1 n_{k}}^{*}\right)^{-1}$, and $\left(x_{n_{\lambda}}, z\right) \in\left(W_{1 n_{\lambda}}^{*}\right)^{-1}$. Thus $(z, x) \in\left(W_{1 n_{k}}^{*}\right)^{-2} \subseteq\left(W_{1 n_{\lambda}}^{*}\right)^{-2},\left(x_{n_{\lambda}}, z\right) \in\left(W_{1 n_{\lambda}}^{*}\right)^{-1}$ or $\left(x_{n_{\lambda}}, x\right) \in\left(W_{1 n_{\lambda}}^{*}\right)^{-3}$, that is $x \in\left(W_{1 n_{\lambda}}^{*}\right)^{-3}\left[x_{n_{\lambda}}\right]$.

It is $y \in W_{1 n_{\lambda}}^{*}\left[x_{n_{\lambda}}\right]$ and last $(x, y) \in\left(W_{1 n_{\lambda}}^{*}\right)^{-3}\left[x_{n_{\lambda}}\right] \times W_{1 n_{\lambda}}^{*}\left[x_{n_{\lambda}}\right] \subseteq V_{1}$.
If $W_{1 n_{\lambda}}^{*} \subseteq W_{1 n_{k}}^{*}$, then: $\left(x_{n_{\lambda}}, y\right) \in W_{1 n_{\lambda}}^{*},\left(z, x_{n_{\lambda}}\right) \in W_{1 n_{\lambda}}^{*}$, and $\left(x_{n_{k}}, z\right) \in W_{1 n_{k}}^{*}$, thus $\left(x_{n_{k}}, y\right) \in W_{1 n_{\lambda}}^{*} \circ W_{1 n_{\lambda}}^{*} \circ W_{1 n_{k}}^{*} \subseteq\left(W_{1 n_{k}}^{*}\right)^{3}$ or $y \in\left(W_{1 n_{k}}^{*}\right)^{3}\left[x_{n_{k}}\right]$. Since $x \in$ $\left(W_{1 n_{k}}^{*}\right)^{-1}\left[x_{n_{k}}\right]$, we have $(x, y) \in\left(W_{1 n_{k}}^{*}\right)^{-1}\left[x_{n_{k}}\right] \times\left(W_{1 n_{k}}^{*}\right)^{3}\left[x_{n_{k}}\right] \subseteq V_{1}$.

We also have that $\left(W_{1 x}^{*}\right)^{-1}[x] \times W_{1 x}^{*}[x] \subseteq U_{2}^{-1}[x] \times U_{2}[x] \subseteq U_{2}^{2}$; consequently $V_{2} \subseteq U_{2}^{2}$ and the proof of (2) is over.

We proceed to the construction of $\left(V_{n}\right)_{n \in \mathbb{N}}$ inductively: we assume that the finite sequence $V_{1}, V_{2}, V_{3}, \ldots, V_{k+1}$ is normal and that $\left(W_{k n_{x}}^{*}\right)^{-1}[x]$ and $W_{k n_{x}}^{*}[x]$ play the respective roles of $U_{1}^{-1}[x]$ and $U_{1}[x]$. Then, there is a $W_{k+1, x}^{*} \in \mathscr{W}$ such that $W_{k+1, x}^{*} \subseteq W_{k+1, x} \cap U_{k+2} \subseteq U_{k+2}$ and $\left(W_{k+1, x}^{*}\right)^{-3}[x] \times\left(W_{k+1, x}^{*}\right)^{3}[x] \subseteq V_{k+1}$ and since the space is Lindelöf the class of $W_{k+1, x}^{*}$ may be refined into a countable nested family, $W_{k+1, n_{x}}^{*}$.

Put

$$
V_{k+2}=\bigcup_{x}\left\{\left(W_{k+1, n_{x}}^{*}\right)^{-1}[x] \times W_{k+1, n_{x}}^{*}[x] \mid x \in X,\left(k+1, n_{x}\right) \geqslant k+2\right\} .
$$

We have that $V_{k+2}^{2} \subseteq V_{k+1}$ and $V_{k+2} \subseteq U_{k+2}^{2}$, (the demonstrations are as in the V_{2}-case).

It is also evident that $\left(V_{n}\right)_{n \in \mathbb{N}}$ induces in X a topology equivalent to $\tau(\mathscr{U})$ (since for each $n \in \mathbb{N}, V_{n} \subseteq U_{n}^{2}$ and thus $\left.\tau(\mathscr{U})=\tau\left(\mathscr{U}^{2}\right) \subseteq \tau(\mathscr{V})\right)$.

The proposition which follows refers to a space with a special family of neighborhoods of the diagonal (Künzi has mentioned the case in [Ku3, p. 63]) and its proof can be considered as a spesial case of one of the propositions which are contained in the latter demonstration.
2.11 Proposition. If the bitopological space $\left(X, \mathscr{U}, \mathscr{U}^{-1}\right)$ is pairwise regular and if the set \mathscr{W} of the $\tau\left(\mathscr{U}^{-1}\right) \times \tau(\mathscr{U})$-neighborhoods of the diagonal admits a countable base, then the space is quasi-metrizable.
2.12 Remark. Let S_{1}, S_{2} be the categories of the following spaces cited in (*) and in the 2.10 theorems, respectively:
$S_{1}=\left(X, \mathscr{U}, \mathscr{U}^{-1}\right), \mathscr{U}$ and \mathscr{U}^{-1} are LQ \mathscr{U} s and \mathscr{U} admits a T_{1} countable base.
$S_{2}=\left(X, \mathscr{U}, \mathscr{U}^{-1}\right), \mathscr{U}$ is LQ \mathscr{U} with a T_{1} countable base and \mathscr{U}^{-1} is coregular.
In general, every S_{1} is quasi-metrizable; S_{2} is not. Something more is needed, which for the sake of simplicity, let us name "property α."
(α) "There is a nested base $\left(W_{i}\right)_{i \in I}$ of the diagonal such that for every neighborhood W of the diagonal and any x there is a $W_{i x}$, element of the base, such that: $W_{i x}^{-3}[x] \times W_{i x}^{3}[x] \subseteq W . "$

Property (α) is always fulfilled by the space S_{1}, is fulfilled by a space S_{2} if it is Lindelöf and, of course, in other cases as well (for instance, if a space S_{2} has a countable base of $\tau\left(\mathscr{U}^{-1}\right) \times \tau(\mathscr{U})$-neighborhoods of the diagonal). We do not know whether there are more adequate topological terms to express property (α), but it is clear that the properties of a S_{2} space plus the property (α) establish a quasi-metrizability on the space and weaken the conditions cited in the space S_{1}.

3. QUASI-METRIZABILITY FROM SYMMETRY AND THE NEIGHBORHOOD PROPERTY

As usual we state that \mathscr{U}^{-1} is point symmetric if \mathscr{U} and \mathscr{U}^{-1} are $G Q \mathscr{U} s$ and $\tau\left(\mathscr{U}^{-1}\right) \subseteq \tau(\mathscr{U})(\mathrm{cf} .[\mathrm{FL}, \mathrm{p} .36]$, and $[\mathrm{Ku} 3]$ under the title strongly quasi-metrizable spaces.)
3.1 Lemma. If (X, \mathscr{U}) is an $L Q \mathscr{U}$ and \mathscr{U}^{-1} is point symmetric then there exists a compatible $L Q \mathscr{U} \mathscr{V}$ such that
$(* *) \quad(\forall U \in \mathscr{V})(\forall x \in X)\left(\exists V_{x} \in \mathscr{V}\right)\left(\forall y \in V_{x}[x]\right)\left[V_{x}[y] \times V_{x}[y] \subseteq U\right]$.

Proof. The demanded $L Q \mathscr{U}$ is the \mathscr{U}^{2} which induces a topology equivalent to $\tau(\mathscr{U})$. Then for any $U \in \mathscr{U}^{2}$ there is a $V \in \mathscr{U}$ such that $V^{2} \subseteq U$ and $V^{-1}[x] \times V[x] \subseteq$ U (by prop. 2.7). Since \mathscr{U}^{-1} is point symmetric, for any $x \in X$ there are $V^{*} \in \mathscr{U}$
such that $V^{*}[x] \subseteq V^{-1}[x]$ and W^{*} such that $W^{*}[x] \times W^{*}[x] \subseteq U$ and finally there is a $W \in \mathscr{U}$ such that $W^{4}[x] \times W^{4}[x] \subseteq U$. Hence for any $y \in W^{2}[x]$, there holds $W^{2}[y] \times W^{2}[y] \subseteq W^{4}[x] \times W^{4}[x] \subseteq U$, where $W^{2} \in \mathscr{U}^{2}$.
3.2 Theorem. If (X, \mathscr{U}) is a γ-space and \mathscr{U}^{-1} is point symmetric, then (X, \mathscr{U}) is quasi-metrizable.

Proof. Let $\left(U_{n}\right)_{n \in \mathbb{N}}$ be a countable base of \mathscr{U}, which we always assume as nested.

Put $V_{1}=U_{1}$.
We conclude-by lemma 3.1 - that for any $x \in X$ there is $U_{n_{x}}$ such that

$$
\left(\forall y \in U_{n_{x}}[x]\right)\left[U_{n_{x}}[y] \times U_{n_{x}}[y] \subseteq V_{1}\right]
$$

Put $m_{x}=\min \left\{n_{t} \mid U_{n_{t}}[x] \times U_{n_{t}}[x] \subseteq V_{1}\right\}$, where for any $x \in X, m_{x} \geqslant 2$, and

$$
W_{1}=\bigcup_{x}\left(\{x\} \times U_{m_{x}}[x]\right)
$$

We show

$$
\begin{equation*}
\left(W_{1} \cap W_{1}^{-1}\right)^{2} \subseteq V_{1} \tag{1}
\end{equation*}
$$

In fact, let $(x, y) \in\left(W_{1} \cap W_{1}^{-1}\right)^{2}$. Then there is a z, such that $(x, z) \in W_{1} \cap W_{1}^{-1}$ and $(z, y) \in W_{1} \cap W_{1}^{-1}$. It is $(z, x) \in W_{1}$, hence $x \in U_{m_{z}}[z]$ and $(z, y) \in W_{1}$, hence $y \in U_{m_{z}}[z]$. Thus, $(x, y) \in U_{m_{z}}[z] \times U_{m_{z}}[z] \subseteq V_{1}$.

Next, given $x \in X$ and $U_{n_{x}} \in \mathscr{U}$, we determine a $U_{1 n_{x}} \in \mathscr{U}$ such that for any $y \in U_{1 n_{x}}[x]$, there holds $U_{1 n_{x}}[y] \times U_{1 n_{x}}[y] \subseteq U_{n_{x}}$ (such a $U_{1 n_{x}}$ exists as shown in lemma 3.1). On the other hand we have for any $y \in U_{1 n_{x}}[x]$,

$$
\begin{equation*}
U_{1 n_{x}}[x] \subseteq U_{n_{x}}[y] \subseteq U_{m_{y}}[y]=W_{1}[y] \tag{2}
\end{equation*}
$$

We show that $U_{1 n_{x}}[x] \times U_{1 n_{x}}[x] \subseteq W_{1} \cap W_{1}^{-1}$. (3).
Let $\left(t_{1}, t_{2}\right) \in U_{1 n_{x}}[x] \times U_{1 n_{x}}[x]$, then (from (2)) $t_{1} \in U_{1 n_{x}}[x]$ and $t_{2} \in U_{1 n_{x}}[x]$, hence $U_{1 n_{x}}[x] \subseteq W_{1}\left[t_{1}\right]$ and $U_{1 n_{x}}[x] \subseteq W_{1}\left[t_{2}\right]$. Since $t_{2} \in U_{1 n_{x}}[x] \subseteq W_{1}\left[t_{1}\right]$ and $t_{1} \in U_{1 n_{x}}[x] \subseteq W_{1}\left[t_{2}\right]$, we conclude that $\left(t_{1}, t_{2}\right) \in W_{1} \cap W_{1}^{-1}$. Put

$$
\begin{equation*}
V_{2}=\bigcup_{x}\left(U_{1 n_{x}}[x] \times U_{1 n_{x}}[x]\right) \tag{4}
\end{equation*}
$$

There holds-by (3)- $V_{2} \subseteq W_{1} \cap W_{1}^{-1}$ and by (1)- $V_{2}^{2} \subseteq V_{1}$ and $V_{2}[x] \subseteq U_{2}[x]$.

In fact for the latter relation, since for $x \in U_{1 n_{y}}[y]$, there hold $U_{1 n_{y}}[y] \subseteq U_{n_{y}}[x] \subseteq$ $U_{m_{y}}[x] \subseteq U_{2}[x]$ and $V_{2}[x]=\bigcup\left\{U_{1 n_{y}}[y] \mid x \in U_{1 n_{y}}[y]\right\}$, it is implied that $V_{2}[x] \subseteq$ $U_{2}[x]$.

As V_{2} has the property $(* *)$ of the lemma 3.1 we can inductively proceed to the construction of the V_{k+1} entourage from V_{k}. In fact, if we assume that V_{k} has the property $(* *)$ and that $V_{k}[x] \subseteq U_{k}[x]$, then-as in the V_{2} case-we construct V_{k+1} such that $V_{k+1}^{2} \subseteq V_{k}$ and $V_{k+1}[x] \subseteq U_{k+1}[x]$.

Next, it is not difficult to be proved that the class $\left(V_{n}\right)_{n \in \mathbb{N}}$ constitutes a base for an $L Q \mathscr{U} \mathscr{V}$ which induces on X a topology equivalent to $\tau(\mathscr{U})$. In fact, as $V_{n} \subseteq U_{n}$ for any $n \in \mathbb{N}$, we conclude that $\tau(\mathscr{U}) \subseteq \tau(\mathscr{V})$ and the inverse implication is immediate.

We shall now state two conditions which make a γ-space developable and therefore-according to a theorem by Künzi ([Ku3, th. 1], and [F2])—quasimetrizable.
3.3 Proposition. If in an $L Q \mathscr{U}$ space (X, \mathscr{U}) the following condition is satisfied:

$$
\begin{aligned}
& \text { (i) } \quad(\forall U \in \mathscr{U})(\forall x \in X)\left(\exists V_{x} \in \mathscr{U}\right)\left[V_{x}^{-1} \circ V_{x}[x] \subseteq U[x]\right] \\
& \text { (or its dual } \left.\left(\mathrm{i}^{\prime}\right) \quad(\forall \mathrm{U} \in \mathscr{U})(\forall \mathrm{x} \in \mathrm{X})\left(\exists \mathrm{V}_{\mathrm{x}} \in \mathscr{U}\right)\left[\mathrm{V}_{\mathrm{x}} \circ \mathrm{~V}_{\mathrm{x}}^{-1}[\mathrm{x}] \subseteq \mathrm{U}[\mathrm{x}]\right]\right)
\end{aligned}
$$

and \mathscr{U}^{-1} is $G Q \mathscr{U}$, then the space is developable.
Proof. Firstly, since $V_{x}^{-1}[x] \subseteq V_{x}^{-1} \circ V_{x}[x]\left(\right.$ or $\left.V_{x}^{-1}[x] \subseteq V_{x} \circ V_{x}^{-1}[x]\right)$, \mathscr{U} is point symmetric.

Next, consider $\left\langle V_{n}\right\rangle_{n \in \mathbb{N}}$ a nested base for \mathscr{U}, and G an open set containing x. The sequence $\left\langle\mathscr{G}_{n}\right\rangle_{n \in \mathbb{N}}$, where $\mathscr{G}_{n}=\left\{V_{n}[x] \mid x \in X, V_{n} \in \mathscr{U}\right\}$, is a sequence of open coverings of X and if V_{n} and V_{m} are in \mathscr{U} so that $V_{n}[x] \subseteq G$ and $V_{m}^{2}[x] \subseteq V_{n}[x]$, then, since \mathscr{U} is point symmetric, there is a $V_{k} \in \mathscr{U}$ such that $V_{k}^{-1}[x] \subseteq V_{m}[x]$ (1). We may assume that $k>m$. We have to prove that the set $\operatorname{St}\left(x, \mathscr{G}_{k}\right)=\cup\left\{V_{k}[t] \mid x \in V_{k}[t]\right\}$ is contained in G. Let $\lambda \in \operatorname{St}\left(x, \mathscr{G}_{k}\right)$, then $\lambda \in V_{k}[t]$ for a V_{k} and $x \in V_{k}[t]$, hence $t \in V_{k}^{-1}[x]$ and from (1), $t \in V_{m}[x]$. Therefore $\lambda \in V_{k} \circ V_{m}[x] \subseteq V_{m}^{2}[x] \subseteq V_{n}[x] \subseteq G$.

It is also evident that:
3.4 Corollary. A γ-space (X, \mathscr{U}) which fulfils the property (i) or (i') and whose dual $\left(X, \mathscr{U}^{-1}\right)$ is a $G Q \mathscr{U}$ space, is quasi-metrizable.

We give some more cases of quasi-metrizable γ-spaces.
3.5 Lemma. If in a bitopological space $\left(X, \mathscr{U}, \mathscr{U}^{-1}\right), \mathscr{U}$ and \mathscr{U}^{-1} are $G Q \mathscr{U}$ and enjoy the following property:
(ii) $\quad(\forall U \in \mathscr{U})(\forall x \in X)\left(\exists V_{x} \in \mathscr{U}\right)\left(\forall y \in V_{x}[x]\right)\left[V_{x}[x] \times V_{x}[y] \subseteq U\right]$,
then (1) \mathscr{U} is an $L Q \mathscr{U}$, (2) \mathscr{U}^{-1} is point symmetric, and (3) the space (X, \mathscr{U}) is regular.

Proof. (1) If x, V_{x} and \mathscr{U} are as above, then $t \in V_{x}^{2}[x]$ implies that for a z, $(x, z) \in V_{x}$ and $(z, t) \in V_{x}$, hence $z \in V_{x}[x], t \in V_{x}[z]$ and $(x, t) \in V_{x}[x] \times V_{x}[z]$ (where $z \in V_{x}[x]$), hence (from (ii)) $(x, t) \in U$, that is $t \in U[x]$.
(2) If $t \in V_{x}[x]$, then $(t, x) \in V_{x}[x] \times V_{x}[x]$, thus $(t, x) \in U$ (from (ii)), hence $t \in U^{-1}[x]$ and $V_{x}[x] \subseteq U^{-1}[x]$.
(3) \mathscr{U} is coregular, hence for an open A_{x} (in \mathscr{U}) there also exists a B_{x} open in \mathscr{U} such that $\mathrm{cl}_{\tau\left(\mathscr{U}^{-1}\right)} B_{x} \subseteq A_{x}$. Since $\tau\left(\mathscr{U}^{-1}\right) \subseteq \tau(\mathscr{U})$ we have $\mathrm{cl}_{\tau(\mathscr{U})} B_{x} \subseteq \operatorname{cl}_{\tau\left(\mathscr{U}^{-1}\right)} B_{x}$ and the proof is over.

After the lemma the following theorem is evident.
3.6 Theorem. If \mathscr{U} and \mathscr{U}^{-1} in the bitopological space $\left(X, \mathscr{U}, \mathscr{U}^{-1}\right)$ are $G Q \mathscr{U} s$ and \mathscr{U} admits a T_{1} countable base and enjoys the property (ii), then the space (X, \mathscr{U}) admits a compatible quasi-metric.

And a last proposition.
3.7 Proposition. If \mathscr{U} and \mathscr{U}^{-1} are $G Q \mathscr{U} \mathrm{~s}$ and

$$
\begin{equation*}
(\forall U \in \mathscr{U})(\forall x \in X)\left(\exists V_{x} \in \mathscr{U}\right)\left(\forall y \in V_{x}^{-1}[x]\right)\left[V_{x}^{-1}[y] \times V_{x}[y] \subseteq U\right], \tag{iii}
\end{equation*}
$$

then \mathscr{U}^{-1} is $L Q \mathscr{U}$.
Proof. Let U, x and V_{x} be as in (iii). Let also $t \in V_{x}^{-2}[x]$. Then there is a $\lambda \in X$ such that, $(t, \lambda) \in V_{x}$ and $(\lambda, x) \in V_{x}$, thus $t \in V_{x}^{-1}[\lambda], \lambda \in V_{x}^{-1}[x]$ and $V_{x}^{-1}[\lambda] \times V_{x}[\lambda] \subseteq U$. Since $(t, x) \in V_{x}^{-1}[\lambda] \times V_{x}[\lambda]$, it is $(t, x) \in U$.

We can reform (iii) into a dual condition and conclude a dual proposition of 3.7.
3.8 Remark. It seems that plenty of conditions of the form we deal with in this paragraph, may play a role in the establishment of a quasi-metrizability on a γ-space. For instance, a γ-space ($X, \mathscr{U}, \mathscr{U}^{-1}$) which enjoys (iii) is quasi-metrizable.

Also, if \mathscr{U} and \mathscr{U}^{-1} are $G Q \mathscr{U}$ s, fulfil the properties (i) of the Proposition 3.3 and the following

$$
\text { (iv) } \quad(\forall U \in \mathscr{U})(\forall x \in X)\left(\exists V_{x} \in \mathscr{U}\right)\left(\forall y \in V_{x}[x]\right)\left[V_{x}^{-1}[y] \times V_{x}[y] \subseteq U\right] \text {, }
$$

and moreover \mathscr{U} is T_{1} and countable, then the space is quasi-metrizable.
In fact; from prop. $2.7 \mathscr{U}$ is a $L Q \mathscr{U}$ and from (i) \mathscr{U} is point symmetric, thus developable (from prop. 3.3). Hence (from [Ku3, theor. 1]) the space is quasi-metrizable.

And a last example: If \mathscr{U} and \mathscr{U}^{-1} are $G Q \mathscr{U}$ s, get the property:
(v) $\quad(\forall U \in \mathscr{U})(\forall x \in X)\left(\exists V_{x} \in \mathscr{U}\right)\left(\forall \alpha \in V_{x}[x]\right)\left(\forall \beta \in V_{x}[x]\right)\left[V_{x}^{-1}[\alpha] \times V_{x}[\beta] \subseteq U\right]$
and \mathscr{U} is countable, then the space is quasi-pseudo-metrizable.

References

[EL] R. Engelking and D. Lutzer: Paracompactness in ordered spaces. Fund. Math. 94 (1977), 49-58.
[F1] R. Fox: Solution of the γ-space problem. Proc. Amer. Math. Soc. 85 (1982), 606-608.
[F2] R. Fox: A short proof of the Junnila's quasi-metrization theorem. Proc. Amer. Math. Soc. 83 (3) (1981), 663-664.
[FK] R. Fox and J. Köfner: A regular counterexample to the γ-space conjecture. Proc Amer. Math. Soc. 94 (1985), 502-506.
[FL] P. Fletcher and W. F. Lindgren: Quasi-uniform spaces. Lectures Notes in Pure Appl. Math. 77. Marcel Dekker, New York, 1982.
[Ke] J. C. Kelly: Bitopological spaces. Proc. London Math. Soc. (3) 13 (1963), 71-89.
[Ko] J. Köfner: Transitivity and the γ-space conjecture on ordered spaces. Proc. Amer Math. Soc. 81 (1981), 629-634.
[Kop] R. D. Kopperman: Which topologies are quasi-metrizable. Topology and its Aplications 52 (1993), 99-107.
[Ku1] H. P. Künzi: A note on Ralph Fox's γ-space. Proc. Amer. Math. Soc. 91 (1984), 467-470.
[Ku2] H. P. Künzi: Quasi-uniform spaces-Eleven years later. Proc. of Coll. on Topol. János Bolyai Math. Soc., Szekszárd, Hungary, 1993.
[Ku3] H. P. Künzi: On strongly quasi-metrizable spaces. Arch. Math (Basel) 41 (1983), 57-63.
[LF] W. F. Lindgren and P. Fletcher: Locally quasi-uniform spaces with countable bases. Duke Math. J 41 (1974), 231-240.
[MN] M. G Murdeshwar and S. A. Naimpally: Quasi-Uniform Topological Spaces. Noordhoff, Groningen, 1966.
[W] J. Williams: Locally uniform spaces. Trans. Amer Math. Soc. 168 (1972), 435-469.
Authors' address: University of Patras, Department of Mathematics, 26500 Patras, Greece.

