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Let p denote any prime. Let A(n) = logp for n = p”, r € N, A(n) = 0 otherwise.
Then the prime number theorem, which reads

“S1= [ oo () et
logu log x

p<z

is equivalent to (x) = > A(n) = x+o(z), x — +o00. The last relation follows from

n<T
the Ikehara theorem: Let A(z) be a nonnegative nondecreasing function defined for
z € (0;400) and let the integral f(s fo ~*5dx, s = o +it, converge for

o > 1. Let f(s) be analytic for o > 17 except for a sunple pole at s = 1 with residue
1. Then lim e ®A(z) =1 (cf. [1], p. 124).
T—+00
Of course, it suffices to put A(z) = 1(e®),x > 0. Since

/Ooo A(z)e™ dz = i((i)) = si T + h(s) foro>1,

where h(s) is analytic for ¢ > 1, we can use the Ikehara theorem to obtain

To estimate the remainder term 7(z) — [ 9%

2 logu
Let functions w(z) and }logz — w(x) be both positive and increasing in (3; +00).
Then the relation ¢ (z) = > A(n)log & = x + O(zexp(—2w(7))), * > 3, implies

nx

w(x))), x = 3 (see [5]). We know that

we need a more sophisticated way:

m(x) =[5 lodg“u + O(z exp

(=
g ( 715 1
 52(s) / vale do = s—1
- oc<e*%<ef> —1)e ) da

0

hi(s) =

! Supported by Research grant GACR 21/93/2122.
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is analytic for o > 1. However, we now need a better estimate of the remainder term

e *11(e*) — 1 than o(1), x — +o00, which the Ikehara theorem yields. Theorem 2
of [2] is such an Ikehara theorem with the remainder term. If moreover the function
g(t) = f(1+it) — L, t € R, satisfies g € LY(R), then e ®A(z) = 1 + O(z™™),
x — +oo. This last theorem yields ¢1(z) = x + O(zlog™" z), * — +o0o. Theorem
0.1 of the present paper allows us to show how the constant in O in this relation
depends on n € N.

We denote || f|co = sup | f(z)| for any function f: R — Cand ||f]j1 = ()] dtl

Further, let f(x f f(t)el'™™ dt be the Fourier transform of a function f for
f € LY(R). Let MO M,l =1 and let {M;}$2, be a sequence of positive numbers
such that

o0
(1) C=> A <oo, where X\, = k=0,1,...

Lemma 0.1. For any sequence of positive numbers {M;}2, satisfying (1), there
exists an even function u: R — (0;4o00) such that suppu = (—1;1), u(z) > 0 for

€ (=1;1), u € C®(R), [jul™ Hoo < 3C(C 4+ 1)%(2C)"M,, for n € NU {0}, and
moreover, U(z) >0,z € R, [ a(z)dz > Z.

This lemma can be used for M,, = (n!)}*¢ e > 0.

Proof. We shall first construct an even function g: R — (0; +00), nonincreas-
ing on (0; +00), supp g = (=C;C), g € C®(R), g™l < 5(C+1)My, n € NU{0}
(cf. [3], chap. 19, ex. 10).

Let the sequence {g,}22 ¢, gn: R — (0; +00), be defined inductively by the relation

1 )\n

(2) (@) = 55~

gn—1(x —t)dt, neN.
If g,_1 € C®)(R), k € NU{0}, then g,, € C**+D(R) and

1
B g =g @A) e ), I= 1 kL
n

The relations (2) and (3) imply

1
(4) o0 (z) = —/ oD @—tydt, 1=01,....k
2 ),

=y

Put go(z) = max(1 — |z|,0), 2 € R. Since go € C(O(R) = C(R), we have g, €
C™(R), n € N, and the relations (3) and (4) are satisfied with k = n — 1.
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If g,—1 is even, then g, is even, as g,(—z) = 2)1\" fj‘;n gn—1(—z — t)dt =
ﬁfj)\ gn-1(z + t)dt = ﬁfj)\ gn—1(z — t)dt = g,(z), = € R. Since go is
even, we have by induction g, is even, n € N.

Let suppgn 1= (—Sn— 1,sn 1)y gn-1(x) > 0 for © € (—8p—1,8n-1), Sn—1 > 0.
Then g,(z) = 2)\ f N Gn-1 (x —t)dt = 0 for |z| > sp—1 + An, gn(x) > 0 for
|z] < $p—1 +)\n, and so supp gn = (—Sp—1 — An; Sn—1+ An). Since supp go = (—1; 1),
go(x) > 0 for € (—1;1), we have suppg, = <— i Ak; i )\k>, gn(x) > 0 for

E=0 k=0

S (— i)\k; Zn:)\k),TLEN.
k=0 k=0

Let g,—1 be nonincreasing on (0;+00). Then g, is nonincreasing on (0;+0c0),
because g/, (z) = ﬁ”(gnfl(x + M) — g1 — Ap)) < 0 for ¢ > Ay, g () =
Wln(gn_l(x +An) —gn—1(An —2)) <0 for z € (0; \,) by (3). As go is nonincreasing
on (0; +00), we obtain that g, is nonincreasing on (0; +o0) for n € N.

Now, we prove by induction that g,(en) is Lipschitzian with the constant M, for all
k>n,neNU{0}.

1) 7(1”) is Lipschitzian with the constant M,,: This is clear for n = 0. Let

197V (@) — ¢V (@) < Myoalz — '), a2’ € R.

Then by (3)

195 (x) — g{M ()| < \g(” Y+ ) — 30 @ + M)l
|g<” =) = g0 @ = )

2Mp, 1|z —
< # = M|z —2'|.
2\,

2) Let k—1>mn and \g(i (x) — g,(en)l( N < M|z — 2’|, z,2" € R.

Then by (4), |g\"(z) — g{” (@) = 50 /™% (9 (x — 1) — gi” (= — 1)) dt| <
ﬁ j";\k M|z —2'|dt = M|z — 2|
Let k,1 € NU {0}, k > I. Then by (4),

1 1 1
(5) 100 (@) - o, (= )\\—/ 0, (@ — ) — g (@)t
2)\k Ak
M, M;
< — = — .
\2)‘k/—)\k|tdt 5 M
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o0
Let n € NU {0}. Since 2L Ar < oo forl=0,1,...,n, the series
S el
=n

o0

(6) V@)= 3 (0@ -9 (@)., 1=0,1,....n,

k=n-+1
converges uniformly in R. It means that for the function g, defined by (6) for I = 0,
we have g, € O™ (R). Put

oo

(7) g(x) = lim gn(x) = > (gr(@) — gr-1(2)) + gn(x)

n—oo
k=n-+1

= gn(z) + gn(x), neNU{0}.

Since g, € C™(R), g, € C™(R) for any n € N U {0}, we have g € C®(R) for
9 = gn + Gn- By (3) for Il = n we obtain

. 9ol oo
®) gl < 3 (M"WR+MW1M%,|“nWR:\IH v
Ao M1

Further, by (6) and (5) for | = n we get

M o0
©) 138710 < 52 30 A

k=n-+1

It follows by (7) from (8) and (9) that

M, > M,,
(10) lg™ o < 7(2+ > Ak) < 2O+ 1),

2
k=n-+1

The function ¢ is even and nonincreasing on (0;+00) as the limit of a sequence of

o0
functions g, with the same properties. Obviously g(z) =0 for x| > C = > A\;. We

k=0

o0
have g(zo) > 0 for 2o € (0;C). Indeed, find n € N such that Y A, < 1(C — o).
k=n+1

£20) > 0 and g, () > gn ($522) form > nandz € < ; Chro Z /\k>
k=n+1

) for m > n and g(xo) = "}i_rr)loogm(xg) > g, (9522) . So

Then g, (<

Hence g,,(70) > gy (S5

we have supp g = (—C; C).
Using Fubini’s theorem for the nonnegative function ¢,_1(z — t), we obtain

s} 1 An [e%s) [e%s)
/ gn(z)de = oW (/ gn—1(z — 1) dx) dt = / gn—1(x) dx
—00 n J—\, —00 —00

= /OC go(z)dz =1

— 00
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and by the uniform convergence of the series in (6) and by (7) we get

(1) /Oo o(z) do = /C g(z) de = 1.

—00 —-C

The function gxg(z) = ffooo g(t)g(x—t) dt is even, nonincreasing on (0; +00), positive
n (—2C;2C). Further, supp g x g = (—2C;2C), g * g € C*°(R) and by (10)

[ T g9 (@ — 1y dt

C
<20 gllsellg™ oo < 5 (C +1)*M

(g% 9)™ [loc = sup|(g * 9)™ (z)| = sup
z€R zER

g * g(2Cz). Then w is even, nonincreasing on (0; +00), u € C*(R),

;1), u(z) > 0 for z € (-1;1), [[u™ | < $C(C + 1)%(2C)"M,,
>0,z € IR Since g € L%*(R) we can use Plancherel’s theo-

rem to prove [* d(z)dr = 5= foo (&) de = [0 g(t)dt =2 [T g3(t)dt =

21 f_CC gt)ydt > 2 (f_cg(t) dt) = & by (11) and the Holder inequality. O

Theorem 0.1. Let m,n € N, a;, € R, k = 1,...,m. Let further A(z) be a
nonnegative nondecreasing function defined for x € (0;+o00) and let the integral
= fOOOA x)e **dx, s = o + it, converge for o > 1. Let the function g(s) =

( ) Z (é Y3 be continuous in the halfplane o > 1. Define go(t) = g(1 + it),

(@) .

te R If the functzon go satisfies the conditions: gy~ is absolutely continuous on R,

)\hﬂr_l S fo |go t)|dt =0 fori=0,1,...,n— 1 and g((]n) € LY(R), then
m-1 (n)
2
eimA($)4' ak+1xk < ”90 ”1, x> 0.
= k! nxn

Proof. We will prove the theorem in two steps. First, we shall estimate the

expression e A(x) — > %xk from above (cf. (18)), and, secondly, from below

k_O
(cf. (23)). We have f(s) = [;7 A(z)e " dz, &t = [ a" e Do dz, k € N,
for o > 1. Hence g(s) = f(s) - Z (s—fﬁl)—k =I5 (B(x) - %) —(s=Derdy =
k=1
m—1
I <B x)— > a’;ﬁ%xk)ef(s’l)z dz, where B(z) = e"'”A(x). Take any sequence
k=0

(oo}

{M;}$2, of positive numbers, M_; = My = 1, such that C = Nf\jl L < o0. By
=0

the preceding lemma there exists a kernel ©v € C*°(R) with supp v = (—1;1) such
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that u and @ are even, u(z) > 0, z € (—=1;1), a(z) > 0, z € R, [*_d(z)dx >
[u™]| < DB"M,, n € NU{0}, where D = 1C(C + 1)?, 8 = 2C. Put g.(t) =
g(1+e+it),t € R, &>0.For A >0, y >0 we have

A A oo m—1 k
AW £y x .
c(Hu(~)ev dt = < )e! / B(x) = Y app1— |e D7 da ) dt.
/_)\g ( )u()\)e [AU(A)G < 0 ( (=) P U k‘!)e ;

0

We want to change the order of integration in the last integral: this is possible as for
[t,z] € Q = (=\;A) x (0;400) we have |u(L)elViabe=(=Ti)r| < Dake=sr € L1(Q)),
k =0,1,...,m—1. For s > 1, x > 0, the relation f(s) = [~ A(u)e " du >
Alz) [Fe " du = s 'A(z)e ™ holds. It means A(z) < sf(s)e’®, B(z) <
sf(s)et=Ye s > 1, 2 > 0. In particular, B(z) < (1 + £)f(1 + )eﬂ, x > 0.
It follows that |u(%)eV!B(z)e”+7| < (14 £)f(1+ £)e - D € Ll( ). Conse-

quently, u(%)e™! (B(x) - Y ari%y )e (417 js in L1(Q). Hence we can change
the order of integration to obtain

/ (e ar= [ °°( k) ( / -y (1) dt> a

_ /OOO (B(x) e akHZ_’:)e—w Aa(A(y — ) da.

k=0

-1

3

M

Ho

We need to let ¢ — 0+ in this relation. As g. tends uniformly to go in (—X; A), we
have li%1+ fj‘)\ ge(t)u(L)elvt dt = f_)‘)\ go(t)u(£)e'v* dt € R. Levi’s theorem yields
E—

61_i)r(1]1+ 0<><> B(z)Ai(A(y — z))e " dz = )\/OOO B(z)ia(A(y — z)) dz € RU {+o0},

and Lebesgue’s theorem implies

o

li%1+ zFe T a( Ny — ) dz = /\/ 2Fa(\y —2))dz € R,
E— 0
0

because
(12) a(t) < 2DB"Mult|™", t#0, neN.

This fact implies that [~ B(z)@(A(y — z)) dz € R, too, and

/1 go(t)u(;)eiyt dt = A /0°° <B($) - mZ_l k41 z—T)ﬁ(A(y —z))da

( N )
- [(p-9 -2 52 6-5)
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Integration by parts yields f_)‘)\ go(t)u(£)evtdt = (é)” f_)‘)\[go(t)u(i)](”)eiyt dt =
. n (k) ‘
;)" fA)\[Z (:)u(”*k)(i) . g)?n—_(,f)} e dt. Then, by the properties of the kernel u,

we obtain

n
kM,
(14) ‘/ golt ‘ytdt‘<2Dy”Z<) SO ’“/ 19 (@) at, y > 0.
k=0

Let 0 < @ < Ay. For v € (—a;a) C (—o0;Ay) we have by monotonicity of the
function A

- 3) <Al 5) <als ) tolo ) <oty )
éey"’%B(y—i— %), ie. e_2TaB(y— %) < B(y— %), v € (—a;a).

From this inequality we deduce
HB(y-3) ") dv < aB( S)aw)dv < N
e vy i a(v)do < 3 y—5)ulv)dv < i

a a

It follows easily from these inequalities that

Ay m— 1
_2a _ a _ ak+1 _ Uik
e AB(y A)[ v) dv / )\) a(v) dv

< /_Z(B@—;)—zazr <y—;>’f)a<v>dv-

Using the relation (13) and the estimate (14) we finally obtain

e*2TaB<y - %) [ v)dv 7/ Z ak“ )kﬁ(v) dv

(15) §

—n n n— 1 A v
<20y Z(k)a Moo o | 1o 0]t
0

k=0

We shall show that for every k € NU {0}

im [ (5= ) awde =gt [ a)a

(16) Jim 706<ny) a(v)dv =y /700u(v) .

Note that the relation (12) implies |v|"@(v) € LY(R) for all n € N U {0}. Then
)\hrf f L) dv:)\lirf ffoo(y——) (v) dv + hm fo fa(v) dv, where
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fav) = max(y — £,0)]*a(v ) Since 0 < fa(v) < y*a(v) € LY((0,+00)), we have
hm f Hw)dv =y fo (v)dv by Lebesgue’s theorem. Levi’s theorem gives

hm f (y — DFa(v)dv =y f v) dv. The relation (16) is proved.

Let A — 400, a — 400, in such a way that ¢ — 0+ in the relation (15). From
the assumptions of the theorem we obtain by (16)

0o m—1 00
(17) lim B(z) / a(v)dv — %yk/ a(v) dv < Dy7"||gon)\|1.

Iﬂyf _
o0 k=0

Since the function A is nondecreasing on (0;+00), the proper limits lim A(x),

T—Y—

lim+A (x) exist for y > 0 and lim A(x) < A(y) < lierA(x), y > 0. It follows
r—yY T—Y— T—Y

that lim B(x) < B(y) < lim+ B(z), y > 0. The functions A and B are continuous
T—y— T—Yy

on (0; +00) except for a countable set of points. The inequality

MS

(18) [ i } [ atwran < Dyl

k=0 —o0

holds, however, at the points of discontinuity of the function B as well. We can verify
this fact letting y — y1+, where y; is a point of discontinuity and y’s are points of
continuity of the function B.

We know by (18) that there exists a polynomial P with nonnegative coefficients,
deg P < m — 1, such that 0 < B(y) < P(y) for y > 0. So we have for A > 0, y > 0,
1<a< )y

(19) //\yB(y—g)ﬂ(v)dvé/__QP(y—g)a dv—l—/a)\yf:’(y—g)a(v)dv
3

h +723(y ) (v) dv.

There exists K = K(y) > 0 such that

v

(20) 0< 15<y - X)ﬁ(v) < 5{—2

for v € (—o0; —a) U {(a; \y). For v € (—a;a) we have

(21) B( —%) <e2TaB<y+§).
680



The relations (19), (20) and (21) yield

5(y+5) [Cawaz [ B(y-T)awa

a a

2 v K
> Bly— = ﬂ(v)dv—Z/ — dv.
/ ( )\) 0 V2

—00

Using (13) a (14) we can deduce from this fact that

2a a Ay T2 ak+1 k 2K
eAB<y+X)[ dfuf/ Z ) ()dv+—
N (1 L Mo
—~2Dy Z(k)ﬁ ¢ An,,f / 96" (£)] d.
0

k=0

(22)

Letting in (22) A — 400, @ — 400, in such a way that § — 0+, we obtain

m— a o) A 3 n
(23) [ §j k41 ’f} | awanz -py g,
—o0

k=0

provided y > 0 is a point of continuity of the function B. Letting in (23) y —
y1—, where y; is a point of discontinuity and y’s are points of continuity of the
function B, we verify validity of (23) at the points of discontinuity of B(z). Finally,

oo

D(f7 a(v)dv)™t < §(C+1)2- € = M Since C' = % > 1 can be
n=0 "

chosen arbitrarily, the theorem is proved. O

There exist constants K > 0 and 3 > 1 such that

! ) . .
(24) ‘ [Z (1+ t)} ’ < KB (312 log D t
forallt >3 and j =0,1,... (cf. [5]). This relation implies
(25) In (1 +ib)ll < B ()96 + 1)

for all j =0,1,... and a suitable § > 1. Theorem 0.1 now yields
2
(26> ‘e_x'(/)l(ex) — 1‘ < _ﬁn(n!)2[9<n+ 1)]! < x—nﬁ{znlln
™

for all z > 0 and n € N with suitable $; > 1. Minimizing =" n!'" over n € N for
a fixed = > 0 we obtain

1

P1(x) =z + O(rexp(—2clog z)), z — +o0
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and

(2) /Oo O exp(~clogt 7)), @ -+
= =
(X L, logu rexp(—clogitz)), x 0

with some ¢ > 0. By analytic methods we can obtain an essentially better estimation
of the error term in the P.N.T. (cf. [5]).

This theorem generalizes Theorem 2 of [2] in two directions: both the main and
the remainder terms are more general. The main term can be found in [4], Chapter 5.

The proof of the present theorem is a modification of the proof of Theorem 2 from
the book [1], p. 124.
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