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Introduction

Let X denote a Banach space, let A : X → X be a linear bounded operator. By

r(A) and r(A, x), where x ∈ X , we will denote the spectral radius of the operator A

and the local spectral radius of A at x, respectively. Let us recall that

r(A) = lim
n→∞

‖An‖1/n

and
r(A, x) = lim sup

n→∞
‖Anx‖1/n.

Some theorems on the properties of r(A) and r(A, x) can be found for instance in the
papers [5, 8, 10]. Particularly, in the paper [5] Daneš proved that if linear bounded

operators A and B are commutative then for every x ∈ X

r(A +B, x) � r(A, x) + r(B)

and
r(AB, x) � r(A, x)r(B).

One can easily show that if the assumption of commutativity is not satisfied then

the above inequalities need not hold. The natural question arises wether it can be
weakened. For results of this type, concerning the spectral radius, we refer the reader

to [6, 13]. In the present paper we give a few lemmas on estimations of r(A +B, x)
and r(AB, x), in which the commutativity is replaced by other conditions. The

applications of these lemmas to the differential- functional equations of neutral type
are also given.
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1. Lemmas on the local spectral radius

In what follows, by K we will denote a cone in the Banach space X . Recall that

a subset K of X is called a cone if K is convex, closed, K �= {θ} and if x ∈ K and
−x ∈ K then x = θ.

Lemma 1. Assume that K is a normal cone in the Banach space X , i.e. there

exists M > 0 such that for all x, y ∈ X if θ ≺ x ≺ y then ‖x‖ � M‖y‖, where ≺
denotes the partial order relation given by K (see [9]). Moreover, let A, B : X → X

be linear bounded and positive operators. If ABx ≺ BAx for every x ∈ K then:

1) r(AB, x) � r(A, x)r(B),
2) r(A+B, x) � r(A, x) + r(B),

for each x ∈ K.

�����. 1) Since A and B are positive, it follows that they are increasing and
A(K), B(K) ⊂ K. Hence for every x ∈ K we obtain

(AB)2x = AB(ABx) ≺ AB(BAx) ≺ (BA)2x ≺ B2A2x.

So (AB)2x ≺ B2A2x. In the same manner we can prove that for every n ∈ � and

x ∈ K,
(AB)nx ≺ BnAnx.

Hence
‖(AB)nx‖ � M‖Bn‖‖Anx‖,

which gives r(AB, x) � r(A, x)r(B).
2) It is easy to check that for every n ∈ � and x ∈ K we have

(A+B)nx ≺
n∑

i=0

(
n

i

)
Bn−iAix.

Consequently,

‖(A+B)nx‖ � M

n∑

i=0

(
n

i

)
‖Bn−i‖‖Aix‖.

The next step of the proof is a modification of those given in [5] or [13], so it can be
omitted. �

Remark. If we assume additionally that K is a generating cone, that is X =

K −K (see [9]) then in view of Lemma 2 [5] we have

r(AB) = max{r(AB, x) : x ∈ K}
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and

r(A +B) = max{r(A+B, x) : x ∈ K}.

Thus we obtain the following corollary for the spectral radius.

Corollary. If the assumptions of Lemma 1 are satisfied and the cone K is

generating then r(AB) � r(A)r(B) and r(A +B) � r(A) + r(B).

In a similar way we can prove the following two lemmas which can be useful in
applications.

Lemma 2. Assume that K is a normal cone, the operators A, B : X → X are

linear bounded and positive and there exists c > 0 such that ABx ≺ cBAx for every

x ∈ K. Then r(AB, x) � cr(BA, x), x ∈ K.

Lemma 3. Suppose that K is a normal cone, the operators A, B : X → X

are linear bounded and positive and there exists c > 1 such that AnBx ≺ cBAnx

for every n ∈ � and x ∈ K. Then r(AB, x) � cr(A, x)r(B) and r(A + B, x) �
c[r(A, x) + r(B)], x ∈ K.

The proofs are straightforward.

2. Applications of Lemma 1

Now we give two examples of application of Lemma 1 to the problems of neutral

type for differential-functional equations. In what follows we will need the fixed point
theorem from the paper [12].

Let (X, ‖ · ‖,≺, m) be a Banach space with a binary relation ≺ and a mapping
m : X → X . Assume that:

(i) the relation ≺ is transitive,
(ii) the norm ‖ · ‖ is monotonic,
(iii) θ ≺ m(x) and ‖m(x)‖ = ‖x‖ for every x ∈ X .

Proposition [12]. In the Banach space considered above, let the operators

A : X → X , A : X → X be given with the following properties:

(iv) A is a linear bounded and positive operator with r(A) < 1,

(v) m(Ax−Ay) ≺ Am(x− y) for all x, y ∈ X .

Then the equation Ax = x has a unique solution in X .

Similar theorems can be found in [11].
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Consider the following initial value problem of neutral type

x′(t) = f(t, x(h(t)), x′(H(t))), t ∈ [0, T ],(1)

x(0) = 0.(2)

By a solution of the problem (1)–(2) we mean a function which is absolutely contin-

uous on [0, T ] (AC for short), satisfies the equation (1) a.e. on [0, T ] and the initial
condition (2). Similar problems have been considered for example in the papers [1],

[2] under the assumption of continuity of the function f , and in [7] with f satisfying
a sort of Carathéodory type conditions. Suppose that:

1◦ h : [0, T ]→ [0, T ] is a continuous function,
2◦ H : [0, T ] → [0, T ] is a monotonic and AC-function such that 0 < ε �

|H ′(t)| � 1 a.e. on [0, T ] and H−1([0, h(H(t))]) ⊂ [0, h(t)],
3◦ (t, x, y)→ f(t, x, y) is a real function defined on the set [0, T ]×�

2 , Lebesgue

measurable with respect to t for all (x, y) ∈ �
2 and satisfying the Lipschitz

condition

|f(t, x1, y1)− f(t, x2, y2)| � L1|x1 − x2|+ L2|y1 − y2|

for all (t, x1, y1), (t, x2, y2) ∈ [0, T ]× �
2 , where L1, L2 > 0,

4◦ r(A1)+L2M < 1, whereM = (min
[0,T ]

|H ′(t)|)−1 and r(A1) denotes the spectral

radius of the operator (A1x)(t) = L1
∫ h(t)
0 x(s) ds, t ∈ [0, T ], in the space

L1[0, T ],
5◦ there exists a function g : [0, T ]→ �+ Lebesgue integrable on [0, T ] and such

that |f(t, 0, 0)| � g(t) a.e. on [0, T ].

Theorem 1. Under the assumptions 1◦–5◦ the problem (1)–(2) has a unique
solution defined on [0, T ].

�����. To prove the theorem we apply Proposition. In our case X = L1[0, T ],

m(x)(t) = |x(t)|. We say that x ≺ y if and only if x(t) � y(t) a.e. on [0, T ]. It is easy
to verify that the problem (1)–(2) is equivalent to the integral-functional equation

z(t) = f

(
t,

∫ h(t)

0
z(s) ds, z(H(t))

)
, t ∈ [0, T ],

where x(t) =
∫ t

0 z(s) ds.
Consider the operator

(Az)(t) = f

(
t,

∫ h(t)

0
z(s) ds, z(H(t))

)
, t ∈ [0, T ],
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where z ∈ L1[0, T ]. Obviously, in view of 1◦–3◦ and 5◦, the operator A maps L1[0, T ]
into itself. Moreover, by 3◦, we have for all z, w ∈ L1[0, T ]

|(Az)(t)− (Aw)(t)| � L1

∫ h(t)

0
|z(s)− w(s)| ds+ L2|z(H(t))− w(H(t))|.

Hence

(3) |(Az)(t)− (Aw)(t)| � (A1 +A2)(|z − w|)(t),

where

(A1z)(t) = L1

∫ h(t)

0
z(s) ds, (A2z)(t) = L2z(H(t)).

In view of 1◦ and 2◦, A1 + A2 is a linear bounded and positive operator mapping
L1[0, T ] into itself. The inequality (3) means that the assumption (v) is satisfied.

It remains to prove that r(A1 + A2) < 1. To show this we apply Lemma 1. Let
K = {x ∈ L1[0, T ] : x(t) � 0 a.e. on [0, T ]}. Obviously, the cone K is normal.

Notice that the relation given by K is the same as the one defined at the beginning
of our proof. By 2◦ and the theorem on integration by substitution for the Lebesgue

integral we obtain for z ∈ K

(A2A1z)(t) = L1L2

∫ h(H(t))

0
z(s) ds � L1L2

∫ h(t)

0
z(H(s)) ds = (A1A2z)(t)

a.e. on [0, T ], which means that A2A1z ≺ A1A2z for every z ∈ K. Therefore in

virtue of Lemma 1

r(A1 +A2, z) � r(A1) + r(A2, z), z ∈ K.

Since r(A2, z) � L2M for every z ∈ K and K is a generating cone, we have

r(A1 +A2) � r(A1) + L2M.

By 4◦ we obtain r(A1 +A2) < 1, which completes the proof. �

Next consider the Darboux problem of neutral type

zxy = f(x, y, z(h(x, y)), zxy(H(x, y))), (x, y) ∈ I2,(4)

z(x, 0) = 0, x ∈ I, z(0, y) = 0, y ∈ I,(5)

where I = [0, T ].
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By the solution of (4)–(5) we mean a function z : I2 → � such that z(x, y) is

an AC-function with respect to x and y, zx is an AC-function with respect to
y for a.e. x ∈ I, zy is an AC-function with respect to x for a.e. y ∈ I, zxy =
f(x, y, z(h(x, y)), zxy(H(x, y))) a.e. on I2, z(x, 0) = 0 for x ∈ I and z(0, y) = 0 for

y ∈ I (see [2]). The following result for (4)–(5) may be proved in much the same
way as Theorem 1.

Theorem 2. Assume that:

6◦ h : I2 → I2 is a continuous function,

7◦ U, V ⊂ �
2 are any open sets such that I2 ⊂ U, I2 ⊂ V , H : U → V is a

diffeomorphism with the property H(I2) ⊂ I2,

8◦ |H ′(x, y)| � 1 a.e. on I2, where H ′(x, y) denotes the Jacobian of H , and

D(h(H(x, y)) ⊂ H(D(h(x, y))) for (x, y) ∈ I2, where D(x, y) = {(t, s) ∈
I2 : 0 � t � x, 0 � s � y},

9◦ (x, y, w, z) → f(x, y, w, z) is a real function defined on the set I2 × �
2 ,

Lebesgue measurable with respect to (x, y) for every (w, z) ∈ �
2 and sat-

isfying the Lipschitz condition

|f(x, y, w1, z1)− f(x, y, w2, z2)| � L1|w1 − w2|+ L2|z1 − z2|

for all (x, y, w1, z1), (x, y, w2, z2) ∈ I2 × �
2 , where L1, L2 > 0,

10◦ r(A1) + L2M̃ < 1, where M̃ = (min
I2

|H ′(x, y)|)−1 and r(A1) denotes the

spectral radius of the operator (A1z)(x, y) =
∫ h(x,y)
0 z(t, s) dt ds in the space

L1(I2),
11◦ there exists a function g : I2 → �+ which is Lebesgue integrable and

|f(x, y, 0, 0)| � g(x, y) a.e. on I2.

Then the problem (4)–(5) has a unique solution defined on I2.

Remark. The problem (4)–(5) was considered for example in the papers [3, 4].
Particularly, in [4] we applied the Banach fixed point theorem to prove the existence

and uniqueness of a solution of (4)–(5) in the space L1(I2). To obtain the uniqueness
we assumed that L1T

2 + L2M̃ < 1, which is in general a more restrictive condition

than 10◦. For example, if h(x, y) � (x, y) a.e. on I2, that is h1(x, y) � x and
h2(x, y) � y a.e. on I2, where h(x, y) = (h1(x, y), h2(x, y)), we have r(A1) = 0 and

the assumption 10◦ becomes L2M̃ < 1.
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