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COMMUTANTS AND DERIVATION RANGES

Salah Mecheri, Tebessa

(Received February 12, 1997)

Abstract. In this paper we obtain some results concerning the setM = ∪
{
R(δA)∩{A}′ :

A ∈ L(H)
}
, where R(δA) is the closure in the norm topology of the range of the inner

derivation δA defined by δA(X) = AX − XA. Here H stands for a Hilbert space and we
prove that every compact operator in R(δA)

w ∩ {A∗}′ is quasinilpotent if A is dominant,
where R(δA)

w
is the closure of the range of δA in the weak topology.

Introduction

Let L(H) be the algebra of all bounded linear operators on a complex separable
and infinite dimensional Hilbert space H, the inner derivation induced by A ∈ L(H)
being the map defined by

δA : L(H) �→ L(H); δA(X) = AX −XA (A ∈ L(H)).

The identity is not a commutator, that is, I �∈ R(δA) for any A ∈ L(H), where R(δA)
denotes the range of δA. Nevertheless, J.H. Anderson in [2] proved the remarkable

result that I ∈ R(δA) for a large class of operators, where R(δA) denotes the closure
of the range of δA in the norm topology. This allowed him to define a new class of

operators, called
JA(H) = {A ∈ L(H) : I ∈ R(δA)}.

Let N = ∪
{

R(δA) ∩ {A}′ : A ∈ L(H)
}
, where {A}′ denotes the commutant of A.

In finite dimension the set N is exactly the set of nilpotent operators, in infinite
dimension the theorem of Klëınecke-Shirokov [3] confirms that any operator in N is
quasinilpotent. If we now consider instead of N the set

M = ∪
{
R(δA) ∩ {A}′ : A ∈ L(H)

}
,
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the theorem of Klëıneck-Shirokov can’t be used. In other words an operator inM is

not necessarily quasinilpotent; we can take as a counterexample the existence of an
operator A ∈ L(H) such that I ∈ R(δA).

J.H. Anderson [1, p. 135–136] proved that R(δA) ∩ {A}′ = {0} if A is normal or

isometric. Here we prove that any operator in M is nilpotent if P (A) is normal,
isometric or co-isometric for some polynomial P .

R.E. Weber [5] confirms that every compact operator in R(δA)
w ∩ {A}′ is qua-

sinilpotent, where R(δA)
w
is the weak closure of R(δA). If we now consider the

set {
R(δA)

w ∩ {A∗}′ : A ∈ L(H)
}
,

we can ask: is every compact operator in R(δA)
w ∩ {A∗}′ quasinilpotent? At this

moment, we have not a global answer but we can partially answer this question with

the assumption that A is dominant

Lemma 1. Let A, X ∈ L(H), T ∈ {A}′ and ε > 0. If ‖A‖ � 1 and if ‖AX −
XA− T ‖ < ε, then for every n ∈ � we have

‖(An+1X −XAn+1)− (n+ 1)AnT ‖ < (n+ 1)ε.

We recall that ∀A ∈ L(H), ∀X ∈ L(H) and ∀T ∈ {A}′ we have

AnX −XAn = nAn−1T −
n∑

i=1

An−i−1(T − (AX −XA))Ai.

�����. For n = 0 evident.

For n = 1 we have

A2X −XA2 = (A2X −AXA) + (AXA−XA2),

so,

‖(A2X −XA2)− 2AT ‖ = ‖(A2X −AXA)−AT + (AXA−XA2)− TA‖
= ‖A(AX −XA− T ) + (AX −XA− T )A‖
� 2‖A‖‖AX −XA− T ‖ < 2ε.

Now suppose that for every n � 2 and for every k � n we have

(∗) ‖(AkX −XAk)− kAk−1T ‖ < kε.
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Since

(An+1X−X(An+1)−(n+1)AnT ) = An(AX−XA−T )+((AnX−XAn)−nAn−1T )A,

we have
‖(An+1X −X(An+1)− (n+ 1)AnT ‖ < ε+ nε = (n+ 1)ε.

�

Theorem 2. Let A ∈ L(H) and suppose that

R(δP (A)) ∩ {P (A)}′ = {0}

for some polynomial P , then every operator in R(δA) ∩ {A}′ is nilpotent.

�����. Let P be a polynomial of degree n and let P (k) be the k’th derivative
of P . If

T ∈ R(δA) ∩ {A}′,

then there exists a sequence (Xn) in L(H) such that

AXn −XnA → T ;

since T ∈ {A}′ then

P (k)(A)Xn −XnP (k)(A)→ P (k+1)(A)T.

So

P (A)Xn −XnP (A)→ P (1)(A)T,

which shows that

P (1)(A)T ∈ R(δP (A)) ∩ {P (A)}′,

that is, P (1)(A)T = 0. Also we have

P (1)(A)Xn −XnP (1)(A)→ P (2)(A)T,

which gives
0 = TP (1)(A)XnT − TXnP (1)(A)T → P (2)(A)T 3,

that is, P (2)(A)T 3 = 0. By repeating the same argument it follows that T k = 0 for

a given integer number k, so T is nilpotent. In particular, every normal operator in
R(δA) ∩ {A}′ vanishes. �
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Corollary 3. Let A ∈ L(H). If P (A) is normal, isometric or co-isometric (AA∗ =

I or A∗A = I) for some polynomial P , then R(δA) ∩ {A}′ is nilpotent.
�����. In [1, p. 136–137] Anderson showed that

R(δP (A)) ∩ {P (A)}′ = {0}.

�

Definition 4. An operator A ∈ L(H) is called dominant if, for all complex λ,
range(A−λ) ⊆ range(A−λ)∗, or equivalently, if there is a real numberMλ � 1 such
that

‖(A− λ)∗f‖ � Mλ‖(A− λ)f‖
for all f in H. If there is a constant M such that Mλ � M for all λ, A is called

M -hyponormal, and if M = 1, A is hyponormal (see [4]).

Theorem 5 [5]. Let A ∈ L(H), then every compact operator in R(δA)
w ∩ {A}′

is quasinilpotent.

Theorem 6. If B ∈ R(δA)
w ∩ {A}′ and f(B) is compact, where f is an analytic

function on an open set containing σ(A), then

σ(B) ⊂ {z : zf(z) = 0}.

�����. If B ∈ R(δA)
w ∩ {A}′, then

AXα −XαA
w−→ B;

since f(B) ∈ {A}′ we have

AXαf(B)−XαAf(B)
w−→ Bf(B),

hence
AXαf(B)−Xαf(B)A

w−→ Bf(B),

that is,
Bf(B) ∈ R(δA)

w ∩ {A}′.
Since Bf(B) is compact, then σ(Bf(B)) = g(σ(B)) = 0 by Theorem 5, where

g(z) = zf(z). In particular, if P (B) is compact for some polynomial P , then

σ(B) ⊂ {z : zP (z) = 0}.

�
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Theorem 7. Let A or A∗ be a dominant operator.

If B ∈ R(δA)
w ∩ {A∗}′, then

{λ ∈ σp(B∗) : dimker(B∗ − λ) < ∞} ⊂ {0}

or,

{λ ∈ σp(B) : dim ker(B − λ) < ∞} ⊂ {0},
where σp(A) is the point spectrum of A.

�����. Suppose that A is dominant and B ∈ R(δA)
w ∩ {A∗}′, then

B∗ ∈ R(δA∗)
w ∩ {A}′.

Let λ ∈ σp(B∗) be such that E = ker(B∗ − λ) is finite dimensional.

The subspace E is invariant under B∗ and A. It is easy to verify that A|E is
dominant, hence A|E is normal and so E reduces A (see [4]).

Let H = E ⊕ E⊥, then we can write

A =

(
C 0
0 ∗

)
, B∗ =

(
λ ∗
0 ∗

)
.

Since B∗ ∈ R(δA∗)
w
, then λIE ∈ R(δC∗), and this necessarily implies λ = 0. �

By the same arguments as in the above proof we achieve the proof of the present

theorem.

Corollary 8. If A or A∗ is a dominant operator, then every compact operator in

R(δA)
w ∩ {A∗}′ is quasinilpotent.

�����. Suppose that B ∈ R(δA)
w ∩{A∗}′ with B compact and λ ∈ σ(B) \ {0},

then λ ∈ σp(B) with dim ker(B−λ) < ∞ and λ ∈ σp(B∗) with dimker(B∗−λ) < ∞.
It follows from Theorem 7 that B is quasinilpotent. �
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