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M -IDEALS OF COMPACT OPERATORS INTO �p

Kamil John*, Praha and Dirk Werner, Berlin

(Received January 13, 1997)

Abstract. We show for 2 � p < ∞ and subspaces X of quotients of Lp with a
1-unconditional finite-dimensional Schauder decomposition that K(X, �p) is an M -ideal
in L(X, �p).

1. Introduction

A closed subspace J of a Banach space X is called anM -ideal if the dual space X∗

decomposes into an �1-direct sum X∗ = J⊥⊕1 V , where J⊥ = {x∗ ∈ X∗ : x∗
∣∣
J
= 0}

is the annihilator of J and V is some closed subspace of X∗. This notion is due to

Alfsen and Effros [1], and it is studied in detail in [4].

It has long been known that the space of compact operators K(�p) is an M -ideal
in the space of bounded operators L(�p) for 1 < p < ∞ whereas this property fails
for Lp = Lp[0, 1] unless p = 2; cf. Section VI.4 in [4]. More recently, it was shown
in [6] that K(Lp, �p) is an M -ideal if 1 < p � 2, and it is not an M -ideal if p > 2.

In this paper we wish to examine the M -ideal character of K(X, �p) for sub-

spaces X of quotients of Lp and 2 � p < ∞. Our idea is to exploit the fact that
those X have Rademacher cotype p with constant 1. This leads to the result men-

tioned in the abstract.

We would like to thank N. Kalton and E. Oja for their comments on preliminary
versions of this paper.

* Supported by the grants of GA AV ČR No. 1019504 and of GA ČR No. 201/94/0069.
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2. Results

Here is our main result.

Theorem 2.1. Let 1 < p < ∞ and suppose that the Banach space X admits a

sequence of operators Kn ∈ K(X) satisfying

(a) Knx → x for all x ∈ X ,

(b) K∗
nx∗ → x∗ for all x∗ ∈ X∗,

(c) ‖IdX − 2Kn‖ → 1.
Then K(X, �p) is an M -ideal in L(X, �p) if

(2.1) lim sup
n
(‖x‖p + ‖xn‖p)1/p � lim sup

n

(‖x+ xn‖p + ‖x− xn‖p

2

)1/p

for all x, xn ∈ X such that xn → 0 weakly.

�����. Let T : X → �p be a contraction. We shall show that T has prop-
erty (M), i.e.,

lim sup
n

‖y + Txn‖ � lim sup
n

‖x+ xn‖

whenever x ∈ X , y ∈ �p, ‖y‖ � ‖x‖, and xn → 0 weakly in X . This implies our
claim by [6, Th. 6.3].

In fact, we have

lim sup
n

‖y + Txn‖ = lim sup
n

(
‖y‖p + ‖Txn‖p

)1/p

� lim sup
n

(
‖x‖p + ‖xn‖p

)1/p

� lim sup
n

(‖x+ xn‖p + ‖x− xn‖p

2

)1/p

;

so it is enough to show that

(2.2) lim sup
n

‖x+ xn‖ = lim sup
n

‖x− xn‖.

Let ε > 0. Pick m ∈ � so that

‖Kmx− x‖ � ε, ‖Id− 2Km‖ � 1 + ε.

Then pick n0 ∈ � so that
‖Kmxn‖ � ε ∀n0;

52



this is possible since xn → 0 weakly and Km is compact. We now have for n � n0

(1 + ε)‖xn + x‖ � ‖(Id− 2Km)(xn + x)‖
= ‖xn − x− 2Kmxn + 2x− 2Kmx‖
� ‖xn − x‖ − 2ε− 2ε

so that

lim sup
n

‖xn + x‖ � lim sup
n

‖xn − x‖,

and by symmetry equality holds. �

We note that (2.1) is not a necessary condition, for essentially trivial reasons: e.g.,
if p < 2 and X = �2, then every operator from X to �p is compact and, therefore,

K(X, �p) is an M -ideal, but (2.1) fails.
As the proof shows, one can as well consider all the Banach spaces sharing the

property

lim sup
n

‖y + yn‖ � lim sup
n

(
‖y‖p + ‖yn‖p

)1/p

whenever yn → 0 weakly, e.g., �q or the Lorentz spaces d(w, q) for p � q < ∞.
So our theorem is closely related to [10, Th. 3] and [11, Prop. 4.2]. Actually, we
needed assumptions (a)–(c) only to ensure (2.2), a condition that could be called

property (wM) in accordance with Lima’s property (wM∗) [7].
Now we wish to give more concrete examples where Theorem 2.1 applies. There

is a natural class of Banach spaces in which inequality (2.1) is valid. Recall that
a Banach space X has Rademacher type p with constant C if for all finite families

{x1, . . . , xn} ⊂ X , with r1, r2, . . . denoting the Rademacher functions,

( ∫ 1

0

∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥
p

dt

)1/p

� C

( n∑

k=1

‖xk‖p

)1/p

;

it has Rademacher cotype p with constant C if

( n∑

k=1

‖xk‖p

)1/p

� C

(∫ 1

0

∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥
p

dt

)1/p

instead. Thus we see that the inequality (2.1) is always satisfied when X has

Rademacher cotype p with constant 1, which is the case if X is a subspace of a
quotient of Lp for 2 � p < ∞. As for assumptions (a)–(c) from Theorem 2.1,
these conditions are obviously fulfilled if X has a shrinking 1-unconditional finite-
dimensional Schauder decomposition or merely the shrinking unconditional metric
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compact approximation property of [2] and [3]. Let us mention that the “shrinking”

character of these properties holds, by a well-known convex combinations argument
(cf. [4, Lemma VI.4.9]), for reflexive spaces automatically. These observations yield
the next corollary.

Corollary 2.2. Let X be a subspace of a quotient of Lp, 2 � p < ∞, and let
X have a 1-unconditional finite-dimensional Schauder decomposition or merely the
unconditional metric compact approximation property. Then K(X, �p) is anM -ideal

in L(X, �p).

More explicitly, we note that for instance �p, �p ⊕p �r and �p(�r), where 2 � r �
p < ∞, satisfy these assumptions; but for these spaces the result of Corollary 2.2
has already been known from [11] or [4, p. 327]. Yet there are other examples. In
fact, Li [8] has exhibited spaces of Λ-spectral functions Lp

Λ(�) for certain Λ ⊂ � that

enjoy the unconditional metric compact approximation property. Moreover, since
for 2 � q � p < ∞ the space Lq is isometric to a quotient of Lp, one can substitute

q for p in the above list of examples.

Another way to see that (2.1) holds for Lp, 2 � p < ∞, is to observe that (2.1)
follows immediately from Clarkson’s inequality in Lp, that is

‖f‖p + ‖g‖p � ‖f + g‖p + ‖f − g‖p

2

for p � 2. Now, Clarkson’s inequalities are valid in the Schatten classes as well [9].
Therefore we obtain a noncommutative version of the previous corollary. (Actually,

this argument is not that different, because the Clarkson inequality entails the desired
cotype property.)

Corollary 2.3. Let X be a subspace of a quotient of the Schatten class cp,

2 � p < ∞, and let X have a 1-unconditional finite-dimensional Schauder decompo-
sition or merely the unconditional metric compact approximation property. Then

K(X, �p) is an M -ideal in L(X, �p).

There is a dual version of Theorem 2.1 which we state for completeness.

Theorem 2.4. Let 1 < p < ∞ and 1/p + 1/p′ = 1. Suppose that the Banach
space Y admits a sequence of operators Kn ∈ K(Y ) satisfying

(a) Kny → y for all y ∈ Y ,

(b) K∗
ny∗ → y∗ for all y∗ ∈ Y ∗,

(c) ‖IdY − 2Kn‖ → 1.
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Then K(�p, Y ) is an M -ideal in L(�p, Y ) if

(2.3) lim sup
n
(‖y∗‖p′

+ ‖y∗n‖p′
)1/p′ � lim sup

n

(‖y∗ + y∗n‖p′
+ ‖y∗ − y∗n‖p′

2

)1/p′

for all y∗, y∗n ∈ Y ∗ such that y∗n → 0 weak ∗.

The proof of Theorem 2.4 can be accomplished along the same lines as above using

property (M∗) of a contraction (cf. [6, p. 171] instead.
Again, inequality (2.3) is always satisfied when Y ∗ has Rademacher cotype p′ with

constant 1, which is the case if Y has Rademacher type p with constant 1. The latter
holds if Y is a subspace of a quotient of Lp or cp for 1 < p � 2.

3. Concluding remarks

The conditions (2.1) and (2.3) can be understood as averaging conditions. In an
earlier draft of this manuscript we used these conditions to establish what we call

p-averaged versions of the properties (M) and (M∗) of contractions T , that is

lim sup
n

‖y + Txn‖ �




lim sup

n

(‖x+ xn‖p + ‖x− xn‖p

2

)1/p

for p < ∞

lim sup
n
max(‖x+ xn‖, ‖x− xn‖) for p =∞

whenever x ∈ X , y ∈ Y with ‖y‖ � ‖x‖ and xn → 0 weakly in X ; respectively,

lim sup
n

‖x∗ + T ∗y∗n‖ �




lim sup

n

(‖y∗ + y∗n‖p + ‖y∗ − y∗n‖p

2

)1/p

for p < ∞

lim sup
n
max(‖y∗ + y∗n‖, ‖y∗ − y∗n‖) for p =∞

for all x∗ ∈ X∗, y∗ ∈ Y ∗ such that ‖x∗‖ � ‖y∗‖ and for all weak∗ null sequences
(y∗n) ⊂ Y ∗. (As a matter of fact, (2.3) implies the p′-averaged property (M∗) for a
contraction T : �p → Y .) Using techniques from [6] (which in turn depend on those

from [5]) one can prove the following results.

Proposition 3.1. Let 1 � p � ∞ and suppose that the Banach space X admits

a sequence of operators Kn ∈ K(X) satisfying
(a) Knx → x for all x ∈ X ,

(b) K∗
nx∗ → x∗ for all x∗ ∈ X∗,

(c) ‖IdX − 2Kn‖ → 1.
Let Y be a Banach space. Then K(X, Y ) is an M -ideal in L(X, Y ) if and only if
every contraction T : X → Y has p-averaged (M).
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Proposition 3.2. Let 1 � p � ∞ and suppose that the Banach space Y admits

a sequence of operators Kn ∈ K(Y ) satisfying
(a) Kny → y for all y ∈ Y ,

(b) K∗
ny∗ → y∗ for all y∗ ∈ Y ∗,

(c) ‖IdY − 2Kn‖ → 1.
Let X be a Banach space. Then K(X, Y ) is an M -ideal in L(X, Y ) if and only if

every contraction T : X → Y has p-averaged (M∗).

It is well known (cf. [4, Th. I.2.2]) that a closed subspace J of a Banach space
X is an M -ideal in X if and only if the following 3-ball property holds: For all

y1, y2, y3 ∈ BJ , all x ∈ BX and all ε > 0 there is y ∈ J such that ‖x+ yi− y‖ � 1+ ε

for i = 1, 2, 3. (Here BX denotes the closed unit ball of X .) Upon replacing the

number 3 by some n ∈ � we obtain the n-ball property, which is equivalent to the
3-ball property provided n � 3. One may “average” this condition as well and obtain
the following characterisation of M -ideals by means of an averaged 3-ball property.

Proposition 3.3. A closed subspace J of a Banach space X is an M -ideal in X

if and only if

For all y1, y2, y3 ∈ BJ , x ∈ BX and ε > 0 there is y ∈ J such that(A)

‖x+ yi − y‖+ ‖x− yi − y‖ � 2(1 + ε) for i = 1, 2, 3

holds.

�����. Evidently the 6-ball property implies (A). Conversely, suppose (A). In
order to show that J is an M -ideal in X we will verify the ordinary 3-ball property

(see above). Now an inspection of the proof of [4, Theorem I.2.2] shows that one
may additionally assume that dist(x, J) � 1− ε, in which case (A) implies that

‖x+ yi − y‖ � 2(1 + ε)− ‖x− yi − y‖ � 1 + 3ε, i = 1, 2, 3,

and we are done. �
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