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STABILITY OF GLOBAL SOLUTIONS TO ONE-PHASE STEFAN

PROBLEM FOR A SEMILINEAR PARABOLIC EQUATION

Toyohiko Aiki, Gifu, and Hitoshi Imai, Tokushima

(Received April 28, 1997)

0. Introduction

We consider the following one-phase Stefan problem SP := SP (u0, �0) for a

semilinear parabolic equation in the one-dimensional space: Find a curve (a free
boundary) x = �(t) > 0 on [0, T ], 0 < T < ∞, and a function u = u(t, x) on

Q(T ) := (0, T )× (0,∞) satisfying

ut = uxx + u
1+α in Q�(T ) := {(t, x) ; 0 < t < T, 0 < x < �(t)},(0.1)

u(0, x) = u0(x) for 0 � x � �0,(0.2)

ux(t, 0) = 0 for 0 < t < T,(0.3)

u(t, x) = 0 for 0 < t < T and x � �(t),(0.4)

�′(t) = −ux(t, �(t)) for 0 < t < T,(0.5)

�(0) = �0,(0.6)

where α and �0 are given positive constants and u0 is a given initial function on

[0, �0].

The local existence and the uniqueness for solutions to the above problem SP were

already investigated by Fasano-Primicerio [7] and Aiki-Kenmochi [1, 5, 8]. Since there
are blow-up solutions of the usual initial boundary value problem for the semilinear

equation (0.1) in a bounded domain, by using comparison principle it is clear that
SP has blow-up solutions for a large initial data. In previous works [2, 3, 6] we

showed some theorems and numerical experiments concerned with the behavior of
free boundaries of blow-up solutions to one-phase Stefan problems with homogeneous

Neumann and Dirichlet boundary conditions. On global existence (see Theorem 1.2)
we obtained in [4] a solution to the problem SP on [0,∞), an exponential decay of
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|u|L∞(0,�(t)) and boundedness of the free boundary � for a small initial function u0
in the case α > 1.

The purpose of the present paper is to establish stability of a global solution to
the problem SP in the following sense: Let α > 1 and let {u, �} be a solution to SP
on [0,∞) such that there are positive constants L, M and µ such that

�(t) � L for t � 0 and |u(t, x)| � M exp(−µt) for t � 0 and x � 0.

Then there exists a positive constant δ such that if |u0− û0|Lp(0,∞) < δ, where p > 1
is a suitable constant, the problem SP (û0, �̂0) has a solution {û, �̂} on [0,∞) such
that the free boundary {�̂(t)} is bounded and |û(t)|L∞(0,�̂(t)) decays in exponential
order. We note that the global existence and stability concerned with the problem

SP are not proved, theoretically, for 0 < α � 1.

1. The main result

We give a precise definition of a solution to SP .

Definition 1.1. We say that a pair {u, �} is a solution of SP (u0, �0) on [0, T ],
0 < T <∞, if the following conditions are fulfilled:
(S1) u ∈ W 1,2(0, T ;L2(0, �(t))) ∩ L∞(0, T ;W 1,2(0, �(t))), and � ∈ W 1,2(0, T ) with

0 < � on [0, T ].

(S2) (0.1) holds in the sense of D′(Q�(T )) and (0.2) ∼ (0.6) are satisfied.
Also, we say that a couple {u, �} is a solution of SP on an interval [0, T ′), 0 <

T ′ � ∞, if it is a solution of SP on [0, T ] in the above sense for any 0 < T < T ′.

We introduce the following space in order to describe the class of initial functions

which satisfy the compatibility condition:

V = {(z, s) ; s > 0 and z ∈ W 1,2(0,∞) with z � 0 on [0, s] and z(y) = 0 for y � s}.

First, we recall the theorem concerned with local existence, uniqueness, compari-
son, continuation and regularity of solutions to SP .

Theorem 1.1. (cf. [1, Theorems 1.1 and 5.1] and [7, Theorem 1]) Let α > 0 and
(u0, �0) ∈ V .
(i) Then there is a positive number T0 such that the problem SP has one and only

one solution {u, �} on [0, T0].
(ii) We assume that (û0, �̂0) ∈ V , �0 � �̂0, u0 � û0 on [0,∞) and u0 �≡ û0. Let

{u, �} or {û, �̂} be a solution to SP (u0, �0) or SP (û0, �̂0), respectively, on [0, T ],
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0 < T <∞. Then we have

� � �̂ on [0, T ] and u < û on Q(T ).

(iii) If u0 ∈ C1([0, �0]) and u0x(0) = 0, then the solution {u, �} to SP (u0, �0) on
[0, T ] satisfies that ux is continuous on Q�(T ), ut and uxx are continuous on Q�(T )

and � ∈ C1([0, T ]).
(iv) Let {u, �} be a solution to SP (u0, �0) on [0, T ′), 0 < T ′ <∞, and letM be any

positive number. If |u(t, x)| � M for (t, x) ∈ Q(T ′), then the solution is extended in
time beyond T ′.

Remark 1.1. By Definition 1.1 and Theorem 1.1 (iii), for a solution {u, �} to
SP on [0, T ], ux is continuous on the set {(t, x) ; 0 � x � �(t), 0 < t � T }, ut and uxx

are continuous on Q�(T ) and � ∈ C1([0, T ]). Hence, applying the strong maximum

principle to SP we get the assertion (ii) in Theorem 1.1.

Throughout this paper, given the problem SP , we say that [0, T ), 0 < T � +∞,
is the maximal interval of existence of the solution if the problem has a solution on
the time-interval [0, T ′] for every T ′ with 0 < T ′ < T and the solution can not be

extended in time beyond T . Also, for simplicity we put

E(z, s) =
∫ s

0
z(x) dx+ s for (z, s) ∈ V

and

V (M,L) = {(z, s) ∈ V ; s � L and z(x) � M for 0 < x < s},

where M and L are positive numbers.

Now, we give a theorem concerned with the global existence of solutions to SP .

Theorem 1.2. (cf. [4, Theorem 1.2]) Let α > 1, (u0, �0) ∈ V . Then for any

positive number M there exists a positive number δ0 = δ(M,α) ∈ (0, 1] such that
if �0 � M ,

∫ �0
0 u20x dx � M and

∫ �0
0 u20 dx � δ0, then the problem SP (u0, �0) has a

solution {u, �} on [0,∞) satisfying

E(u(t), �(t)) �
{
C + E

(
u
(1
2

)
, �

(1
2

))β
} 1

β

for t � 1
2
,

d
dt
|ux(t)|2L2(0,�(t)) � 0 for a.e. t > 0,

|u(t)|L∞(0,�(t)) �
√
2 exp(−µt) for t > 0,

where C = C(α), β = β(α) and µ = µ(α, �0, |u0|L∞(0,�0)) are some positive constants.
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For brevity we introduce the following set G := G(u0, �0;M,L, µ) for (u0, �0) ∈ V
and positive numbers M , L and µ:

G(u0, �0;M,L, µ) = {{u, �} ; {u, �} is a solution to SP (u0, �0) on [0,∞) satisfying
|ux(t)|L2(0,�(t)) � M, |u(t)|L∞(0,�(t)) � M exp(−µt)
and �(t) � L for t � 0}.

The next theorem is our main result on the stability of global solutions to SP .

Theorem 1.3. Let α > 1, (u0, �0) ∈ V , let M , L and µ be positive numbers and
{u, �} ∈ G(u0, �0;M,L, µ). Then there is a positive number p1 > 0 depending only
on α possessing the following property:

For any positive number M̃ there exists a positive constant δ such that for any

(û0, �̂0) ∈ V (M̃, M̃) with |u0 − û0|Lp1(0,∞) < δ and |�0 − �̂0| < δ the problem

SP (û0, �̂0) has a solution {û, �̂} on [0,∞) satisfying

�̂(t) � L̂ and |û(t)|L∞(0,�̂(t)) � M̂ exp(−µ̂t) for t � 0,

where M̂ , L̂ and µ̂ are positive constants depending on α, M , L, µ, M̃ and δ.

We will prove Theorem 1.3 in the following way. First, we give some useful inequal-

ities in Sobolev spaces and an ordinary differential inequality in Section 2. Secondly,
some properties of a global solution belonging to the set G(u0, �0;M,L, µ) are shown

(see Section 3). Next, we obtain the following decay for v := û−u under the condition
�0 � �̂0 and u0 � û0:

|v(t)|Lp1 (0,∞) � c(1 + t)−β for t � 0,

where c and β are positive constants. Finally, we give the complete proof of Theorem
1.3 by applying Theorem 1.2.

At the end of this section we introduce some notation. In order to avoid surplus
confusion for notation we write the set of positive constants, α, M , L, µ, M̃ and L̃

as (D). Since α > 1 we can take numbers satisfying

(1.1)





p1 > max
{
2 + α,

1 + α
α− 1

}
and

p1
1 + α

+
1
2
<
1
r0
<
p1
2
,

( 1
r0
− 1
2

)1 + α
p1

= 1 + β0,

p0 =
p1r0
2
.

Clearly, we obtain that 1 < p0 < p1 and 0 < r0 < 2. These numbers play an
important role in our proof.
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2. Auxiliary lemmas

At the beginning of this section we list some useful inequalities in Sobolev spaces
(cf. O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva [10, Chap. 2, Theorem

2.2]): Let d be any positive number. Then

(2.1)
∫ d

0
up+α dx �

(q + 2
2

) 2(q−r)
r+2 |(u p

2 )x|
2(q−r)

r+2

L2(0,d)

(∫ d

0
u

pr
2 dx

) q+2
r+2

for u ∈ W 1,2(0, d) with u(d) = 0,

where p � 2, α � 0, q = 2(p+ α)/p and r ∈ (0, q);

|u|L2(0,d) � d√
2
|ux|L2(0,d) for u ∈W 1,2(0, d) with u(d) = 0;(2.2)

|u|L∞(0,d) �
(
q + 2
2

) 2
q+2

|ux|
2

q+2

L2(0,d)|u|
q

q+2

Lq(0,d)(2.3)

for u ∈W 1,2(0, d) with u(d) = 0,

where q � 1.

The first lemma is concerned with an ordinary differential inequality.

Lemma 2.1. Let a, b and µ be positive numbers, 0 < r < 2 and let z be a
non-negative absolutely continuous function on [0, T ], 0 < T <∞, satisfying

d
dt
z(t) + az

2+r
2−r (t) � b exp(−µt) for a.e. t ∈ [0, T ].

Then there is a positive constant N0 = N0(a, b, r, µ) such that

(2.4) z(t) � N0(1 + z(0))(1 + aβt)
− 1

β for any t ∈ [0, T ],

where β =
2r
2− r

.

�����. Let N1 be any positive number and

ψ(t) = N1(1 + aβt)
−1/β for t ∈ [0, T ].

By elementary calculation we obtain that

d
dt
(z(t)− ψ(t)) + a

2 + r
2− r

ψ
2r
2−r (t)(z(t)− ψ(t))

� b exp(−µt)− a
(
N

2+r
2−r

1 −N1
)
(1 + aβt)−

r+2
2r for a.e. t ∈ [0, T ].
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Hence, we take a positive number N0 � 1 such that

( b
a

) 2r
2+r

(
1 +

aβ(2 + r)
2rµ exp(1)

)
� (N

2+r
2−r

0 −N0)
2r
2+r ,

and put N1 = N0(1 + z(0)).
Therefore, we have

d
dt
(z(t)− ψ(t)) + a

2 + r
2− r

ψ
2r
2−r (t)(z(t)− ψ(t)) � 0 for a.e. t ∈ [0, T ].

Using Gronwall’s argument we see that

z(t)− ψ(t) � (z(0)− ψ(0)) exp

{
−a

∫ t

0

2− r

2 + r
ψ

2r
2−r (τ) dτ

}

� z(0)−N1(1 + z(0)) � 0 for any t ∈ [0, T ].

Thus, we get (2.4). �

Lemma 2.2. Let p > 1 and d > 0. We suppose that u ∈ W 2,2(0, d) with ux(0) =

0, u(d) = 0 and u > 0 on (0, d). Then (up/2)x ∈ L2(0, d).

�����. It is sufficient to show that there is a function f ∈ L2(0, d) such that

(2.5) −
∫ d

0
up/2ηx dx =

∫ d

0
fη dx for any η ∈ C∞0 ([0, d]).

Let η ∈ C∞0 ([0, d]). Then there is a positive number ε such that supp(η) ⊂ [ε, d− ε]
so that u � δ > 0 on [ε, d− ε] for some positive number δ. Clearly, we have

−
∫ d

0
up/2ηx dx =

∫ d−ε

ε

(up/2)xη dx =
p

2

∫ d−ε

ε

uxu
p
2−1η dx.

Hence,

∣∣∣∣−
∫ d

0
up/2ηx dx

∣∣∣∣ � p

2

(∫ d−ε

ε

|ux|2|u|p−2 dx
)1/2(∫ d

0
η2 dx

)1/2
.

Here we note that

∫ d−ε

ε

|ux|2|u|p−2 dx =
∫ d−ε

ε

ux

( 1
p− 1u

p−1
)

x
dx(2.6)

= − 1
p− 1

∫ d−ε

ε

uxxu
p−1 dx+

1
p− 1{ux(d− ε)up−1(d− ε)− ux(ε)up−1(ε)}.
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Letting ε ↓ 0 in (2.6), in virtue of continuity of ux on [0, d] we obtain that

lim
ε↓0

∫ d−ε

ε

|ux|2|u|p−2 dx = −
1

p− 1

∫ d

0
uxxu

p−1 dx,

that is, ∣∣∣∣−
∫ d

0
up/2ηx dx

∣∣∣∣ � C|η|L2(0,d) for any η ∈ C∞0 ([0, d]),

where C is a positive constant.

Immediately, we conclude that there is a function f ∈ L2(0, d) satisfying (2.5). �

3. Properties of a global solution

In this section we show some estimates for a global solution to SP . First, we recall
some useful equations for a solution to SP .

Lemma 3.1. (cf. [9, Lemma 5.1] and [4, Lemma 2.1]) Let (u0, �0) ∈ V and let

{u, �} be a solution to SP (u0, �0) on [0, T ], 0 < T <∞.
(1) We have

d
dt
E(u(t), �(t)) =

∫ �(t)

0
u1+α(t, x) dx for a.e. t ∈ [0, T ].(3.1)

(2) For a.e. t ∈ [0, T ] we have

(3.2) |ut(t)|2L2(0,�(t)) +
1
2
|�′(t)|3 + 1

2
d
dt
|ux(t)|2L2(0,�(t)) =

1
2 + α

d
dt
|u(t)|2+α

L2+α(0,�(t)).

The following lemma guarantees a decay for ux.

Lemma 3.2. Let M , L and µ be positive numbers, (u0, �0) ∈ V and {u, �} ∈
G(u0, �0;M,L, µ). Then there are positive constants L1 and µ1 such that

|ux(t)|L2(0,�(t)) � L1 exp(−µ1t) for t > 0.

�����. By the argument in the proof of [9, Lemma 5.2] we have

(3.3)
∫ �(t)

0
ut(t)uxx(t) dx = −

1
2
d
dt

∫ �(t)

0
|ux(t)|2 dx−

1
2
|�′(t)|3 for t � 0.
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Also, from (0.1) we see that

∫ �(t)

0
ut(t)uxx(t) dx =

∫ �(t)

0
(uxx(t) + u

1+α(t))uxx(t) dx(3.4)

=
∫ �(t)

0
(uxx)

2(t) dx− (1 + α)
∫ �(t)

0
uα(t)(ux)

2(t) dx for t > 0.

It follows from (3.3), (3.4) and (2.2) that

1
2
d
dt

∫ �(t)

0
|ux(t)|2 dx+ |�′(t)|3 +

1
4L2

∫ �(t)

0
|ux(t)|2 dx(3.5)

� 1
2
d
dt

∫ �(t)

0
|ux(t)|2 dx+ |�′(t)|3 +

∫ �(t)

0
|uxx(t)|2 dx

� (1 + α)Mα exp(−αµt)
∫ �(t)

0
|ux(t)|2 dx for t > 0.

Here we can take a positive number t0 such that (1 + α)Mα exp(−αµt) � 1
8L2 for

t � t0. Consequently, for t � t0 we have

d
dt

∫ �(t)

0
|ux(t)|2 dx+

1
4L2

∫ �(t)

0
|ux(t)|2 dx � 0,

and hence

∫ �(t)

0
|ux(t)|2 dx � exp

{
− 1
4L2
(t− t0)

}∫ �(t)

0
|ux(t0)|2 dx.

On the other hand, (3.5) implies

d
dt

∫ �(t)

0
|ux(t)|2 dx � 2(1 + α)Mα

∫ �(t)

0
|ux(t)|2 dx.

By Gronwall’s inequality, we have

∫ �(t)

0
|ux(t)|2 dx � exp

{
2(1+α)Mαt0+

t0
4L2

}
exp

{
− t

4L2

}
|u0x|2L2(0,�0) for t ∈ [0, t0].

Therefore, putting

L1 = exp
{
2(1 + α)Mαt0 +

t0
4L2

}
|u0x|2L2(0,�0) and µ1 =

1
4L2

,

we get the assertion of the lemma. �
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The following lemma shows the decay of �′, which is a key for the proof of Theo-

rem 1.3.

Lemma 3.3. We suppose that the same assumptions as in Lemma 3.2 hold and
1 < q < 4. Then for some positive number µ0 = µ0(µ, q), we have

∫ ∞

0
|�′(t)|q exp(µ0t) dt <∞.

Clearly, the above fact implies that
∫ ∞

0
|�′(t)|q dt <∞.

�����. Let L1 and µ1 be positive constants defined in Lemma 3.2. According

to (2.3) and Lemma 3.2, we see that for any t > 0

|�′(t)|q = |ux(t, �(t)−)|q

�
√
2L1 exp

(
− q
2
µ1t

)
|uxx(t)|q/2

L2(0,�(t)),

and hence

(3.6) |�′(t)|q exp
(µ1q
4
t
)

� C|uxx(t)|2L2(0,�(t)) + C exp
(
− µ1q

4− q
t
)
,

where C is a suitable positive constant.
By using (3.5) and Lemma 3.2 again, we have

1
2
d
dτ

∫ �(τ)

0
|ux(τ)|2 dx+

∫ �(τ)

0
|uxx(τ)|2 dx

� (1 + α)Mα exp(−αµτ)
∫ �(τ)

0
|ux(τ)|2 dx

� (1 + α)MαL21 exp{−(αµ+ 2µ1)τ} for τ > 0.

Integrating this inequality over [0, t], 0 < t <∞, we obtain that
∫ �(t)

0
|ux(t)|2 dx+

∫ t

0

∫ �(τ)

0
|uxx(τ)|2 dxdτ

� (1 + α)MαL21

∫ t

0
exp{−(αµ+ 2µ1)τ} dτ +

∫ �0

0
|u0x|2 dx for t � 0.

Adding to (3.6), we conclude that
∫∞
0 |�′(t)|q exp(µ0t) dt <∞ where µ0 = µ1q

4 . �
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4. Energy inequalities

The purpose of this section is to establish the following lemmas concerned with

global estimates for the difference û− u of solutions to SP .

Lemma 4.1. Let (u0, �0), (û0, �̂0) ∈ V , let M , L and µ be positive numbers,

{u, �} ∈ G(u0, �0;M,L, µ), and let {û, �̂} be a solution to SP (û0, �̂0) on [0, T ], 0 <
T < ∞. Moreover, we suppose that �0 � �̂0, u0 � û0 on [0,∞) and û0 �≡ u0. Then

putting v = û− u we obtain that for t ∈ (0, T ] and p ∈ [p0, p1] (see (1.1))

d
dt

∫ �̂(t)

0
vp(t) dx(4.1)

�
{
−C1 + C2�̂(t)2−

1+α
p1

(∫ ˆ�(t)

0
vp1(t) dx

) α
p1

}
|(v p

2 )x(t)|2L2(0,�̂(t))

+ C2 exp(−αµt)
∫ �̂(t)

0
vp(t) dx+ C2�′(t)

2p
p+1

(∫ �̂(t)

0
vp(t) dx

) p−1
p+1

,

where C1 and C2 are positive constants depending on α, p0, p1 and M .

�����. For simplicity, we put H(t) = L2(0, �̂(t)).

First, by Theorem 1.1 (ii) we have v = û − u > 0 on Q�̂(T ). The difference of
(0.1) and (0.1) taken u = û is multiplied by vp−1 for p ∈ [p0, p1]. Then Lemma 2.2
is applied to get

d
dt

∫ �̂(t)

0
vp(t) dx(4.2)

= p
∫ �̂(t)

0
vt(t)v

p−1(t) dx

= p
∫ �̂(t)

0
(ûxx(t) + û

1+α(t))vp−1(t) dx− p

∫ �(t)

0
(uxx(t) + u

1+α(t))vp−1(t) dx

= − p(p− 1)
∫ �̂(t)

0
(vx)

2(t)vp−2(t) dx+ p�′(t)vp−1(t, �(t))

+ p
∫ �̂(t)

0
(û1+α(t)− u1+α(t))vp−1(t) dx

� − 4(p− 1)
p

∫ �̂(t)

0
((vp/2)x(t))2 dx+ p�′(t)vp−1(t, �(t))

+ p2α(1 + α)
∫ �̂(t)

0
(vp+α(t) + uα(t)vp(t)) dx for t ∈ (0, T ].
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We note that

(4.3) û1+α − u1+α � 2α(1 + α)(v1+α + vuα).

From (2.1) and Hölder’s inequality it follows that

∫ �̂(t)

0
vp+α(t) dx �

(α
p
+ 2

)2
|(vp/2)x(t)|2H(t)

(∫ �̂(t)

0
vα/2(t) dx

)2
(4.4)

�
(α
p
+ 2

)2
|(vp/2)x(t)|2H(t)�̂(t)2−

α
p1

(∫ �̂(t)

0
vp1(t) dx

) α
p1

for t ∈ (0, T ].

Also, according to (2.3) we have

p�′(t)vp−1(t, �(t))(4.5)

� p�′(t)|vp/2(t)|
2(p−1)

p

L∞(0,�̂(t))

� 2
p−1

p p�′(t)|(vp/2)x(t)|
p−1

p

H(t)|(vp/2)(t)|
p−1

p

H(t)

� 2(p− 1)
p

|(vp/2)x(t)|2H(t) + Cp|�′(t)|
2p

p+1

(∫ �̂(t)

0
vp(t) dx

) p−1
p+1

for t ∈ (0, T ],

where Cp is a positive constant depending only on p.

It follows from (4.2) ∼ (4.5) that

d
dt

∫ �̂(t)

0
vp(t)dx �

{
−C1 + C2�̂(t)2−

α
p1

(∫ �̂(t)

0
vp1(t) dx

) α
p1

}
|(vp/2)x(t)|2H(t)

+ C2 exp(−αµt)
∫ �̂(t)

0
vp(t)dx+ C2|�′(t)|

2p
p+1

(∫ �̂(t)

0
vp(t) dx

) p−1
p+1

for t ∈ (0, T ] where

C1 =
2(p0 − 1)

p1
and C2 = 2

αp1

(
2 +

α

p0

)2
(1 + α) + 2αp1(1 + α)M + max

p0�p�p1
Cp.

This is the conclusion of the lemma. �

Lemma 4.2. Let B1 and B2 be positive numbers. We suppose that the same
assumptions as in Lemma 4.1 hold. Moreover, we suppose that for p ∈ [p0, p1] and
t ∈ (0, T ], 0 < T <∞,

d
dt

∫ �̂(t)

0
vp(t) dx � −B0|(v

p
2 )x(t)|2L2(0,�̂(t)) + B1 exp(−αµt)

∫ �̂(t)

0
vp(t) dx(4.6)

+B1�
′(t)

2p
p+1

(∫ �̂(t)

0
vp(t) dx

) p−1
p+1

.
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Then there is a positive constant C3 depending on α, p0, p1, µ, M and L which

satisfies

∫ �̂(t)

0
vp(t) dx � C3

(∫ �̂0

0
vp(0) dx+ 1

)
for p ∈ [p0, p1] and t ∈ [0, T ].(4.7)

�����. For simplicity, we put

Fp(t) =
∫ �̂(t)

0
vp(t) dx for p ∈ [p0, p1] and t ∈ [0, T ].

Obviously, we obtain

�′(t)
2p

p+1Fp(t)
p−1
p+1 � 2

p+ 1
�′(t)

2p
p+1 +

p− 1
p+ 1

�′(t)
2p

p+1Fp(t) for t ∈ [0, T ].

Hence, (4.6) implies that for p ∈ [p0, p1]

d
dt
Fp(t) � C4 exp(−αµt)Fp(t) + C4|�′(t)|

2p
p+1 + C4|�′(t)|

2p
p+1Fp(t) for t ∈ (0, T ],

where C4 = B1 +B1
(
1

p0+1
+ p1−1

p0+1

)
.

Since 1 < 2p
p+1 < 4, hence by applying Lemma 3.3 and Gronwall’s argument to the

above inequality we get

Fp(t) � (Fp(0) + C4

∫ ∞

0
|�′| 2p

p+1 dt) exp

(∫ ∞

0
Jp(t) dt

)
for t ∈ [0, T ],

where Jp(t) = C4 exp(−αµt) + C4|�′(t)|
2p

p+1 .

Thus, the lemma has been proved. �

Lemma 4.3. Let M̃ and L̃ be positive numbers. Then under the same conditions
as in Lemma 4.2, there are positive constants C5 and C6 depending only on (D) such

that

∫ �̂(t)

0
vp1(t) dx � C5

(
1 +

∫ �̂0

0
vp1(0) dx

)
(1 + C6t)

− 2−r0
2r0 for t ∈ [0, T ],(4.8)

where r0 is a positive constant defined by (1.1).
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�����. For brevity, we put F (t) =
∫ �̂(t)
0 vp1(t) dx for t ∈ [0, T ] and note that

∫ �̂0
0 vp0(0) dx � M̃p0L̃. According to (2.1) and the previous lemma, we infer that

F (t) � 2
2(2−r0)

r0+2 |(vp1/2)x(t)|
2(2−r0)

r0+2

H(t)

(∫ ˆ�(t)

0
vp0(t) dx

) 4
r0+2

� 2
2(2−r0)

r0+2 (C3(M̃p0 L̃+ 1))
4

r0+2 |(vp1/2)x(t)|
2(2−r0)

r0+2

H(t) for t ∈ (0, T ],

and hence

|(vp1/2)x(t)|2H(t) � 1

4(C3(M̃p0 L̃+ 1))
4

2+r0

F (t)
2+r0
2−r0 for t ∈ (0, T ].

We note that

�′(t)
2p1

p1+1F (t)
p1−1
p1+1

� p1 − 1
p1 + 1

�′(t)
2p1

p1−1F (t) exp(µ0t) +
2

p1 + 1
exp

(
−p1 − 1
2

µ0t
)
for t ∈ (0, T ],

where µ0 is the positive constant defined in Lemma 3.3, and 1 <
2p1

p1−1 < 4.

Therefore, by adding the above inequalities together to (4.6), we have

d
dt
F (t) � −K1F (t)

2+r0
2−r0 +K2|�′(t)|

2p1
p1−1F (t) exp(µ0t)

+K2 exp(−µ2t) +K2F (t) exp(−µ3t) for t ∈ (0, T ],

where K1, K2, µ2 and µ3 are suitable positive constants.

For simplicity, we put

J(t) = K2(|�′(t)|
2p1

p1−1 exp(µ0t) + exp(−µ3t)) and Φ(t) = F (t) exp
(
−

∫ t

0
J(τ) dτ

)
.

It is clear that

d
dt
Φ(t) +K1Φ(t)

2+r0
2−r0 exp

(
2r0
2− r0

∫ t

0
J(τ) dτ

)
� K2 exp(−µ2t) for t ∈ (0, T ]

and
d
dt
Φ(t) +K1Φ(t)

2+r0
2−r0 � K2 exp(−µ2t) for t ∈ (0, T ].

By Lemma 2.1 we obtain that

Φ(t) � N0(1 + Φ(0))(1 + β1K1t)
− 1

β1 for t ∈ [0, T ],

where β1 =
2r0
2−r0

and N0 = N0(K1,K2, r0, µ2) > 0.
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Consequently, this implies that

F (t) � N0(1 + F (0))(1 + β1K1t)
− 1

β1 exp

(∫ ∞

0
J(τ) dτ

)
for t ∈ (0, T ];

since 1 < 2p1/(p1 − 1) < 4, the integration in the above inequality makes sense. We
get the assertion of Lemma 4.3. �

At the end of this section, we give a global estimate for E(û(t), �̂(t)).

Lemma 4.4. We suppose that the same assumptions as in Lemma 4.3 hold. Then
there exists a positive constant C7 depending only on (D) which satisfies

(4.9) E(û(t), �̂(t)) � C7

{
E(û0, �̂0) +

(∫ �̂0

0
vp1(0) dx

) p1β0
1+α

+ 1

}
for t ∈ [0, T ],

where β0 is a positive constant defined by (1.1).

�����. For simplicity, we use the same notation as in the proof of the previous
lemmas and put

E(t) = E(u(t), �(t)) and Ê(t) = E(û(t), �̂(t)).

It follows from (3.1) with help of (4.3) that

d
dt
(Ê(t)− E(t))

� 2α(1 + α)
{∫ �̂(t)

0
v1+α(t) dx+ (

∫ �̂(t)

0
v1+α(t) dx)

1
1+α (

∫ �(t)

0
u1+α(t) dx)

α
1+α

}

� 2α(1 + α)
{∫ �̂(t)

0
v1+α(t) dx+

1
1 + α

∫ �̂(t)

0
v1+α(t) dx+

α

1 + α

∫ �(t)

0
u1+α(t) dx

}

� 2α(1 + α)
{
α+ 2
α+ 1

(∫ �̂(t)

0
vp1(t) dx

) 1+α
p1

�̂(t)1−
1+α
p1 +

α

1 + α
M1+α exp(−(1 + α)µt)

}

� K3F (t)
1+α
p1 Ê(t)1−

1+α
p1 +K3 exp(−(1 + α)µt) for t ∈ (0, T ],

where K3 = 2α(1 + α)(α+2α+1 +
α
1+αM

1+α), and hence

( d
dt
Ê(t)

)
Ê(t)

1+α
p1

−1

� K3F (t)
1+α
p1 +K3Ê(t)

1+α
p1

−1 exp(−(1 + α)µt) + Ê(t)
1+α
p1

−1 d
dt
E(t) for t ∈ (0, T ].
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Moreover, since 1+α
p1

− 1 < 0, (Ê(t))
1+α
p1

−1 � (E(t))
1+α
p1

−1 and d
dtE(t) � 0, we see

that

p1
1 + α

d
dτ

(
Ê(τ)

1+α
p1

)
� K3F (τ)

1+α
p1 +K3E(0)

1+α
p1

−1 exp(−(1 + α)µτ)(4.10)

+
p1
1 + α

d
dτ
(E(τ)

1+α
p1 ) for τ ∈ (0, T ].

Integrating (4.10) over [0, t], 0 � t � T , we conclude that

p1
1 + α

(
Ê(t)

1+α
p1 − Ê(0)

1+α
p1

)

� p1
1 + α

(
E(t)

1+α
p1 − E(0)

1+α
p1

)
+K3

∫ t

0
F (τ)

1+α
p1 dτ

+K3E(0)
1+α
p1

−1
∫ t

0
exp(−(1 + α)µτ) dτ for t ∈ [0, T ].

Hence, it follows from Lemma 4.3 that

∫ t

0
F (τ)

1+α
p1 dτ � {C5(1 + F (0))}

1+α
p1

∫ ∞

0
(1 + C6τ)

− (1+α)(2−r0)
2p1r0 dτ

� {C5(1 + F (0))}
1+α
p1

∫ ∞

0
(1 + C6τ)

−1−β0 dτ for t ∈ [0, T ].

Therefore, it is easy to check that (4.9) holds. �

5. Stability of global solutions

First, we shall prove Theorem 1.3 in case the following condition (∗) holds:

(∗) �0 � �̂0, u0 � û0 on [0,∞) and u0 �≡ û0.

����� of Theorem 1.3 under the condition (∗). Let {û, �̂} be a solution of
SP (û0, �̂0) on [0, T1], 0 < T1 < ∞, δ ∈ (0, 1] and v := û − u. We assume that
∫ �̂0
0 vp1(0) dx � δ and �̂0 � �0+δ. Since the function t→

∫ ˆ�(t)
0 vp1(t) dx is continuous,

there is a positive constant T2 � T1 such that

∫ �̂(t)

0
vp1(t) dx � 2δ and �̂(t) � L+ 2 =: L2 for t ∈ [0, T2].
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Lemma 4.1 implies that

d
dt

∫ �̂(t)

0
vp(t) dx � {−C1 + C2(L2)2−

1+α
p1 (2δ)

α
p1 }|(v p

2 )x(t)|2L2(0,�̂(t))

+ C2 exp(−αµt)
∫ �̂(t)

0
vp(t) dx

+ C2�
′(t)

2p
p+1

(∫ �̂(t)

0
vp(t) dx

) p−1
p+1

for t ∈ (0, T2] and p ∈ [p0, p1].

We choose a positive number δ1 such that

C2(L2)
2− 1+α

p1 (2δ1)
α
p1 � C1

2
,

and clearly, for δ � δ1 we have

d
dt

∫ �̂(t)

0
vp(t) dt(5.1)

� − C1
2
|(vp/2)x(t)|2L2(0,�̂(t)) + C2 exp(−αµt)

∫ �̂(t)

0
vp(t) dx

+ C2�′(t)

(∫ �̂(t)

0
vp(t) dx

) p−1
p+1

for t ∈ (0, T2] and p ∈ [p0, p1].

By virtue of Lemmas 4.3 and 4.4, for δ < δ1 we have

∫ �̂(t)

0
vp1(t) dx � M1(1 + δ)(1 +M2t)

− 2−r0
2r0 for t ∈ [0, T2],(5.2)

E(û(t), �̂(t)) � M1(1 + δ
p1β0
1+α ) for t ∈ [0, T2],

where M1 and M2 are positive constants depending only on (D).

It follows from (3.2) that

|ûx(t)|2L2(0,�̂(t)) � |û0x|2L2(0,�̂0) +
2
2 + α

|û(t)|2+α

L2+α(0,�̂(t))
for t ∈ [0, T2],

and hence with the aid of (5.2) there is a positive constant M3 depending on (D)

such that

(5.3)
|ûx(t)|L2(0,�̂(t)) � M3

|v(t)|L∞(0,�̂(t)) � M3

}
for t ∈ [0, T2].
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Also, putting ϕ(t) = E(û(t), �̂(t))− E(u(t), �(t)), we have

d
dt
ϕ(t) =

∫ �̂(t)

0
(û1+α(t)− u1+α(t)) dx(5.4)

� 2α(1 + α)
∫ �̂(t)

0
(v1+α(t) + v(t)uα(t)) dx

� 2α(1 + α)(Mα
3 +M

α exp(−αµt))ϕ(t) for t ∈ (0, T2].

Consequently, by using Gronwall’s inequality we infer that

ϕ(t) � ϕ(0) exp(M4t) for t ∈ [0, T2],

where M4 = exp{2α(1 + α)(Mα
3 +M

α)}.
Moreover, we observe that

∫ �(t)

0
vp1(t) dx � Mp1−1

3 ϕ(t)(5.5)

� Mp1−1
3 ϕ(0) exp(M4t)

=Mp1−1
3

(∫ �̂0

0
v(0) dx+ �̂0 − �0

)
exp(M4t)

� Mp1−1
3 (L1−1/p1

2 δ1/p1 + δ) exp(M4t)

� M5 exp(M4t)δ1/p1 for δ < δ1 and t ∈ (0, T2],

where M5 =M
p1−1
3 (L1−1/p1

2 + 1).

It follows from Theorem 1.1 (iv) that we can extend the solution {û, �̂} to [0, T3)
for some T3 > T2. Now, we take positive numbers 0 < δ3 < δ2 < δ1 and T0 such that

C2L
2− 1+α

p1
2 (3δ2)

α
p1 � C1

2
,

2M1(1 +M2T0)
− 2−r0

2r0 � 2δ2,

C2L
2− 1+α

p1
2 {2M5 exp(M4T0)(2δ3)1/p1} α

p1 � C1
2
.

We suppose that
∫ �̂0
0 vp1(0) dx < δ3. Noting that M5 exp(M4T0)δ

1/p1
3 > δ3, if neces-

sary we choose M5 > 1 again. Now, if there is a positive number t0 ∈ (0, T0) such
that

M5 exp(M4T0)δ
1

p1
3 �

∫ �̂(t0)

0
vp1(t0) dx < 2M5 exp(M4T0)δ

1
p1
3 ,
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then the inequality (5.1) holds for t ∈ (0, t0] and p ∈ [p0, p1], and hence by virtue of
(5.5) we get the inequality

∫ �̂(t0)
0 vp1(t0) dx < M5 exp(M4T0)δ

1
p1
3 . This is a contra-

diction.
Therefore, the following inequality holds:

∫ �̂(t)

0
vp1(t) dx � M5 exp(M4T0)δ

1
p1
3 for t ∈ [0, T0].

Similarly, {û, �̂} is the solution on [0, T0] and in virtue of (5.2) we have
∫ �̂(T0)

0
vp1(T0) dx � 2M1(1 +M2T0)−

2−r0
2r0 � 2δ2.

Furthermore, if there is a positive number t1 > T0 such that 2δ2 <
∫ �̂(t1)
0 vp1(t1) dx �

3δ2, then this is a contradiction to (5.2). Hence, we conclude that

∫ �̂(t)

0
vp1(t) dx � 2M1(1 +M2t)−

2−r0
2r0 for t � T0,

|ûx(t)|L2(0,�̂(t)) � M3 for t � 0,

E(û(t), �̂(t)) � 2M1 for t � 0.

Therefore, Theorem 1.2 implies that Theorem 1.3 is valid under the condition (∗).

Finally, we give the complete proof of the theorem.

����� of Theorem 1.3. First, we put X = Lp1(0,∞),

u01 = min{u0, û0}, u02 = max{u0, û0}, �01 = min{�0, �̂0} and �02 = max{�0, �̂0}.

Let {u1, �1} and {u2, �2} be solutions to SP (u01, �01) and SP (u02, �02) on [0, T1]
and [0, T2], respectively. Putting T3 = min{T1, T2} it is clear that {u1, �2} ∈
G(u0, �0;M,L, µ) and |u02 − u0|X � |û0 − u0|X , u1 � u, û � u2 on Q(T3) and

�1 � �, �̂ � �2 on [0, T3],

|u(t)− û(t)|X � |u1(t)− u2(t)|X
� |u2(t)− u(t)|X + |u(t)|X + |u1(t)|X .

By the above argument there is a positive number δ such that if |u0−u02|Lp1(0,�02) < δ

and �0 < �02 < �0 + δ, hence {u2, �2} is the global solution to SP and satisfies

�2(t) � 2M1 for t � 0,

|u(t)− u2(t)|X � 2M1(1 +M6t)−
2−r0
2r0 for t � T0.

Therefore, if |û0−u0|Lp1(0,�̂0)
< δ and |�̂0−�0| < δ, then {û, �̂} satisfies the required

conditions. �
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