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LIGHT PATHS WITH AN ODD NUMBER OF VERTICES

IN POLYHEDRAL MAPS

S. Jendroľ, Košice, and H. J. Voss, Dresden

(Received February 27, 1998)

Abstract. Let Pk be a path on k vertices. In an earlier paper we have proved that each
polyhedral map G on any compact 2-manifold � with Euler characteristic χ(� ) � 0 con-
tains a path Pk such that each vertex of this path has, in G, degree � k

⌊
5+
√
49−24χ(�)
2

⌋
.

Moreover, this bound is attained for k = 1 or k � 2, k even. In this paper we prove that

for each odd k � 43
⌊
5+
√
49−24χ(� )
2

⌋
+1, this bound is the best possible on infinitely many

compact 2-manifolds, but on infinitely many other compact 2-manifolds the upper bound

can be lowered to

⌊
(k − 13 )

5+
√
49−24χ(� )
2

⌋
.
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1. Introduction

In this paper all manifolds are compact 2-dimensional manifolds. If a graph G is
embedded in a manifold � then the closures of the connected components of � −G

are called the faces of G. If each face is a closed 2-cell and each vertex has valence
at least three then G is called a map in � . If, in addition, no two faces have a
multiply connected union then G is called a polyhedral map in � . This condition on
the union of two faces is equivalent to saying that any two faces that meet, meet on
a single vertex or a single edge. When two faces in a map meet in one of these two
ways we say that they meet properly.

In the sequel let �g (�q ) be an orientable (a non-orientable) surface of genus g (q,
respectively). We say that H is a subgraph of a polyhedral map G if H is a subgraph
of the underlying graph of the map G.
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The degree of a face α of a polyhedral map is the number of edges incident to α.
Vertices and faces of degree i are called i-vertices and i-faces, respectively. Let vi(G)
and pj(G) denote the number of i-valent vertices and j-valent faces, respectively. For
a polyhedral map G let V (G), E(G) and F (G) be the vertex set, the edge set and
the face set of G, respectively. The degree of a vertex A in G is denoted by degG(A)
or deg(A) if G is known from the context. A path and a cycle on k vertices is
defined to be the k-path and the k-cycle, respectively. A k-path passing through
vertices A1, A2, . . . , Ak is denoted by [A1, A2, . . . , Ak] provided AiAi+1 ∈ E(G) for
any i = 1, 2, . . . , k − 1.
It is an old classical consequence of the famous Euler’s formula that each planar

graph contains a vertex of degree at most 5. A beautiful theorem of Kotzig [Ko1,
Ko2] states that every 3-connected planar graph contains an edge with degree-sum of
its endvertices at most 13. This result was further developed in various directions and
served as a starting point for discovering many structural properties of embeddings
of graphs. For example, Ivančo [Ivan] has proved that every polyhedral map on �g

contains an edge with degree sum of their end vertices at most 2g + 13 if 0 � g � 3
and at most 4g+7, if g � 4. For other results in this topic see e.g. [FaJe, GrSh, Jen,
JeVo1, Zaks].
Fabrici and Jendroľ [FaJe] have proved that every 3-connected planar graph G of

maximum degree at least k contains a path Pk on k-vertices such that each vertex of
this path has, in G, degree � 5k, the bound 5k being the best possible. In the same
paper [FaJe] they have asked if an analogous result can be established for closed
2-manifolds other than the sphere. More precisely, they have asked the following

Problem 1. For a given connected graph H let G(H,� ) be the family of all
polyhedral maps on a closed 2-manifold � with Euler characteristic χ(� ) having a
subgraph isomorphic to H . What is the minimum integer ϕ(H,� ) such that every
polyhedral map G ∈ G(H,� ) contains a subgraph K isomorphic to H for which

degG(A) � ϕ(H,� ) for every vertex A ∈ V (K)?

(If such minimum does not exist we write ϕ(H,� ) =∞. If ϕ(H,� ) < +∞ then
the graph H is called light in G(H,� ).)
The answer to this question for �0 is contained in

Theorem 1 ([FaJe]). Let k be an integer, k � 1. Then

ϕ(Pk,�0) = 5k for any k � 1
and

ϕ(H,�0) =∞ for any H �= Pk.
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A slight modification of the method used in [FaJe] yields

Theorem 2. For any integer k � 1 we have

ϕ(Pk,�1 ) = 5k.

For compact 2-manifolds of higher genera we obtained

Theorem 3 ([JeVo1]). Let k be an integer, k � 1, and let � be a closed
2-manifold with Euler characteristic χ(� ) /∈ {1, 2}. Then

(i) ϕ(P1,� ) =

⌊
5+
√
49−24χ(�)
2

⌋
,

(ii) 2�k
2 �

⌊
5+
√
49−24χ(�)
2

⌋
� ϕ(Pk,� ) � k

⌊
5+
√
49−24χ(�)
2

⌋
, k � 2, and

(iii) ϕ(H,� ) =∞ for any H �= Pk.

In Theorem 3 the upper bound is sharp for even k � 2 and k = 1. In this paper
we investigate for which odd k � 3 the upper bound is attained.
The precise bounds for the torus �1 and the Klein bottle �2 have already been

determined.

Theorem 4 ([JeVo2]). Let k be an integer, k � 1. Then

ϕ(Pk,�1) = ϕ(Pk,�2 ) =

{
6k if k = 1 or k is even

6k − 2 if k is odd, k � 3.

Let Kn and K−
n denote the complete graph on n vertices with no or one edge

missing, respectively. For each large odd k we can show:

(i) the upper bound in Theorem 3 is attained at an infinite sequence of orientable
2-manifolds and at an infinite sequence of nonorientable 2-manifolds, these
sequences being characterized by the fact that each member of them is a
triangular embedding of a K−

n (Theorems 5 and 6);
(ii) the upper bound in Theorem 3 is not attained at an infinite sequence of ori-
entable 2-manifolds and at an infinite sequence of nonorientable 2-manifolds,
these sequences being characterized by the fact that each member of them is
a triangular embedding of a Kn (Theorems 7 and 8).

If n ≡ 2, or 5(mod 12) then K−
n has a triangular embedding into an orientable

2-manifold �g of minimal genus g, where n = 12t + 7
2 ± 3

2 and g = 12t2 ± 3t, see
[Rin], [Jun].
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Theorem 5. Let k be an odd integer and �g an orientable compact 2-manifold
of genus g = 12t2 ± 3t, t = 1, 2, . . ..
If k � � 12 (5 +

√
1 + 48g)�+ 1, then

ϕ(Pk,�g) = k

⌊
5 +

√
1 + 48g
2

⌋
.

If n ≡ 2, 5, or 11(mod12) thenK−
n has a triangular embedding into a nonorientable

2-manifold �q of minimal genus q, where n = 12t+ 72± 32 and q = 24t2±6t, t = 1, 2, . . .,
or n = 12t+ 11 and q = 24t2 + 30t+ 9, t = 1, 2, . . ., see [Rin].

Theorem 6. Let k be an odd integer and �q a nonorientable compact 2-manifold
of genus q = 24t2 ± 6t, t = 1, 2, . . ., or q = 24t2 + 30t+ 9, t = 1, 2, . . ..
If k � � 12 (5 +

√
1 + 24q)�+ 1, then

ϕ(Pk,�q ) = k

⌊
5 +

√
1 + 24q
2

⌋
.

If n ≡ 0, 3, 4, or 7(mod 12) then Kn has a triangular embedding into an orientable
2-manifold �g of minimal genus g, where n = 12t+ 72 ± 7

2 and g = 12t2 ± 7t+ 1, or
n = 12t+ 72 ± 1

2 and g = 12t2 ± t, t = 1, 2, . . ., see [Rin].

Theorem 7. Let k be an odd integer and �g an orientable compact 2-manifold
of genus g = 12t2 ± 7t+ 1, t = 1, 2, . . ., or g = 12t2 ± t, t = 1, 2, . . ..
If k > 4

3
5+

√
1+48g
2 − 4

3 , then

ϕ(Pk,�g) �
⌊(

k − 1
3

)
5 +

√
1 + 48g
2

⌋
=: mk(�g).

Since K7 has a triangular embedding into the torus �1, Theorem 7 is also true for
the torus. It gives the bound 6k − 2 already known by Theorem 4. Since K7 has
no embedding into the Klein bottle �2 the result of Theorem 4 for �2 cannot be
deduced from Theorem 7.
If n ≡ 0, or 1(mod 3), 6 � n �= 7 then Kn has a triangular embedding into a

nonorientable 2-manifold �q of minimal genus q, where n = 3t and q = 1
2 (3t

2−7t+4),
or n = 3t+ 1 and q = 1

2 (3t
2 − 5t+ 2), t = 2, 3, . . ., where 3t+ 1 �= 7 [Rin].

Theorem 8. Let k be an odd integer and �q a nonorientable compact 2-manifold
of genus q = 1

2 (3t
2 − 7t+ 4), t = 2, 3, . . ., or q = 1

2 (3t
2 − 5t+ 2), t = 3, 4, . . ..
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If k > 4
3
5+

√
1+24q
2 − 4

3 , then

ϕ(Pk,�q ) �
⌊(

k − 1
3

)
5 +

√
1 + 24q
2

⌋
=: mk(�q ).

2. Minimum degrees of graphs on �

In this paper χ(� ) � 0.
Let G be a graph embedded in a compact 2-dimensional manifold � of Euler

characteristic χ(� ). If G is a map, i.e. each face is a 2-cell, then G fulfils Euler’s
formula

n− e+ f = χ(� ),

where

χ(� ) =

{
2(1− g) if � = �g,

2− q if � = �q .

If G contains a face F which is not a 2-cell then add an edge to its interior so that F

is not subdivided. Add edges in this way until a 2-cell embedding is obtained. Let
e∗ denote the number of these edges, then Euler’s formula is fulfilled with

n− (e+ e∗) + f = χ(� ),

where n, e and f denote the number of vertices, edges and faces of G, respectively.
We summarize this in

Lemma 1. Let G be the embedding of a graph in a compact 2-dimensional
manifold � of Euler characteristic χ(� ). Let e∗ denote the number of edges which
can be added to G without changing the number of its faces. Then the Euler sum is

n− e+ f = χ(� ) + e∗,

where n, e and f denote the number of vertices, edges and faces of G, respectively.

Lemma 2. Let G be the embedding of a simple graph with minimum degree
� 2 in a compact 2-dimensional manifold � of Euler characteristic χ(� ). Let e∗

denote the maximum number of edges which can be added to G without changing
the number of its faces. It is allowed that the new edges destroy the simplicity of G,
i.e., the new edges can create loops or multiple edges. Then p0 = p1 = p2 = 0, and
the number of edges of G is

e � 3(n+ |χ(� )| − e∗).
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Equality holds if and only if all faces of the embedding of G are bounded by three
edges.

�����. By Lemma 1 we have

(1) n− e+ f = χ(� ) + e∗.

On the boundary of each face F a vertex, say V , lies. Since δ(G) � 2 and the graph
G is simple, at least two edges incident with V belong to F . For the endvertices of
these edges different from V the same is true. Hence F is bounded by at least three
edges, p0 = p1 = p2 = 0, and

(2) 3f � 2e,

where the equality holds if all faces of the embedding of G are bounded by three
edges. The formulas (1) and (2) imply

3(χ(� ) + e∗) = 3n− 3e+ 3f � 3n− 3e+ 2e

and
e � 3(n+ |χ(� )| − e∗).

�

Lemma 3. Let G be the embedding of a simple graph with minimum degree
� 2 in an orientable compact 2-dimensional manifold �g of genus g = 12t2 ± 7t+ 1,
t = 1, 2, . . ., or g = 12t2 ± t, t = 1, 2 . . .. Then the minimum degree of G is δ(G) <
5
2 +

1
2

√
1 + 48g or G is a triangulation of �g which is a triangular embedding of Kn

into �g with n = 7
2 +

1
2

√
1 + 48g.

�����. Let e∗ denote the maximum number of edges which can be added to G

without changing the number of its faces. Lemma 2 implies p0 = p1 = p2 = 0, and
the number e of edges of G is

e � 3(n+ |χ(� )| − e∗),

where the equality holds if and only if all faces are bounded by precisely 3 edges.
From 2e � n · δ it follows that

n(δ − 6) � 6|χ(� )| − 6e∗

where the equality holds if and only if G is δ-regular and all faces are bounded by
precisely 3 edges. If δ � 6, then Lemma 3 is true.
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Next, let δ > 6. Then by n � δ + 1 we have

(δ + 1)(δ − 6) � 6|χ(� )| − 6e∗,

where the equality holds if and only if n = δ + 1, G is δ-regular and all faces are
bounded by precisely 3 edges. Hence

δ � 5 +
√
49− 24χ(� ) − 24e∗

2
.

Consequently, δ � 5+
√
49−24χ(� )
2 , and the equality only holds if e∗ = 0, i.e. all faces

are 2-cells, and G is a triangular embedding of Kn in �g, n =
7+
√
49−24χ(�)
2 .

By Ringel [Rin] a triangular embedding of Kn in �g exists if g = 12t2 ± 7t + 1,
t = 1, 2, . . ., or g = 12t2± t, t = 1, 2, . . .. From χ(� ) = 2− 2g the validity of Lemma
3 follows. �

Similarly the following Lemma 4 can be proved.

Lemma 4. Let G be the embedding of a simple graph with minimum degree
� 2 in a nonorientable compact 2-dimensional manifold �q of genus q = 24t2 ± 6t,
t = 1, 2, . . ., or q = 24t2 + 30t + 9, t = 1, 2, . . .. Then the minimum degree of G is
δ(G) < 5

2 +
1
2

√
1 + 24q or G is a triangulation of �q which is a triangular embedding

of Kn into Sg with n = 12t+ 72 ± 3
2 , t = 1, 2, . . ., or n = 12t+ 11, t = 1, 2, . . ..

3. Proof of Theorems 7 and 8—upper bounds

The proof follows the ideas of [FaJe]. First the orientable case is proved. Suppose
that there is a counterexample to our Theorem 7 having n vertices. Let G be a coun-
terexample with the maximum number of edges among all counterexamples having n

vertices. A vertexA of the graphG is major (minor) if degA(A) > mk(�g) (� mk(�g),

respectively), where mk(�g) := �(k − 1
3 )
5+
√
49−24χ(� )
2 � = �(k − 1

3 )
5+

√
1+48g
2 �.

Lemma 5. Every r-face α, r � 4, of G is incident only with minor vertices.

�����. Suppose there is a major vertex B incident with an r-face α, r � 4.
Let C be a diagonal vertex on α with respect to B. Because G is a polyhedral map
we can insert an edge BC into the r-face α. The resulting embedding is again a
counterexample but with one edge more, a contradiction. �
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Let H(G) = H be the subgraph of G induced by the set of major vertices of G.
By Lemma 3 there is in H either a vertex A such that

degH(A) � 3
2
+

√
49− 24χ(� )

2
=
5 +

√
1 + 48g
2

− 1,

or H is a triangulation of �g on n = 7+
√
1+48g
2 vertices, where H is isomorphic to

Kn.
Case 1. Assume that H contains a vertex A of degree degH(A) � 3+

√
1+48g
2 . On

the other hand, A is a major vertex in G, so the degree of A in G is degG(A) �
(k − 1

3 )
5+

√
1+48g
2 − 2

3 . Because of Lemma 5 the subgraph of G induced on the set
of vertices consisting of A and its neighbours is a wheel of length degG(A). The
major vertices of the cycle of the wheel partition the minor vertices of this cycle into
degH(A) � 3+

√
1+48g
2 paths, and one of these paths has a length

� degG(A)− degH(A)
degH(A)

�
(k − 1

3 )
5+

√
1+48g
2 − 2

3 − (
5+

√
1+48g
2 − 1)

5+
√
1+48g
2 − 1

� k − 1
3
+

k − 1
3 − 2

3
5+

√
1+48g
2 − 1

− 1 > k − 1
3
+
4
3
− 1 = k,

a contradiction! (Note that k > 4
3
5+

√
1+48g
2 − 4

3 .) This contradiction completes the
proof in Case 1.
Case 2. Assume that H is a triangulation of �g on n vertices, where H is iso-

morphic to Kn. In Lemma 10 of [JeVo2] we studied precisely the properties of the
components of the subgraph H ′ of G induced on the minor vertices of G.

Lemma 6 ([JeVo2]). In each triangle D of H there exists a vertex A which is
adjacent with only � k − 2 minor vertices of D.

H has altogether n vertices and n(n−1)
3 faces (note that 3f = 2e = n(n − 1)).

Therefore, one vertex B of H is incident with � � 1n (
n(n−1)
3 )	 = �n−1

3 	 faces Fi so
that B has � k − 2 neighbours in the interior of Fi, i = 1, 2, . . . , n−1

3 . The number
of neighbours of B in the interior of the other faces is � k − 1, degH(B) = n − 1.
Consequently, degG(B) � (n− 1) + �n−1

3 	(k − 2) + (n− 1− �n−1
3 	)(k − 1), and the

major vertex B has a degree

degG(B) �
(
k − 1
3

)
(n− 1).

This contradiction proves the theorem in Case 2.

The ����� of Theorem 8 can be accomplished in a similar way. �
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4. Proof of Theorems 5 and 6—lower bounds

The validity of the upper bounds follows from Theorem 3.
Here the lower bounds are shown by appropriate constructions.
Ringel [Rin] and Jungerman [Jun] presented a triangular embedding Tn of K−

n in
an orientable compact 2-manifold of genus g for n ≡ 5(mod 12) or n ≡ 2(mod 12),
respectively. With the help of Tn they constructed a triangular embedding of Kn

into �g+1, where g + 1 is the smallest genus α such that Kn can be embedded into
�α. A consequence of Euler’s formula reads

∑

j�6
(6− j)vj + 2

∑

j�3
(3− j)pj = 6χ(� ).

Since Tn is a triangulation of �g and except two vertices of valency n−2, all vertices
have valency n− 1, this formula implies

(6− (n − 1))(n − 2) + (6− (n − 2))2 = 6χ(� ),

and

n =
1
2

(
7 +

√
57− 24χ(� )

)
=
1
2

(
7 +

√
9 + 48g

)
.(3)

For n = 12t+ 72 ± 3
2 the genus of �g is g = 12t2±3t. Since Tn is a triangulation there

is no embedding of Kn into �g. If a vertex of Tn of degree n − 2 is deleted then an
embedding of Kn−1 into �g is obtained.
By Ringel [Rin] we know: If Ks can be embedded into �g but Ks+1 has no

embedding into �g then s = � 12 (7 +
√
1 + 48g)�. Applied to Kn−1, this gives

n − 1 = � 12 (5 +
√
1 + 48g)� + 1, and n = � 5+

√
1+48g
2 � + 2 =: m(�g) + 2. Hence

Tn contains two nonadjacent vertices of degree m(�g) and n − 2 vertices of degree
m(�g) + 1.
Our construction ends in the following way: Into every triangle [A1A2A3] of Tn we

insert a generalized 3-star consisting of a central vertex Z and three paths starting
in Z, one of length k+1

2 and the other of length k−1
2 . (By the length of a path

we mean the number of vertices on it.) Let the paths p1, p2, p3 of this star be
ordered in the same way as the vertices of the face [A1A2A3] are ordered. The
construction continues by joining the vertex Ai to all vertices of the paths pi and
pi+1, i = 1, 2, 3, indices being taken modulo 3. If [A1A2A3] contains a vertex of degree
m(�g) then let A1 be this vertex and p1 the path of length k+1

2 . Let D1, D2, . . . , Ds

denote the triangles of Tn incident with a vertex A. If A is a vertex of degree
degTn

(A) = s = m(�g) then A is adjacent to k − 1 vertices of the 3-star of Di,
i = 1, 2, . . . , s = m(�g). Hence for k − 1 � m(�g) we have

degG(A) = (k − 1)m(�g) + degTn
(A) = (k − 1)m(�g) +m(�g) = km(�g).
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If A is a vertex of degree degTn
(A) = s = m(�g) + 1 then A is adjacent to � k − 2

vertices of the 3-star of Di, i = 1, 2, . . . , s = m(�g) + 1. Hence for k − 1 � m(�g) we
have

degG(A) � (k − 2)(m(�g) + 1) + degTn
(A) = (k − 2)(m(�g) + 1) + (m(�g) + 1)

= (k − 1)(m(�g) + 1) = km(�g)−m(�g) + k − 1 � km(�g).

This completes the proof in the orientable case.

The ����� of the nonorientable case runs in a similar way. Ringel [Rin] pre-
sented a triangular embedding Tn of K−

n in a nonorientable compact 2-manifold �q

of genus q if n ≡ 2, 5 or 11(mod12). By formula (3) this implies

n =
1
2
(7 +

√
57− 24χ(� )) = 1

2
(7 +

√
9 + 24q),

and n = 12t+ 72 ± 3
2 and q = 24t2 ± 6t, or n = 12t+ 11 and q = 24t2 + 30t+ 9. The

rest of the construction can be accomplished as in the orientable case. �
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