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THE DENJOY EXTENSION OF THE RIEMANN AND

MCSHANE INTEGRALS

Jae Myung Park, Taejon

(Received May 28, 1998)

Abstract. In this paper we study the Denjoy-Riemann and Denjoy-McShane integrals
of functions mapping an interval [a, b] into a Banach space X. It is shown that a Denjoy-
Bochner integrable function on [a, b] is Denjoy-Riemann integrable on [a, b], that a Denjoy-
Riemann integrable function on [a, b] is Denjoy-McShane integrable on [a, b] and that a
Denjoy-McShane integrable function on [a, b] is Denjoy-Pettis integrable on [a, b] . In addi-
tion, it is shown that for spaces that do not contain a copy of c0, a measurable Denjoy-
McShane integrable function on [a, b] is McShane integrable on some subinterval of [a, b] .
Some examples of functions that are integrable in one sense but not another are included.

MSC 2000 : 28B05

The Denjoy-Dunford, Denjoy-Pettis, and Denjoy-Bochner integrals are the ex-
tensions of Dunford, Pettis, and Bochner integrals, respectively. These integrals

were defined and studied by Gordon [4]. He showed that a Denjoy-Dunford (Denjoy-
Bochner) integrable function on [a, b] is Dunford (Bochner) integrable on some subin-

terval of [a, b] and that for spaces that do not contain a copy of c0, a Denjoy-Pettis
integrable function on [a, b] is Pettis integrable on some subinterval of [a, b] . Here c0

represents the classical Banach space of all bounded sequences of scalars converging
to 0. It follows from the Bessaga-Pelczyński Theorem that a Banach space X con-

tains no copy of c0 if and only if all series
∑
n

xn in X , with
∑
n
|x∗xn| < ∞ for all

x∗ in the dual X∗, are unconditionally convergent in the norm [1, Corollary I.4.5].

This theorem is useful in proving results in the theory of integrals of vector-valued
functions.

In this paper we will define and study the Denjoy extension of the Riemann and
McShane integrals of functions mapping an interval [a, b] into a Banach space X . We
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will also examine the relationship between these integrals and other vector-valued

integrals.

Throughout this paper X will denote a real Banach space and X∗ its dual.

Definition 1. Let F : [a, b]→ X be a function and let E be a subset of [a, b] .

(1) The function F is BV on E if sup
{ n∑

i=1
‖F (di)− F (ci)‖

}
is finite where the

supremum is taken over all finite collections {[ci, di]}i�n of non-overlapping intervals
that have endpoints in E.

(2) The function F is BVG on E if E can be expressed as a countable union of

sets on each of which F is BV.

(3) The function F is AC on E if for each ε > 0 there exists η > 0 such

that
n∑

i=1
‖F (di)− F (ci)‖ < ε whenever {[ci, di]}i�n is a finite collection of non-

overlapping intervals that have endpoints in E and satisfy
n∑

i=1
(di − ci) < η.

(4) The function F is ACG on E if F is continuous on E and E can be expressed
as a countable union of sets on each of which F is AC.

The following theorem was proved by Gordon [8].

Theorem 2. Let F : [a, b]→ X , let E ⊂ [a, b], and let E be the closure of E.

(1) Suppose that F is BV on E. If t ∈ E, then each of the limits lim
s→t+

s∈E

F (s)

and lim
s→t−
s∈E

F (s) exists.

(2) Suppose that F is measurable. If F is BV on E, then there exists a measurable

set H ⊂ [a, b] such that E ⊂ H and F is BV on H.

�����. The proof of (1) is similar to the well-known proof that a BV function

on an interval has one-sided limits at each point.

We turn now to the proof of (2). Let E1 be the set of all points t in E − E

such that t is a right-hand limit point of E but not a left-hand limit point of E and
let E2 = E − (E ∪E1) . Define G1 : E → X as follows: G1(t) = F (t) for t ∈ E,

G1(t) = lim
s→t+

s∈E

F (s) for t ∈ E1, and G1(t) = lim
s→t−
s∈E

F (s) for t ∈ E2. The function G1

is well-defined by (1) above and it is not difficult to show that G1 is BV on E. Let
c and d be the bounds of E and let G : [c, d] → X be the function that equals G1

on E and is linear on the intervals contiguous to E. By [4, Theorem 3] the function
G is BV on [c, d] . Let H = {t ∈ [c, d] : F (t) = G(t)}. Then H is a measurable set

since F and G are measurable functions, the function F is BV on H , and E ⊂ H.

This completes the proof. �
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Definition 3. (1) A tagged partition of [a, b] is a finite sequence 〈[ai, bi] , ti〉i�n

such that 〈[ai, bi]〉i�n is a non-overlapping family of intervals covering [a, b] and
ti ∈ [ai, bi] for each i. A function f : [a, b]→ X is Riemann integrable on [a, b], with
Riemann integral z, if for each ε > 0 there exists η > 0 such that

∥∥∥∥
n∑

i=1

f (ti) (bi − ai)− z

∥∥∥∥ < ε

for every tagged partition 〈[ai, bi] , ti〉i�n of [a, b] that satisfies max
1�i�n

{bi − ai} < η.

(2) A McShane partition of [a, b] is a finite sequence 〈[ai, bi] , ti〉i�n such that

〈[ai, bi]〉i�n is a non-overlapping family of intervals covering [a, b] and ti ∈ [a, b]
for each i. A gauge on [a, b] is a function δ : [a, b] → (0,∞) . A McShane partition
〈[ai, bi] , ti〉i�n is subordinate to a gauge δ if [ai, bi] ⊂ (ti − δ (ti) , ti + δ (ti)) for each
i � n. A function f : [a, b]→ X is McShane integrable, with McShane integral w, if

for each ε > 0 there exists a gauge δ : [a, b]→ (0,∞) such that
∥∥∥∥

n∑

i=1

f (ti) (bi − ai)− w

∥∥∥∥ < ε

for every McShane partition 〈[ai, bi] , ti〉i�n of [a, b] subordinate to δ.

The function f is Riemann (McShane) integrable on the set E ⊂ [a, b] if the
function fχE is Riemann (McShane) integrable on [a, b] .

Definition 4. Let F : [a, b]→ X and let E ⊂ [a, b] .
(1) The function F is approximately differentiable at t ∈ (a, b) if there exists a

vector z in X with the following property: there exists a measurable set E ⊂ [a, b]
that has t as a point of density such that

lim
s→t
s∈E

F (s)− F (t)
s− t

= z

for the norm topology of X. We will write F
′
ap (t) = z.

(2) The function f : E → X is an approximate scalar derivative of F on E if

for each x∗ in X∗ the function x∗F : E → � is approximately differentiable almost
everywhere on E and (x∗F )

′

ap = x∗f almost everywhere on E.

(3) The function f : [a, b]→ X is a scalar derivative of F on E if for each x∗ in X∗

the function x∗F is differentiable almost everywhere on E and (x∗F )′ = x∗f almost

everywhere on E.

If F : [a, b] → X is ACG on [a, b], then for each x∗ in X∗, x∗F is ACG on [a, b]

and hence approximately differentiable almost everywhere on [a, b] [4, Theorem 9].
Now we define the Denjoy-Riemann and Denjoy-McShane integrals.

617



Definition 5. (1) The function f : [a, b]→ X is Denjoy-Riemann integrable on

[a, b] if there exists an ACG function F : [a, b]→ X such that (x∗F )′ap = x∗f almost
everywhere on [a, b] for each x∗ in X∗.
(2) The function f : [a, b] → X is Denjoy-McShane integrable on [a, b] if there

exists a continuous function F : [a, b]→ X such that each x∗F is ACG on [a, b] and
(x∗F )′ap = x∗f almost everywhere on [a, b] for each x∗ in X∗.

The function f is Denjoy-Riemann (Denjoy-McShane) integrable on the set E ⊂
[a, b] if the function fχE is Denjoy-Riemann (Denjoy-McShane) integrable on [a, b] .
The function f : [a, b] → R is Denjoy integrable on [a, b] if there exists an ACG

function F : [a, b]→ R such that F
′
ap = f almost everywhere on [a, b] .

Definition 5 implies that if f is Denjoy-Riemann (Denjoy-McShane) integrable on

[a, b], then for each x∗ in X∗, x∗f is Denjoy integrable on [a, b].
The following theorem shows that the Denjoy-Riemann integral is an extension of

the Riemann integral.

Theorem 6. If f : [a, b]→ X is Riemann integrable on [a, b], then f is Denjoy-

Riemann integrable on [a, b] .

�����. Suppose that f : [a, b] → X is Riemann integrable on [a, b] and let

F (t) =
∫ t

a f for each t ∈ [a, b] . Then F is AC on [a, b] [6, Theorem 8]. Since for each
x∗ in X∗, x∗F is AC on [a, b] , x∗F is differentiable almost everywhere on [a, b] and

(x∗F )′ap = (x
∗F )′ = x∗f almost everywhere on [a, b] . Hence, f is Denjoy-Riemann

integrable on [a, b] . �

Definition 7. (1) A function f : [a, b] → X is Dunford integrable on [a, b] if
x∗f is Lebesgue integrable on [a, b] for each x∗ in X∗. The Dunford integral of f on

the measurable set E ⊂ [a, b] is the vector x∗∗E in X∗∗ such that x∗∗E (x
∗) =

∫
E x∗f

for all x∗ in X∗.

(2) A function f : [a, b]→ X is Pettis integrable on [a, b] if f is Dunford integrable
on [a, b] and x∗∗E ∈ X for every measurable set E in [a, b] .

(3) A function f : [a, b] → X is Bochner integrable on [a, b] if there exists an AC
function F : [a, b]→ X such that F is differentiable almost everywhere on [a, b] and

F ′ = f almost everywhere on [a, b] .

A function f is Dunford (Pettis, Bochner) integrable on the set E ⊂ [a, b] if the
function fχE is Dunford (Pettis, Bochner) integrable on [a, b] .

Definition 8. (1) A function f : [a, b] → X is Denjoy-Dunford integrable on
[a, b] if for each x∗ in X∗ the function x∗f is Denjoy integrable on [a, b] and if for

every interval I in [a, b] there exists a vector x∗∗I in X∗∗ such that x∗∗I (x
∗) =

∫
I x∗f

for all x∗ in X∗.
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(2) A function f : [a, b] → X is Denjoy-Pettis integrable on [a, b] if f is Denjoy-

Dunford integrable on [a, b] and if x∗∗I ∈ X for every interval I in [a, b] .

(3) A function f : [a, b]→ X is Denjoy-Bochner integrable on [a, b] if there exists

an ACG function F : [a, b] → X such that F is approximately differentiable almost
everywhere on [a, b] and F ′ap = f almost everywhere on [a, b] .

Theorem 9. If a function f : [a, b]→ X is Denjoy-Bochner integrable on [a, b],

then f is Denjoy-Riemann integrable on [a, b] .

�����. Suppose that f is Denjoy-Bochner integrable on [a, b] and let F (t) =∫ t

a
f for each t ∈ [a, b] . Then F is ACG on [a, b], approximately differentiable almost

everywhere on [a, b] and F ′ap = f almost everywhere on [a, b] . Since for each x∗ ∈
X∗, (x∗F )′ap = x∗f almost everywhere on [a, b], f is Denjoy-Riemann integrable on

[a, b] . �

The following example shows that the converse of Theorem 9 is not true.

Example 10. A Denjoy-Riemann integrable function that is not Denjoy-
Bochner integrable.

Define f : [0, 1] → l∞ [0, 1] by f (t) = χ[0,t]. Since f is not essentially separably-

valued, it is not measurable. By [4, Theorem 26] f is not Denjoy-Bochner integrable
on [0, 1] . But since f is Riemann integrable on [0, 1] [6, Example 12], f is Denjoy-

Riemann integrable on [0, 1] by Theorem 6.

Let F : [a, b]→ R be a function. If we define F ([c, d]) = F (d)−F (c) for an interval

[c, d] ⊂ [a, b] and F
( n⋃

i=1
Ii

)
=

n∑
i=1

F (Ii) for every finite collection {I1, I2, . . . , In} of
non-overlapping intervals in [a, b], F can be treated as a function having the unions

of a finite number of intervals in [a, b] for its domain and a Banach space X for its
range.

The following theorem was proved by Pettis [10].

Theorem 11. Let F : [a, b]→ X be BV on [a, b] and suppose that f : [a, b]→ X

is the scalar derivative of F on [a, b] . If f is separably-valued, then F is differentiable

almost everywhere on [a, b] and F ′ = f almost everywhere on [a, b].

If a Denjoy-Riemann integrable function is separably-valued, then it is Denjoy-

Bochner integrable. To prove this we need the following theorem, which was proved
by Gordon [8].

Theorem 12. Let F : [a, b] → X be measurable, let E be a measurable subset

of [a, b], and let f : E → X be an approximate scalar derivative of F on E. If F
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is BVG on E and if f is separably-valued, then F is approximately differentiable

almost everywhere on E and F
′
ap = f almost everywhere on E.

�����. Let E =
⋃
n

En where F is BV on each En. Using Theorem 2 we may

assume that each En is measurable. It is sufficient to prove that F
′
ap = f almost

everywhere on each En. To this end, fix n and let ε > 0. Let H ⊂ En be a closed set
such that µ (En −H) < ε and let c and d be the bounds of H. Let G : [c, d] → X

be the function that equals F on H and is linear on the intervals contiguous to H.

Note that G is BV on [c, d] by [4, Theorem 3]. Let (c, d)−H =
⋃
k

(ck, dk) and define

g : [c, d] → X by g(t) = f(t) for t ∈ H and g(t) = F (dk)−F (ck)
dk−ck

for t ∈ (ck, dk) . We
will show that g is the scalar derivative of G on [c, d] . Fix x∗ ∈ X∗. The function

x∗G is BV on [c, d] and hence differentiable almost everywhere on [c, d] . It is clear
that (x∗G)′ = x∗g almost everywhere on (c, d)−H. Let H1 be the set of all points t

in H such that (x∗G)′ (t) exists, (x∗F )
′

ap (t) = x∗f(t), and t is a point of density of

H. Then µ (H −H1) = 0 and for each s in H1 we see that

x∗g(s) = x∗f(s) = lim
t→s
t∈A

x∗F (t)− x∗F (s)
t− s

= lim
t→s

t∈A∩H

x∗G(t)− x∗G(s)
t− s

= (x∗G)′ (s)

where A is a measurable subset of [c, d] that has s as a point of density. We conclude
that (x∗G)′ = x∗g on H1 and it follows that (x∗G)

′ = x∗g almost everywhere on

[c, d] . Since x∗ was arbitrary, the function g is the scalar derivative of G on [c, d] .

Since G is BV on [c, d] and since g is separably-valued, we find that G′ = g almost
everywhere on [c, d] by Theorem 11. Let B be the set of all points t in H such that

G′(t) = g(t) and t is a point of density of H. Then µ (H −B) = 0 and for each s in
B we have

f(s) = g(s) = lim
t→s

G(t) −G(s)
t− s

= lim
t→s
t∈H

F (t)− F (s)
t− s

.

Hence, the function F is approximately differentiable on B and F
′
ap = f on B. Since

µ (En −H) < ε and µ (H −B) = 0, we have µ (En −B) < ε. For each positive inte-

ger k, choose a measurable set Bk such that µ (En −Bk) < 1
k , F is approximately dif-

ferentiable on Bk and F
′
ap = f onBk. Let A =

∞⋃
k=1

Bk. Then the function F is approx-

imately differentiable on A and F
′
ap = f on A. Since µ (En −A) � µ (En −Bk) < 1

k

for every positive integer k, we have µ (En −A) = 0. Hence, F
′
ap = f almost every-

where on En. This completes the proof. �

Corollary 13. Let f : [a, b] → X be Denjoy-Riemann integrable on [a, b]. If f

is separably-valued, then f is Denjoy-Bochner integrable on [a, b].
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�����. Suppose that f : [a, b] → X is Denjoy-Riemann integrable on [a, b].

Then there exists an ACG function F : [a, b] → X such that for each x∗ in
X∗, (x∗F )′ap = x∗f almost everywhere on [a, b]. Since F is continuous on [a, b] ,
x∗F is measurable for each x∗ in X∗ and the set {F (t) : t ∈ [a, b]} is compact and
hence separable. It follows from the Pettis Measurability Theorem that F is measur-
able. By Theorem 12 F is approximately differentiable almost everywhere on [a, b]

and F ′ap = f almost everywhere on [a, b]. Hence, f is Denjoy-Bochner integrable on
[a, b]. �

The next theorem follows immediately from Definition 5.

Theorem 14. If f : [a, b]→ X is Denjoy-Riemann integrable on [a, b], then f is

Denjoy-McShane integrable on [a, b].

A Denjoy-Bochner integrable function is measurable [4, Theorem 26]. But since
there exists a Riemann integrable function that is not measurable (Example 10), it

follows that a Denjoy-Riemann (Denjoy-McShane) integrable function is not mea-
surable in general.

Theorem 15. Let f : [a, b]→ X be a Denjoy-Riemann (Denjoy-McShane) inte-

grable function on [a, b] and let F (t) =
∫ t

a f for each t ∈ [a, b] . If F is approximately
differentiable almost everywhere on [a, b], then f is measurable.

�����. Let f : [a, b] → X be a Denjoy-Riemann (Denjoy-McShane) integrable

function on [a, b] and let F (t) =
∫ t

a f for each t ∈ [a, b] . Then for each x∗ in X∗, x∗f
is Denjoy integrable on [a, b] and hence measurable. Since F is continuous on [a, b]

and approximately differentiable almost everywhere on [a, b] . The rest of the proof
is quite similar to the proof of [4, Theorem 26]. �

Theorem 16. Suppose that f : [a, b] → X is separably-valued. If f is Denjoy-

Riemann integrable on [a, b], then there exists a subinterval of [a, b] on which f is

Bochner integrable.

�����. Suppose that f : [a, b] → X is separably-valued and Denjoy-Riemann

integrable on [a, b] . Let F (t) =
∫ t

a f for each t ∈ [a, b] . Since F is ACG on [a, b], there
exists a subinterval [c, d] of the perfect set [a, b] on which F is AC [4, Theorems 2 and

4]. Hence, for each x∗ in X∗, x∗F is differentiable almost everywhere on [c, d] and
(x∗F )′ = (x∗F )′ap = x∗f almost everywhere on [c, d]. Since f is separably-valued, F

is differentiable almost everywhere on [c, d] and F ′ = f almost everywhere on [c, d]
by Theorem 11. Hence, f is Bochner integrable on [c, d]. �
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The following theorem shows that the Denjoy-McShane integral is an extension of

the McShane integral.

Theorem 17. If f : [a, b]→ X is McShane integrable on [a, b], then f is Denjoy-

McShane integrable on [a, b].

�����. Suppose that f : [a, b] → X is McShane integrable on [a, b] and let

F (t) =
∫ t

a f for each t ∈ [a, b] . Then F is continuous on [a, b].
Since for each x∗ in X∗, x∗f is McShane integrable on [a, b] and

x∗F (t) = (M)
∫ t

a

x∗f,

each x∗F is AC on [a, b] and (x∗F )′ap = (x
∗F )′ = x∗f almost everywhere on [a, b].

Hence, f is Denjoy-McShane integrable on [a, b]. �

Theorem 18. If f : [a, b]→ X is Denjoy-McShane integrable on [a, b], then f is

Denjoy-Pettis integrable on [a, b].

�����. Suppose that f : [a, b]→ X is Denjoy-McShane integrable on [a, b] and

let F (t) =
∫ t

a f for each t ∈ [a, b] . Since for each x∗ in X∗, x∗f is Denjoy integrable
on [a, b], for every interval [c, d] in [a, b] we have

x∗ (F (d)− F (c)) = x∗F (d)− x∗F (c)

=
∫ d

a

x∗f −
∫ c

a

x∗f =
∫ d

c

x∗f.

Since this is valid for all x∗ in X∗ and since F (d) − F (c) ∈ X , f is Denjoy-Pettis
integrable on [a, b]. �

A portion of a set E ⊂ R is a nonempty set P of the form P = E ∩ I where I is

an open interval.

Corollary 19. Suppose that X contains no copy of c0 and let f : [a, b]→ X be

measurable. If f is Denjoy-McShane integrable on [a, b], then every perfect set in

[a, b] contains a portion on which f is McShane integrable.

�����. Suppose that f : [a, b] → X is measurable and Denjoy-McShane inte-
grable on [a, b] . Let E be a perfect set in [a, b] . Since f is Denjoy-Pettis integrable

on [a, b] by Theorem 18, there exists an interval [c, d] in [a, b] such that f is Pettis in-
tegrable on E∩ [c, d] [4, Theorem 38]. Hence, fχE is Pettis integrable on [c, d] . Since

f is measurable on [c, d], fχE is McShane integrable on [c, d] by [5, Theorem 17].
Hence, f is McShane integrable on E ∩ (c, d) . �
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The above theorem shows that for spaces that do not contain a copy of c0, a

measurable and Denjoy-McShane integrable function on [a, b] is McShane integrable
on some subinterval of [a, b].

The next two examples are the corrected versions of examples of Gordon [4].

Example 20. A Denjoy-McShane integrable function that is not Denjoy-

Riemann integrable.

Let {γk} be a listing of the rational numbers in [0, 1) and for each pair of positive
integers n and k let

Ik
n =

(
γk +

1
n+ 1

, γk +
1
n

)
.

For each k define fk : [0, 1]→ l2 by

fk (t) =
{
(n+ 1)χIk

n
(t)

}
.

Then the series
∑
k

4−kfk is l2-valued almost everywhere on [0, 1]. To show this, let

Ai =
⋃
k

{t ∈ [0, 1] : |t− rk| < 2−i−k} for each positive integer i and let A =
⋂
i

Ai.

Then {rk} ⊂ A, and µ(A) = 0 since µ(A) � µ(Ai) < 21−i for each i. If t /∈ A, then

t /∈ Ai0 for some i0 and |t− rk| � 2−i0−k for all k. Hence ‖fk(t)‖ � 2i0+k for all
k and

∑
k

‖4−kfk(t)‖ � 2i0 . It follows that
∑
k

4−kfk(t) converges in l2. This shows

that
∑
k

4−kfk(t) is l2-valued almost everywhere on [0, 1].

Let A be a set of measure zero such that
∑
k

4−kfk is l2-valued for all t in [0, 1]−A.

Define f : [0, 1] → l2 by f (t) =
∑
k

4−kfk (t) for t ∈ [0, 1] − A and f (t) = 0 for t

in A. Then f is separably-valued, measurable and Pettis integrable on [0, 1], but f

is not Bochner integrable on any subinterval of [0, 1] [4, Proof of Example 42]. By

Theorem 16, f is not Denjoy-Riemann integrable on [0, 1] . But by [5, Theorem 17] f
is McShane integrable on [0, 1] and hence f is Denjoy-McShane integrable on [0, 1] .

Example 21. A Denjoy-Pettis integrable function that is not Denjoy-McShane
integrable.

For each positive integer n let

I ′n =
( 1

n+ 1
,

n+ 12
n (n+ 1)

)
, I ′′n =

( n+ 12
n (n+ 1)

,
1
n

)

and define fn : [0, 1] → R by fn (t) = 2n (n+ 1)
(
χI′n (t)− χI′′n (t)

)
. Then the se-

quence {fn} converges to 0 pointwise and
{∫

I fn

}
converges to 0 for each interval

I ⊂ [0, 1]. Define f : [0, 1] → c0 by f (t) = {fn (t)}. Then f is Dunford integrable
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on [0, 1],
∫

E
f =

{∫
E

fn

}
for every measurable set E ⊂ [0, 1] and f is Denjoy-Pettis

integrable on [0, 1] [4, Example 44].

Now we will show that f is not Denjoy-McShane integrable on [0, 1]. Let G (t) =∫ t

0 f be an indefinite Dunford integral of f and let tn =
n+ 12

n(n+1) for each n. Then

tn → 0 as n → ∞, but
∫ tn

0 fn = 1 for each n. Hence ‖G (tn)‖c0
� 1 and G is not

continuous at 0.

Suppose that f is Denjoy-McShane integrable on [0, 1] . Then there exists a con-
tinuous function F on [0, 1] such that for each x∗ in c∗0, x∗F is ACG on [0, 1] and

(x∗F )′ap = x∗f almost everywhere on [0, 1]. For each x∗ in c∗0, x
∗f is Denjoy inte-

grable on [0, 1] and x∗F (t) = (D)
∫ t

0 x∗f for each t ∈ [0, 1] . Since x∗f is Lebesgue

integrable on [0, 1], for each t ∈ [0, 1] we have

x∗F (t) = (D)
∫ t

0
x∗f = (L)

∫ t

0
x∗f = x∗G (t) .

Since this valid for all x∗ in c∗0, we have F = G on [0, 1], a contradiction. This shows
that f is not Denjoy-McShane integrable on [0, 1].

Now we have a table indicating the relations between the various types of integrals
we have been discussing.

We present a diagram relating the following integrals: Bochner integral (B), Rie-

mann integral (R), McShane integral (M), Pettis integral (P), Dunford integral (D),
Denjoy-Bochner integral (DB), Denjoy-Riemann integral (DR), Denjoy-McShane in-

tegral (DM), Denjoy-Pettis integral (DP), and Denjoy-Dunford integral (DD).

B M P D

R

DB DR DM DP DD

�
In the above diagram, an arrow stands for implication. For example, the implica-

tion 
DB −→ DR� represents that if a function f is Denjoy-Bochner integrable, then
it is Denjoy-Riemann integrable.
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