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ON COPIES OF c0 IN THE BOUNDED LINEAR OPERATOR SPACE
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Abstract. In this note we study some properties concerning certain copies of the classic
Banach space c0 in the Banach space L (X, Y ) of all bounded linear operators between a
normed space X and a Banach space Y equipped with the norm of the uniform convergence
of operators.
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1. Preliminaries

Throughout the paper X will denote a normed space and Y a Banach space. As
usual L (X,Y ) will stand for the Banach space of all continuous linear mappings

from X into Y provided with the norm of the uniform convergence of operators. If
X is infinite-dimensional and Y contains a copy of c0, then L (X,Y ) does contain a

copy of �∞ [the argument given in the seminal paper [10, proof of Thm. 6] whenever
X is a separable Banach space may be easily extended, see for instance [9, Remark 1]].

On the other hand, according to [9, Theorem 1], if L (X,Y ) contains a copy of c0
then Y contains a copy of c0 or L (X,Y ) contains a copy of �∞. Consequently, if

X is infinite-dimensional then L (X,Y ) does contain a copy of c0 if and only if it
contains a copy of �∞. Since L (� , c0 ) is topologically isomorphic to c0, the previous

statement is not true if X is finite-dimensional. In [1] several conditions are given
for L (X,Y ) to contain a copy of c0. Other results concerning copies of c0 and

�∞ in some spaces of linear operators can be found for example in [4], [5], [8] and
[6]. In what follows we investigate the presence of certain copies of c0 in L (X,Y )

in relation with copies of c0 and �∞ in the domain or range spaces. Much of our
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inspiration comes from [9], but we must also mention [5, proof of Lemma 4], which

contains the seed of some techniques used in this paper.

2. Copies of c0 in L (X,Y )

Given a subset A of a Banach space E we denote by 〈A〉 [by [A]] the [closed]
linear span of A, and for every infinite set N ⊆ � we denote by P∞ (N) the class of

all infinite subsets of N . We shorten by wuC the expression “weak unconditionally
Cauchy”. We start by noting that L (X,Y ) may contain a copy of c0 while Y fails

to contain a copy of c0. In fact, if {en} denotes the unit vector basis of �2 and
Tn ∈ L (�2, �2) is defined by Tnξ = ξnen for each n ∈ �, then each Tn is a compact

norm-one linear operator. Since
∥∥∥

n∑
i=1

ciTiξ
∥∥∥
2

� ‖ξ‖2 sup
1�i�n

|ci| for each ξ ∈ �2 and

each finite set c1, . . . , cn of scalars, we have
∥∥∥

n∑
i=1

ciTi

∥∥∥ � sup
1�i�n

|ci| and consequently

{Tn} is a basic sequence in L (�2, �2) equivalent to the unit vector basis of c0.

Theorem 2.1. Assume L (X,Y ) has a basic sequence {Tn : n ∈ �} equivalent
to the unit vector basis of c0 and there exists a bounded linear operator P from

L (X,Y ) onto [Tn] such that there is an M ∈ P∞ (�) with PTm = Tm for each

m ∈M . Then Y contains a copy of c0.

�����. Set Z = [Tn], let J : c0 → Z be a topological isomorphism from c0 onto
Z such that Tn := Jen for each n ∈ � and denote by {en : n ∈ �} the unit vector

basis of c0. We assume by way of contradiction that Y does not contain any copy of

c0. Since J is a bounded linear operator, the series
∞∑

n=1
Tn is wuC in L (X,Y ) and

hence there exists a C > 0 such that

sup
n∈�

∥∥∥∥
n∑

i=1

ξiTi

∥∥∥∥ < C ‖ξ‖∞

for each ξ ∈ �∞. Then, given x ∈ X , the series
∞∑

n=1
Tnx is wuC in Y since for

each y∗ ∈ Y ∗ the map u : L (X,Y ) → � defined by u (T ) = y∗Tx is a continuous

linear form on L (X,Y ), and consequently
∞∑

n=1
|y∗Tnx| =

∞∑
n=1

|uTn| < ∞. As we

are assuming that Y contains no copy of c0, according to a well known result of

Bessaga and Pe�lczyński [2] the series
∞∑

n=1
Tnx is (BM)-convergent in Y . So we may

consider the bounded linear operator ϕ : �∞ → L (X,Y ) of a norm � C defined by

(ϕξ)x =
∞∑

n=1
ξnTnx.
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According to the hypotheses there exists some M ∈ P∞ (�) such that PTm = Tm

for each m ∈ M . So, considering �∞ (M) as a subspace of �∞ and noting that
em ∈ �∞ (M) for each m ∈M , if ψ denotes the restriction of ϕ to �∞ (M) ⊆ �∞ and
S stands for the canonical projection from c0 onto c0 (M), then the bounded linear

operator Q : �∞ (M) → c0 (M) defined by Q = S ◦ J−1 ◦ P ◦ ψ satisfies Qem = em

for each m ∈M . In fact,

Qem = SJ−1Pψem = SJ−1PTm = SJ−1PJem = SJ−1Jem = em

since PJem = Jem, which implies that Qζ = ζ for each ζ ∈ c0 (M). Hence if
ξ ∈ �∞ (M), as Qξ ∈ c0 (M) one has that

Q2ξ = Q (Qξ) = Qξ.

However, this means that Q must be a bounded projection operator from �∞ (M)
onto c0 (M), a contradiction. �

Corollary 2.2. If L (X,Y ) contains a complemented copy of c0, then Y contains
a copy of c0.

�����. Assume Z is a complemented copy of c0 in L (X,Y ) and let J : c0 → Z

be a topological isomorphism from c0 onto Z. Then {Jen : n ∈ �} is a basic sequence

equivalent to the unit vector basis of c0. If P denotes a bounded projection operator
from L (X,Y ) onto Z = [Jen], then obviously PJen = Jen for each n ∈ �, and in

particular for each n ∈M with M ∈ P∞ (�). Consequently, Theorem 2.1 applies.
�

Remark 2.1. It is shown in [6] that, assuming X is a Banach space and c0

embeds complementably into L (X,Y ), then c0 embeds into either X∗ or Y . On
the other hand, if X is a dual Banach space, according to the previous corollary we

obtain the familiar fact that X contains no complemented copy of c0.

It is also well known that Y is linearly isometric to a norm one complemented

subspace of L (X,Y ). In fact, given z ∈ X with ‖z‖ = 1 and z∗ ∈ X∗ such that
‖z∗‖ = 1 and z∗z = 1, the map H : Y → L (X,Y ) defined by (Hy)x = z∗x · y
for each x ∈ X is a linear isometry from Y into L (X,Y ). So the linear operator
P : L (X,Y ) → H (Y ) defined by PT = H (Tz) is a norm one projection from

L (X,Y ) onto H (Y ). Consequently, if Y contains a complemented copy of c0,
then L (X,Y ) embeds c0 complementably. On the other hand, by noting that the

map T → T ∗ is a linear isometry from L (X,Y ) into L (Y ∗, X∗) and assuming c0
embedded into L (X,Y ), one has that L (Y ∗, X∗) contains a copy of �∞ since it is a
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dual Banach space. If L (X,Y ) contains a copy of c0 but X∗ does not, the previous

statement may be sharpened.

Theorem 2.3. Let G be a norming set in Y ∗ and assume L (X,Y ) contains a
copy of c0. If X∗ does not contain a copy of �∞, then L (〈G〉 , X∗) contains a copy

of �∞.

�����. Let Z be a copy of c0 in L (X,Y ), let J : c0 → Z be a topological
isomorphism from c0 onto Z and let {en : n ∈ �} denote the unit vector basis of c0.

As in the proof of Theorem 2.1 set Tn := Jen for each n ∈ �. Since the series
∞∑

n=1
Tn

is wuC in L (X,Y ), there is C > 0 such that
∥∥∥

n∑
i=1

ξiTi

∥∥∥ < C ‖ξ‖∞ for each ξ ∈ �∞

and n ∈ �, and
∞∑

n=1
|y∗Tnx| <∞ for x ∈ X and y∗ ∈ Y ∗.

If X∗ does not contain a copy of �∞, then according to [3, Chapter 5, Corollary

11] each series
∞∑

n=1
y∗Tn is (BM)-convergent in X∗. Thus we may define a linear

operator ϕ : �∞ → L (〈G〉 , X∗) by

(ϕξ)y∗ =
∞∑

n=1

ξny
∗Tn

for each y∗ ∈ 〈G〉. Given y∗ ∈ 〈G〉, ξ ∈ �∞ and ε > 0, let n ∈ � be such that∥∥∥
∑
j>n

ξjy
∗Tj

∥∥∥ < ε. Note that

‖(ϕξ)y∗‖ �
∥∥∥∥

n∑

j=1

ξjy
∗Tj

∥∥∥∥ +

∥∥∥∥
∞∑

j=n+1

ξjy
∗Tj

∥∥∥∥ � C ‖y∗‖〈G〉 ‖ξ‖∞ + ε.

This implies that ‖(ϕξ)y∗‖ � C ‖y∗‖〈G〉 ‖ξ‖∞ for each ξ ∈ �∞ and y∗ ∈ 〈G〉, which
shows that ϕξ ∈ L (〈G〉 , X∗) for each ξ ∈ �∞ and that ϕ is bounded. On the other

hand, since

‖Jen‖L (X,Y ) = sup {|y∗Jenx| : x ∈ X, ‖x‖ � 1 and y∗ ∈ G, ‖y∗‖ � 1}
= sup {|〈(ϕen)y∗, x〉| : x ∈ X, ‖x‖ � 1 and y∗ ∈ G, ‖y∗‖ � 1}
= ‖ϕen‖L (〈G〉,X∗) ,

we have ‖ϕen‖L (〈G〉,X∗) = ‖Jen‖L (X,Y ) � 1
‖J−1‖ for each n ∈ �, so Rosenthal’s

�∞ theorem [11] yields the conclusion. �
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Example 2.1. The Banach space of all bounded vector measures.

If (Ω,Σ) is a measurable space, Y a Banach space and ba (Σ, Y ) [ba (Σ) if Y =
� ] the Banach space of all bounded Y -valued measures on Σ, equipped with the
semivariation norm, then the linear operator S from L (�∞0 (Σ) , Y ) onto ba (Σ, Y )

defined by ST (E) = T (χE) for each E ∈ Σ, where �∞0 (Σ) denotes the Σ-simple
function space equipped with the supremum norm, is a linear isometry. Hence,

according to Corollary 2.2, if ba (Σ, Y ) contains a complemented copy of c0, then Y

contains a copy of c0. On the other hand, since ba (Σ) does not contain any copy

of �∞ [because �∞ has no complemented copy of �1], if G is a norming set in Y ∗

it follows from Theorem 2.3 that L (〈G〉 , ba (Σ)) contains a copy of �∞ whenever

ba (Σ, Y ) contains a copy of c0.

Theorem 2.4. Let X and Y be two Banach spaces over the [same] field of real

or complex numbers. Assume L (X,Y ) contains a basic sequence {Tn} equivalent
to the unit vector basis of c0 such that each map Tn is a linear isometry from X

into Y . If X contains a copy of c0, then L (Y ∗, �1) contains a copy of �∞.

�����. Since
∞∑

n=1
Tn is a series weak unconditionally Cauchy, on the one hand

there exists a constant C > 0 such that
∥∥∥

n∑
i=1

ξiTi

∥∥∥ � C ‖ξ‖∞ for each ξ ∈ �∞

and n ∈ �, and on the other hand
∞∑

n=1
|y∗Tnx| < ∞, i.e. (y∗Tnx) ∈ �1, for each

x ∈ X and y∗ ∈ Y ∗. Consider the linear operator S : X → L (Y ∗, �1) defined by

(Sx) y∗ = (y∗Tnx) for each y∗ ∈ Y ∗. Given x ∈ X , x 	= 0, and y∗ ∈ Y ∗, then setting

εn =
y∗Tnx

|y∗Tnx|
whenever y∗Tnx 	= 0 and εn = 0 otherwise, one has

∞∑

n=1

|y∗Tnx| =
∞∑

n=1

εny
∗Tnx � sup

n∈�

∥∥∥∥
n∑

i=1

εiTi

∥∥∥∥ ‖x‖ ‖y∗‖ � C ‖x‖ ‖y∗‖ .

This shows that at the same time Sx ∈ L (Y ∗, �1) for each x ∈ X and S is bounded.
Let {xn} be a basic sequence equivalent to the unit vector basis of c0. Since each

Ti is one to one, we have Tnxn 	= 0 for each n ∈ �. So, according to the Hahn-Banach
theorem, for each positive integer n there exists a y∗n ∈ Y ∗ with ‖y∗n‖ = 1 such that

y∗nTnxn = ‖Tnxn‖. Hence, considering the sequence {Sxn} in L (Y ∗, �1), one has

‖Sxn‖ = sup

{ ∞∑

i=1

|y∗Tixn| : ‖y∗‖ � 1

}
� ‖Tnxn‖ = ‖xn‖

for each n ∈ �. If J is a topological isomorphism from c0 onto [xn] such that
Jen = xn for each n ∈ �, then ϕ = S ◦ J is a bounded linear operator from c0
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into L (Y ∗, �1) such that ‖ϕen‖ � ‖Jen‖ � 1
‖J−1‖ for each n ∈ �. According to

Rosenthal’s c0 theorem [11], this implies that L (Y ∗, �1) contains a copy of c0. So,
L (Y ∗, �1) contains a copy of �∞. �
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