Czechoslovak Mathematical Journal

Juan Carlos Ferrando; J. M. Amigó
On copies of c_{0} in the bounded linear operator space

Czechoslovak Mathematical Journal, Vol. 50 (2000), No. 3, 651-656
Persistent URL: http://dml.cz/dmlcz/127600

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON COPIES OF c_{0} IN THE BOUNDED LINEAR OPERATOR SPACE

J. C. Ferrando and J. M. Amigó, Elche

(Received July 10, 1998)

Abstract

In this note we study some properties concerning certain copies of the classic Banach space c_{0} in the Banach space $\mathscr{L}(X, Y)$ of all bounded linear operators between a normed space X and a Banach space Y equipped with the norm of the uniform convergence of operators.

Keywords: Banach space, basic sequence, copy of c_{0}, copy of ℓ_{∞}
MSC 2000: 46E40, 46B25

1. Preliminaries

Throughout the paper X will denote a normed space and Y a Banach space. As usual $\mathscr{L}(X, Y)$ will stand for the Banach space of all continuous linear mappings from X into Y provided with the norm of the uniform convergence of operators. If X is infinite-dimensional and Y contains a copy of c_{0}, then $\mathscr{L}(X, Y)$ does contain a copy of ℓ_{∞} [the argument given in the seminal paper [10, proof of Thm. 6] whenever X is a separable Banach space may be easily extended, see for instance [9, Remark 1]]. On the other hand, according to [9, Theorem 1], if $\mathscr{L}(X, Y)$ contains a copy of c_{0} then Y contains a copy of c_{0} or $\mathscr{L}(X, Y)$ contains a copy of ℓ_{∞}. Consequently, if X is infinite-dimensional then $\mathscr{L}(X, Y)$ does contain a copy of c_{0} if and only if it contains a copy of ℓ_{∞}. Since $\mathscr{L}\left(\mathbb{K}, c_{0}\right)$ is topologically isomorphic to c_{0}, the previous statement is not true if X is finite-dimensional. In [1] several conditions are given for $\mathscr{L}(X, Y)$ to contain a copy of c_{0}. Other results concerning copies of c_{0} and ℓ_{∞} in some spaces of linear operators can be found for example in [4], [5], [8] and [6]. In what follows we investigate the presence of certain copies of c_{0} in $\mathscr{L}(X, Y)$ in relation with copies of c_{0} and ℓ_{∞} in the domain or range spaces. Much of our

[^0]inspiration comes from [9], but we must also mention [5, proof of Lemma 4], which contains the seed of some techniques used in this paper.

2. Copies of c_{0} IN $\mathscr{L}(X, Y)$

Given a subset A of a Banach space E we denote by $\langle A\rangle[$ by $[A]$] the [closed] linear span of A, and for every infinite set $N \subseteq \mathbb{N}$ we denote by $\mathscr{P}_{\infty}(N)$ the class of all infinite subsets of N. We shorten by wuC the expression "weak unconditionally Cauchy". We start by noting that $\mathscr{L}(X, Y)$ may contain a copy of c_{0} while Y fails to contain a copy of c_{0}. In fact, if $\left\{e_{n}\right\}$ denotes the unit vector basis of ℓ_{2} and $T_{n} \in \mathscr{L}\left(\ell_{2}, \ell_{2}\right)$ is defined by $T_{n} \xi=\xi_{n} e_{n}$ for each $n \in \mathbb{N}$, then each T_{n} is a compact norm-one linear operator. Since $\left\|\sum_{i=1}^{n} c_{i} T_{i} \xi\right\|_{2} \leqslant\|\xi\|_{2} \sup _{1 \leqslant i \leqslant n}\left|c_{i}\right|$ for each $\xi \in \ell_{2}$ and each finite set c_{1}, \ldots, c_{n} of scalars, we have $\left\|\sum_{i=1}^{n} c_{i} T_{i}\right\| \leqslant \sup _{1 \leqslant i \leqslant n}\left|c_{i}\right|$ and consequently $\left\{T_{n}\right\}$ is a basic sequence in $\mathscr{L}\left(\ell_{2}, \ell_{2}\right)$ equivalent to the unit vector basis of c_{0}.

Theorem 2.1. Assume $\mathscr{L}(X, Y)$ has a basic sequence $\left\{T_{n}: n \in \mathbb{N}\right\}$ equivalent to the unit vector basis of c_{0} and there exists a bounded linear operator P from $\mathscr{L}(X, Y)$ onto $\left[T_{n}\right]$ such that there is an $M \in \mathscr{P}_{\infty}(\mathbb{N})$ with $P T_{m}=T_{m}$ for each $m \in M$. Then Y contains a copy of c_{0}.

Proof. Set $Z=\left[T_{n}\right]$, let $J: c_{0} \rightarrow Z$ be a topological isomorphism from c_{0} onto Z such that $T_{n}:=J e_{n}$ for each $n \in \mathbb{N}$ and denote by $\left\{e_{n}: n \in \mathbb{N}\right\}$ the unit vector basis of c_{0}. We assume by way of contradiction that Y does not contain any copy of c_{0}. Since J is a bounded linear operator, the series $\sum_{n=1}^{\infty} T_{n}$ is wuC in $\mathscr{L}(X, Y)$ and hence there exists a $C>0$ such that

$$
\sup _{n \in \mathbb{N}}\left\|\sum_{i=1}^{n} \xi_{i} T_{i}\right\|<C\|\xi\|_{\infty}
$$

for each $\xi \in \ell_{\infty}$. Then, given $x \in X$, the series $\sum_{n=1}^{\infty} T_{n} x$ is wuC in Y since for each $y^{*} \in Y^{*}$ the map $u: \mathscr{L}(X, Y) \rightarrow \mathbb{K}$ defined by $u(T)=y^{*} T x$ is a continuous linear form on $\mathscr{L}(X, Y)$, and consequently $\sum_{n=1}^{\infty}\left|y^{*} T_{n} x\right|=\sum_{n=1}^{\infty}\left|u T_{n}\right|<\infty$. As we are assuming that Y contains no copy of c_{0}, according to a well known result of Bessaga and Pełczyński [2] the series $\sum_{n=1}^{\infty} T_{n} x$ is (BM)-convergent in Y. So we may consider the bounded linear operator $\varphi: \ell_{\infty} \rightarrow \mathscr{L}(X, Y)$ of a norm $\leqslant C$ defined by $(\varphi \xi) x=\sum_{n=1}^{\infty} \xi_{n} T_{n} x$.

According to the hypotheses there exists some $M \in \mathscr{P}_{\infty}(\mathbb{N})$ such that $P T_{m}=T_{m}$ for each $m \in M$. So, considering $\ell_{\infty}(M)$ as a subspace of ℓ_{∞} and noting that $e_{m} \in \ell_{\infty}(M)$ for each $m \in M$, if ψ denotes the restriction of φ to $\ell_{\infty}(M) \subseteq \ell_{\infty}$ and S stands for the canonical projection from c_{0} onto $c_{0}(M)$, then the bounded linear operator $Q: \ell_{\infty}(M) \rightarrow c_{0}(M)$ defined by $Q=S \circ J^{-1} \circ P \circ \psi$ satisfies $Q e_{m}=e_{m}$ for each $m \in M$. In fact,

$$
Q e_{m}=S J^{-1} P \psi e_{m}=S J^{-1} P T_{m}=S J^{-1} P J e_{m}=S J^{-1} J e_{m}=e_{m}
$$

since $P J e_{m}=J e_{m}$, which implies that $Q \zeta=\zeta$ for each $\zeta \in c_{0}(M)$. Hence if $\xi \in \ell_{\infty}(M)$, as $Q \xi \in c_{0}(M)$ one has that

$$
Q^{2} \xi=Q(Q \xi)=Q \xi
$$

However, this means that Q must be a bounded projection operator from $\ell_{\infty}(M)$ onto $c_{0}(M)$, a contradiction.

Corollary 2.2. If $\mathscr{L}(X, Y)$ contains a complemented copy of c_{0}, then Y contains a copy of c_{0}.

Proof. Assume Z is a complemented copy of c_{0} in $\mathscr{L}(X, Y)$ and let $J: c_{0} \rightarrow Z$ be a topological isomorphism from c_{0} onto Z. Then $\left\{J e_{n}: n \in \mathbb{N}\right\}$ is a basic sequence equivalent to the unit vector basis of c_{0}. If P denotes a bounded projection operator from $\mathscr{L}(X, Y)$ onto $Z=\left[J e_{n}\right]$, then obviously $P J e_{n}=J e_{n}$ for each $n \in \mathbb{N}$, and in particular for each $n \in M$ with $M \in \mathscr{P}_{\infty}(\mathbb{N})$. Consequently, Theorem 2.1 applies.

Remark 2.1. It is shown in [6] that, assuming X is a Banach space and c_{0} embeds complementably into $\mathcal{L}(X, Y)$, then c_{0} embeds into either X^{*} or Y. On the other hand, if X is a dual Banach space, according to the previous corollary we obtain the familiar fact that X contains no complemented copy of c_{0}.

It is also well known that Y is linearly isometric to a norm one complemented subspace of $\mathscr{L}(X, Y)$. In fact, given $z \in X$ with $\|z\|=1$ and $z^{*} \in X^{*}$ such that $\left\|z^{*}\right\|=1$ and $z^{*} z=1$, the map $H: Y \rightarrow \mathscr{L}(X, Y)$ defined by $(H y) x=z^{*} x \cdot y$ for each $x \in X$ is a linear isometry from Y into $\mathscr{L}(X, Y)$. So the linear operator $P: \mathscr{L}(X, Y) \rightarrow H(Y)$ defined by $P T=H(T z)$ is a norm one projection from $\mathscr{L}(X, Y)$ onto $H(Y)$. Consequently, if Y contains a complemented copy of c_{0}, then $\mathscr{L}(X, Y)$ embeds c_{0} complementably. On the other hand, by noting that the map $T \rightarrow T^{*}$ is a linear isometry from $\mathscr{L}(X, Y)$ into $\mathscr{L}\left(Y^{*}, X^{*}\right)$ and assuming c_{0} embedded into $\mathscr{L}(X, Y)$, one has that $\mathscr{L}\left(Y^{*}, X^{*}\right)$ contains a copy of ℓ_{∞} since it is a
dual Banach space. If $\mathscr{L}(X, Y)$ contains a copy of c_{0} but X^{*} does not, the previous statement may be sharpened.

Theorem 2.3. Let G be a norming set in Y^{*} and assume $\mathscr{L}(X, Y)$ contains a copy of c_{0}. If X^{*} does not contain a copy of ℓ_{∞}, then $\mathscr{L}\left(\langle G\rangle, X^{*}\right)$ contains a copy of ℓ_{∞}.

Proof. Let Z be a copy of c_{0} in $\mathscr{L}(X, Y)$, let $J: c_{0} \rightarrow Z$ be a topological isomorphism from c_{0} onto Z and let $\left\{e_{n}: n \in \mathbb{N}\right\}$ denote the unit vector basis of c_{0}. As in the proof of Theorem 2.1 set $T_{n}:=J e_{n}$ for each $n \in \mathbb{N}$. Since the series $\sum_{n=1}^{\infty} T_{n}$ is wuC in $\mathscr{L}(X, Y)$, there is $C>0$ such that $\left\|\sum_{i=1}^{n} \xi_{i} T_{i}\right\|<C\|\xi\|_{\infty}$ for each $\xi \in \ell_{\infty}$ and $n \in \mathbb{N}$, and $\sum_{n=1}^{\infty}\left|y^{*} T_{n} x\right|<\infty$ for $x \in X$ and $y^{*} \in Y^{*}$.

If X^{*} does not contain a copy of ℓ_{∞}, then according to [3, Chapter 5, Corollary 11] each series $\sum_{n=1}^{\infty} y^{*} T_{n}$ is (BM)-convergent in X^{*}. Thus we may define a linear operator $\varphi: \ell_{\infty} \rightarrow \mathscr{L}\left(\langle G\rangle, X^{*}\right)$ by

$$
(\varphi \xi) y^{*}=\sum_{n=1}^{\infty} \xi_{n} y^{*} T_{n}
$$

for each $y^{*} \in\langle G\rangle$. Given $y^{*} \in\langle G\rangle, \xi \in \ell_{\infty}$ and $\varepsilon>0$, let $n \in \mathbb{N}$ be such that $\left\|\sum_{j>n} \xi_{j} y^{*} T_{j}\right\|<\varepsilon$. Note that

$$
\left\|(\varphi \xi) y^{*}\right\| \leqslant\left\|\sum_{j=1}^{n} \xi_{j} y^{*} T_{j}\right\|+\left\|\sum_{j=n+1}^{\infty} \xi_{j} y^{*} T_{j}\right\| \leqslant C\left\|y^{*}\right\|_{\langle G\rangle}\|\xi\|_{\infty}+\varepsilon .
$$

This implies that $\left\|(\varphi \xi) y^{*}\right\| \leqslant C\left\|y^{*}\right\|_{\langle G\rangle}\|\xi\|_{\infty}$ for each $\xi \in \ell_{\infty}$ and $y^{*} \in\langle G\rangle$, which shows that $\varphi \xi \in \mathscr{L}\left(\langle G\rangle, X^{*}\right)$ for each $\xi \in \ell_{\infty}$ and that φ is bounded. On the other hand, since

$$
\begin{aligned}
\left\|J e_{n}\right\|_{\mathscr{L}(X, Y)} & =\sup \left\{\left|y^{*} J e_{n} x\right|: x \in X,\|x\| \leqslant 1 \text { and } y^{*} \in G,\left\|y^{*}\right\| \leqslant 1\right\} \\
& =\sup \left\{\left|\left\langle\left(\varphi e_{n}\right) y^{*}, x\right\rangle\right|: x \in X,\|x\| \leqslant 1 \text { and } y^{*} \in G,\left\|y^{*}\right\| \leqslant 1\right\} \\
& =\left\|\varphi e_{n}\right\|_{\mathscr{L}\left(\langle G\rangle, X^{*}\right)},
\end{aligned}
$$

we have $\left\|\varphi e_{n}\right\|_{\mathscr{L}\left(\langle G\rangle, X^{*}\right)}=\left\|J e_{n}\right\|_{\mathscr{L}(X, Y)} \geqslant \frac{1}{\left\|J^{-1}\right\|}$ for each $n \in \mathbb{N}$, so Rosenthal's ℓ_{∞} theorem [11] yields the conclusion.

Example 2.1. The Banach space of all bounded vector measures.
If (Ω, Σ) is a measurable space, Y a Banach space and $b a(\Sigma, Y)[b a(\Sigma)$ if $Y=$ $\mathbb{K}]$ the Banach space of all bounded Y-valued measures on Σ, equipped with the semivariation norm, then the linear operator S from $\mathscr{L}\left(\ell_{0}^{\infty}(\Sigma), Y\right)$ onto $b a(\Sigma, Y)$ defined by $S T(E)=T\left(\chi_{E}\right)$ for each $E \in \Sigma$, where $\ell_{0}^{\infty}(\Sigma)$ denotes the Σ-simple function space equipped with the supremum norm, is a linear isometry. Hence, according to Corollary 2.2, if $b a(\Sigma, Y)$ contains a complemented copy of c_{0}, then Y contains a copy of c_{0}. On the other hand, since $b a(\Sigma)$ does not contain any copy of ℓ_{∞} [because ℓ_{∞} has no complemented copy of ℓ_{1}], if G is a norming set in Y^{*} it follows from Theorem 2.3 that $\mathscr{L}(\langle G\rangle, b a(\Sigma))$ contains a copy of ℓ_{∞} whenever $b a(\Sigma, Y)$ contains a copy of c_{0}.

Theorem 2.4. Let X and Y be two Banach spaces over the [same] field of real or complex numbers. Assume $\mathscr{L}(X, Y)$ contains a basic sequence $\left\{T_{n}\right\}$ equivalent to the unit vector basis of c_{0} such that each map T_{n} is a linear isometry from X into Y. If X contains a copy of c_{0}, then $\mathscr{L}\left(Y^{*}, \ell_{1}\right)$ contains a copy of ℓ_{∞}.

Proof. Since $\sum_{n=1}^{\infty} T_{n}$ is a series weak unconditionally Cauchy, on the one hand there exists a constant $C>0$ such that $\left\|\sum_{i=1}^{n} \xi_{i} T_{i}\right\| \leqslant C\|\xi\|_{\infty}$ for each $\xi \in \ell_{\infty}$ and $n \in \mathbb{N}$, and on the other hand $\sum_{n=1}^{\infty}\left|y^{*} T_{n} x\right|<\infty$, i.e. $\left(y^{*} T_{n} x\right) \in \ell_{1}$, for each $x \in X$ and $y^{*} \in Y^{*}$. Consider the linear operator $S: X \rightarrow \mathscr{L}\left(Y^{*}, \ell_{1}\right)$ defined by $(S x) y^{*}=\left(y^{*} T_{n} x\right)$ for each $y^{*} \in Y^{*}$. Given $x \in X, x \neq 0$, and $y^{*} \in Y^{*}$, then setting $\varepsilon_{n}=\frac{y^{*} T_{n} x}{\left|y^{*} T_{n} x\right|}$ whenever $y^{*} T_{n} x \neq 0$ and $\varepsilon_{n}=0$ otherwise, one has

$$
\sum_{n=1}^{\infty}\left|y^{*} T_{n} x\right|=\sum_{n=1}^{\infty} \varepsilon_{n} y^{*} T_{n} x \leqslant \sup _{n \in \mathbb{N}}\left\|\sum_{i=1}^{n} \varepsilon_{i} T_{i}\right\|\|x\|\left\|y^{*}\right\| \leqslant C\|x\|\left\|y^{*}\right\|
$$

This shows that at the same time $S x \in \mathscr{L}\left(Y^{*}, \ell_{1}\right)$ for each $x \in X$ and S is bounded.
Let $\left\{x_{n}\right\}$ be a basic sequence equivalent to the unit vector basis of c_{0}. Since each T_{i} is one to one, we have $T_{n} x_{n} \neq 0$ for each $n \in \mathbb{N}$. So, according to the Hahn-Banach theorem, for each positive integer n there exists a $y_{n}^{*} \in Y^{*}$ with $\left\|y_{n}^{*}\right\|=1$ such that $y_{n}^{*} T_{n} x_{n}=\left\|T_{n} x_{n}\right\|$. Hence, considering the sequence $\left\{S x_{n}\right\}$ in $\mathscr{L}\left(Y^{*}, \ell_{1}\right)$, one has

$$
\left\|S x_{n}\right\|=\sup \left\{\sum_{i=1}^{\infty}\left|y^{*} T_{i} x_{n}\right|:\left\|y^{*}\right\| \leqslant 1\right\} \geqslant\left\|T_{n} x_{n}\right\|=\left\|x_{n}\right\|
$$

for each $n \in \mathbb{N}$. If J is a topological isomorphism from c_{0} onto $\left[x_{n}\right]$ such that $J e_{n}=x_{n}$ for each $n \in \mathbb{N}$, then $\varphi=S \circ J$ is a bounded linear operator from c_{0}
into $\mathscr{L}\left(Y^{*}, \ell_{1}\right)$ such that $\left\|\varphi e_{n}\right\| \geqslant\left\|J e_{n}\right\| \geqslant \frac{1}{\left\|J^{-1}\right\|}$ for each $n \in \mathbb{N}$. According to Rosenthal's c_{0} theorem [11], this implies that $\mathscr{L}\left(Y^{*}, \ell_{1}\right)$ contains a copy of c_{0}. So, $\mathscr{L}\left(Y^{*}, \ell_{1}\right)$ contains a copy of ℓ_{∞}.

References

[1] J. Bonet, P. Domaǹski, A. Lindström: Cotype and complemented copies of c_{0} in spaces of operators. Czechoslovak Math. J. 46 (1996), 271-289.
[2] C. Bessaga, A. Petczyński: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151-164.
[3] J. Diestel: Sequences and Series in Banach Spaces. Springer-Verlag, New York Berlin Heidelberg Tokyo, 1984.
[4] L. Drewnowski: Copies of ℓ_{∞} in an operator space. Math. Proc. Cambridge Philos. Soc. 108 (1990), 523-526.
[5] L. Drewnowski: When does $c a(\Sigma, X)$ contain a copy of ℓ_{∞} or c_{0} ?. Proc. Amer. Math. Soc. 109 (1990), 747-752.
[6] G. Emmanuele: On complemented copies of c_{0} in spaces of compact operators. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 32 (1992), 29-32.
[7] G. Emmanuele: On complemented copies of c_{0} in spaces of compact operators, II. Commentat. Math. Univ. Carol. 35 (1994), 259-261.
[8] J. C. Ferrando: When does bvca (Σ, X) contain a copy of ℓ_{∞} ?. Math. Scand. 74 (1994), 271-274.
[9] J. C. Ferrando: Copies of c_{0} in certain vector-valued function Banach spaces. Math. Scand. 77 (1995), 148-152.
[10] N. J. Kalton: Spaces of compact operators. Math. Ann. 208 (1974), 267-278.
[11] H. P. Rosenthal: On relatively disjoint families of measures, with some applications to Banach space theory. Studia Math. 37 (1979), 13-36.

Authors' addresses: Depto. Estadística y Matemática Aplicada. Universidad Miguel Hernández. Avda. Ferrocarril, s/n. 03202 Elche (Alicante), Spain, e-mail: jm.amigo@umh.es, jc.ferrando@umh.es.

[^0]: This paper has been partially supported by DGICYT grant PB94-0535.

