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1. Introduction

We will consider a measurable space (Ω, S ), where Ω ∈ S and F is the family of
all measurable functions f : Ω → 〈0, 1〉. In our quantum mechanics model ([5], [3])
there are two basic notions: state and observable.

A state is a mapping m : F → 〈0, 1〉 satisfying the following conditions:
(i) m(1Ω) = 1.

(ii) If f, g, h ∈ F , f = g + h, then m(f) = m(g) +m(h).

(iii) If fn ∈ F (n = 1, 2, . . .), fn ↗ f , f ∈ F , then m(fn)↗ m(f).

Of course, by a theorem of Butnariu and Klement ([1]) there is a probability measure
µ : S → 〈0, 1〉 such that

m(f) =
∫

Ω
f dµ

for all f ∈ F , hence our model coincides with the classical one. On the other hand,
the notion of an observable gives a new point of view, new possibilities and new
problems.
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An observable is a mapping x : B(�) → F (where B(�) is the σ-algebra of all
Borel subsets of �) satisfying the following conditions:

(i) x(�) = 1Ω.

(ii) If A, B ∈ B(�), A ∩B = ∅, then x(A ∪B) = x(A) + x(B).

(iii) If An ∈ B(�), An ⊂ An+1 (n = 1, 2, . . .), then

x

( ∞⋃

n=1

An

)
=

∞∨

n=1

x(An).

As an example of an observable a random variable on a probability space (Ω, S , µ)
can be considered. If ξ : Ω → � is a random variable, then x : B(�) → F , defined
by the formula x(A) = χξ−1(A), is an observable.
Let m : F → 〈0, 1〉 be a state, x : B(�) → F an observable. Then the composite

mapping mx = m ◦ x : B(�) → 〈0, 1〉 is a probability measure. This notion corre-
sponds to the notion of the probability distribution µξ : B(�) → 〈0, 1〉 of a random
variable ξ : (Ω, S , µ)→ �. Indeed, µξ is defined by the formula

µξ(A) = µ
(
ξ−1(A)

)
.

On the other hand (in this classical case)

mx(A) = m (x(A)) = m
(
χξ−1(A)

)

=
∫

Ω
χξ−1(A)dµ = µ

(
ξ−1(A)

)
.

By help of the probability distribution mx the mean value E(x) can be defined.
Namely, in the case of a random variable ξ : Ω→ � the mean value E(ξ) is defined
as the integral

∫
Ω ξ dµ. But by the integral transformation formula we have

E(ξ) =
∫

Ω
ξ dµ =

∫

�

t dµξ(t).

Therefore we define

E(x) =
∫

�

t dmx(t),

if the integral exists. In this case we say that the observable x is integrable.
There are some results concerning the probability theory for observables and states

in the fuzzy quantum model (e.g., the strong law of large numbers in [4]). In this
paper the individual ergodic theorem will be formulated and proved.
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2. Formulation

First we recall the classical ergodic theorem ([9], Th. 1.5). Let (X, σ, P ) be a
probability space, T : X → X a measure preserving transformation (i.e., A ∈ σ ⇒
T−1(A) ∈ σ and P

(
T−1(A)

)
= P (A)), let ξ : X → � be an integrable observable.

Then there is an integrable observable ξ∗ such that the following conditions are
satisfied:

(i) E(ξ) = E(ξ∗).

(ii) lim
n→∞

1
n

n−1∑
i=0

ξ ◦ T i = ξ∗ P -almost everywhere.

We have defined the mean value of an observable. We must define a state pre-
serving transformation, operations with observables and the m-almost everywhere
convergence of a sequence of observables.
A mapping τ : F → F is called an m-preserving transformation if the following

conditions are satisfied:

(i) τ(1Ω) = 1Ω.

(ii) If f, g, h ∈ F , f = g + h, then τ(f) = τ(g) + τ(h).

(iii) If fn ∈ F (n = 1, 2, . . .), f ∈ F , fn ↗ f , then τ(fn)↗ τ(f).

(iv) τ(f) · τ(g) = τ(f · g) and m
(
τ(f)

)
= m(f) for all f, g ∈ F .

By a theorem of [7] for every observables x1, . . . , xn there exists a mapping hn :
B(�n )→ F satisfying the following conditions:

(i) hn(�n ) = 1Ω.

(ii) If A, B ∈ B(�n ), A ∩B = ∅, then x(A ∪B) = x(A) + x(B).

(iii) If Ai ∈ B(�n ), Ai ⊂ Ai+1 (i = 1, 2, . . .), then

hn

( ∞⋃

i=1

Ai

)
=

∞∨

i=1

hn(Ai).

(iv) hn(A1 × . . .×An) = x1(A1) · . . . · xn(An) for every

A1, . . . , An ∈ B(�).

The function hn is called the joint observable of observables x1, . . . , xn. By the
help of the joint observable hn some operations can be defined. If g : �n → � is a
Borel measurable function, then we define a mapping g(x1, . . . , xn): B(�) → F by
the formula

g(x1, . . . , xn)(A) = hn

(
g−1(A)

)
, A ∈ B(�).
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The motivation is the following. If (ξ1, . . . ξn) = U is a random vector then
g(ξ1, . . . , ξn) = g ◦ U is a random variable and

(g ◦ U)−1(A) = U−1 (
g−1(A)

)
.

In the general situation U−1 : B(�n ) → S induces the joint distribution hn(A) =
χU−1(A).
Finally, we shall define the m-almost everywhere convergence of a sequence of

observables. If (yn)n is a sequence of observables, we say that lim sup
n→∞

yn exists, if

there exists an observable y such that

m
(
y
(
(−∞, t)

))
= lim

p→∞
lim

k→∞
lim

i→∞
m

(k+i∧

n=k

yn

((
−∞, t− 1

p

〉))

= m

( ∞∨

p=1

∞∨

k=1

∞∧

n=k

yn

((
−∞, t− 1

p

〉))

for every t ∈ �.
We say that lim inf

n→∞
yn exists, if there exists an observable y such that

m
(
y
(
(−∞, t)

))
= lim

p→∞
lim

k→∞
lim

i→∞
m

(k+1∨

n=k

yn

((
−∞, t− 1

p

〉))

= m

( ∞∨

p=1

∞∧

k=1

∞∨

n=k

yn

((
−∞, t− 1

p

〉))

for every t ∈ �.
We say that a sequence (yn)n of observables converges m-almost everywhere to

an observable y, if lim sup
n→∞

yn = y and lim inf
n→∞

yn = y exist and

m((y(−∞, t))) = m((y(−∞, t))) = m((y(−∞, t)))

for every t ∈ �.
The main result of the paper is contained in the following theorem.

Theorem 1. Let x be an integrable observable, τ an m-preserving transforma-
tion. Then there is an integrable observable x∗ satisfying the following conditions:

(i) E(x∗) = E(x).

(ii) 1n
n−1∑
i=0

τ i ◦ x → x∗ m-a.e.
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3. Proof

The main idea of the proof consists in the construction of a probability space and
an application of the classical individual ergodic theorem.

Let xn(n = 1, 2, . . .) be the observable defined by the formula xn = τn−1 ◦ x. Let
� be the set of all positive integers, ∅ 
= J ⊂ �, J finite, J = {j1, . . . , jk}. Then we
define a probability measure PJ : B(�|J|)→ 〈0, 1〉 determined by the formula

PJ(A1 × . . .×Ak) = m (xj1(A1) · . . . · xjk
(Ak)) ,

A1, . . . , An ∈ B(�). It is not difficult to prove that the family

{PJ ; J ⊂ �, J 
= ∅, J finite}

is a consistent system of probability measures. That is, if J1 ⊂ J2, J1 
= ∅, J2 is
finite and πJ2,J1 : �

|J2 | → �
|J1 | is the projection, then

PJ1(A) = PJ2

(
π−1J2,J1

(A)
)

for every A ∈ B(�|J1 |). Therefore the Kolmogorov theorem is applicable. Denote
by V the family of all cylinders B ⊂ �

� , i.e. the sets of the form

π−1J (A) =
{
(xn)n ; (xj1 , . . . , xjk

) ∈ A
}
,

where A ∈ B(�|J| ), J 
= ∅, J ⊂ �, J finite and πJ : �� → �
|J| is the projection.

If σ(V ) is the σ-algebra generated by V , then there exists exactly one probability
measure P such that

P
(
π−1J (A)

)
= PJ(A)

for every π−1J (A) ∈ V .

Proposition 1. Let T : �� → �
� be the transformation defined by the formula

T ((tn)n) = (sn)n, where sn = tn+1 (n = 1, 2, . . .). Then T preserves the probability
measure P , i.e. P (A) = P

(
T−1(A)

)
for every A ∈ σ(V ).

�����. It is sufficient to prove the equality P (A) = P
(
T−1(A)

)
for sets

of the form A = π−1J (B), where B is the product of k = |J | sets of B(�). Let
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J = {i1, . . . , ik}, B = B1 × . . .×Bk, J1 = {i1 + 1, . . . , ik + 1}. Then

P
(
T−1(A)

)
= P

(
T−1

(
π−1J (B1 × . . .×Bk)

))

= P
(
T−1 ({(sn)n ; si1 ∈ B1, . . . , sik

∈ Bk})
)

= P
({
(tn)n ; ti1+1 ∈ B1, . . . , tik+1 ∈ Bk

})

= PJ1

({
(ti1+1, . . . , tik+1) ; ti1+1 ∈ B1, . . . , tik+1 ∈ Bk

})

= m (xi1+1(B1) · . . . · xik+1(Bk))

= m
(
τ i1 (x(B1)) · . . . · τ ik (x(Bk))

)

= m
(
τ i1−1 (x(B1)) · . . . · τ ik−1 (x(Bk))

)

= m (xi1(B1) · . . . · xik
(Bk))

= PJ(B1 × . . .×Bk) = PJ(B)

= P
(
π−1J (B)

)
= P (A).

�

Proposition 2. Let ξn : �� → � be the projection defined by the formula
ξn ((ti)i) = tn. Then for every n ∈ �, ξn is a random variable, P

(
ξ−1n (A)

)
=

m (xn(A)), A ∈ B(�) and P
({
(ui)i ; 1n

n∑
i=1

ξi(u) < t
})
= m

((
1
n

n∑
i=1

xi

)
((−∞, t))

)
,

t ∈ �.

�����. If A ∈ B(�), then ξ−1n (A) =
{
(ti)i ; tn ∈ A

}
= π−1{n}(A) ∈ V ⊂ σ(V ),

hence ξn : �� → � is a random variable. Moreover,

P
(
ξ−1n (A)

)
= P

({
(ti)i ; tn ∈ A

})
= P

(
π−1{n}(A)

)

= P{n}(A) = m (xn(A)) .

Finally, let Jn = {1, . . . , n}. Then

P

({
(ui)i;

1
n

n∑

i=1

ξi(u) < t

})
= PJn

({
(u1, . . . , un) ;

1
n

n∑

i=1

ui < t

})

= m ◦ hn

({
(u1, . . . , un) ;

1
n

n∑

i=1

ui < t

})
.

If we put g(u1, . . . , un) = 1
n

n∑
i=1

ui, then by definition

1
n

n∑

i=1

xi = g(x1, . . . , xn) = hn ◦ g−1,
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hence

P

({
(ui)i ;

1
n

n∑

i=1

ξi(u) < t

})
= P

(
g−1((−∞, t))

)

= m
(
hn

(
g−1((−∞, t))

))
= m

((
1
n

n∑

i=1

xi

)
((−∞, t))

)
.

�

Proposition 3. There exists an observable x∗ such that 1n
n−1∑
i=0

τ i ◦x → x∗ m-a.e.

�����. We have proved that ξ1 : �� → � is a random variable (with respect to
σ(V )) and ξ1 and x have the same probability distribution defined by the formula

Pξ1(A) = P
(
ξ−11 (A)

)
= m (x1(A)) = m (x(A)) = mx(A).

Since x is integrable (i.e.
∫
�

t dmx(t) exists), ξ1 is integrable, too. Therefore, by the
individual ergodic theorem, there exists an integrable, invariant random variable ξ∗

such that
1
n

n−1∑

i=0

ξ1 ◦ T i → ξ∗ P -a.e.

Of course, ξ1 ◦ T i = ξi+1, hence

(∗) 1
n
=

n∑

j=1

ξj → ξ∗ P -a.e.

Theorem 3 of [8] states that P -a.e. convergence of the sequence (gn(ξ1, . . . ξn))n
implies m-a.e. convergence of the sequence (gn(x1, . . . , xn))n to an observable x∗

and

P
({

u ∈ �� ; lim sup
n→∞

gn (ξ1(u), . . . , ξn(u)) < t
})

= m
(
lim sup

n→∞
gn(x1, . . . , xn)(−∞, t)

)

= m
(
lim inf
n→∞

gn(x1, . . . , xn)(−∞, t)
)
= m

(
x∗ ((−∞, t))

)

for every t ∈ �. Put

gn(u1, . . . , un) =
1
n

n∑

i=1

ui.

Then by (∗) and Proposition 2 we have

1
n

n−1∑

i=0

τ i ◦ x =
1
n

n∑

i=1

xi → x∗ m-a.e.

�
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Proposition 4. Let x∗ be the observable introduced in Proposition 3. Then x∗

is integrable and E(x∗) = E(x).

�����. Since ξ1 is an integrable random variable, by the individual ergodic
theorem ξ∗ is integrable, too and

E(ξ1) = E(ξ∗),

P ({u ; ξ∗(u) < t}) = P

({
u ; lim sup

n→∞

1
n

n−1∑

i=0

ξ1 ◦ T i(u) < t

})

for every t ∈ �. By Theorem 3 of [8]

mx∗
(
(−∞, t)

)
= m

(
x∗ ((−∞, t))

)

= P
({

u ; ξ∗(u) < t
})
= Pξ∗ ((−∞, t)) .

Therefore mx∗ = Pξ∗ . Since also mx = Pξ1 , we have

E(x) =
∫

�

t dmx(t) =
∫

T

t dPξ1 = E(ξ1) = E(ξ∗)

=
∫

�

t dPξ∗(t) =
∫

�

t dmx∗(t) = E(x∗).

�
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