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Czechoslovak Mathematical Journal, 50 (125) (2000), 705–720

DR-IRREDUCIBILITY OF CONNECTED MONOUNARY ALGEBRAS

Danica Jakubíková-Studenovská, Košice

(Received November 14, 1997)

This paper is a continuation of [6], where irreducibility in the sense of Duffus

and Rival (DR-irreducibility) of monounary algebras was defined. The definition is
analogous to that introduced by Duffus and Rival [1] for the case of posets. In [6]

we found all connected monounary algebras A possessing a cycle and such that A is
DR-irreducible.

The main result of the present paper is Thm. 4.1 which describes all connected
monounary algebras A without a cycle and such that A is DR-irreducible.

Other types of irreducibility of monounary algebras defined by means of the notion
of a retract were studied in [2]–[5].

0. Preliminaries

Let A = (A, f) be a monounary algebra. A nonempty subset M of A is said to be

a retract of A if there is a mapping h of A onto M such that h is an endomorphism
of A and h(x) = x for each x ∈ M . The mapping h is then called a retraction

endomorphism corresponding to the retract M . Further, we denote by R(A) the
system of all monounary algebras B such that B is isomorphic to (M, f) for some

retract M of A.
A monounary algebra A is said to be irreducible in the sense of Duffus and Rival

(DR-irreducible), if, whenever A ∈ R
(∏

i∈I

Bi

)
and Bi ∈ R(A) for each i ∈ I, then

there is j ∈ I such that A ∈ R(Bj).

We will use the notion of the degree of an element x ∈ B, where (B, f) is a
monounary algebra; for this notion cf. e.g. [8], [7] and [2]. The degree of x is an

ordinal or the symbol ∞ and is denoted by sf (x).
The following theorem proved in [2] is essentially applied in several proofs below:
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(Thm) Let (A, f) be a monounary algebra and let (M, f) be a subalgebra of (A, f).

Then M is a retract of (A, f) if and only if the following conditions are satisfied:

(a) If y ∈ f−1(M), then there is z ∈M such that f(y) = f(z) and sf (y) � sf (z).

(b) For any connected component K of (A, f) with K ∩M = ∅, the following
conditions are satisfied.

(b1) If K contains a cycle with d elements, then there is a connected com-
ponent K ′ of (A, f) with K ′ ∩M �= ∅ and there is n ∈ � such that
n|d and K ′ has a cycle with n elements.

(b2) If K contains no cycle and x0 is a fixed element of K, then there is

y0 ∈M such that sf (fk(x0)) � sf (fk(y0)) for each k ∈ � ∪ {0}.

1. Some DR-irreducible algebras

1.1. Notation. Let � = (�, f) be a monounary algebra such that f(n) = n+1
for each n ∈ � and let � = (�, f) be a monounary algebra such that f(n) = n + 1

for each n ∈ �.

1.2. Lemma. The algebras � and � are DR-irreducible.

�����. The assertion follows from the fact that � and � have no nontrivial
retracts. �

1.3. Notation. For n ∈ � let n′ = (n, 1). Further, denote �′ = {n′ : n ∈ �},
E = �∪ �′ . For k ∈ � put f(k) = k + 1 and for n ∈ � let

f(n′) =

{
(n− 1)′ if n > 1,
0 if n = 1·

Then E = (E, f) is a connected monounary algebra and sf (x) =∞ for each x ∈ E.
1.4. Notation. For k ∈ � put k′ = (k, 1) and k′′ = (k, 2). Let n ∈ �. Denote

E′
n = {1′, 2′, . . . , n′}, E′′

n = {1′′, 2′′, . . . , n′′}, En = E′
n ∪ E′′

n ∪ �. Further, define
a unary operation f on En as follows: f(1′) = f(1′′) = 1, f(2′) = 1′, . . . , f(n′) =

(n− 1)′, f(2′′) = 1′′, . . . , f(n′′) = (n− 1)′′ and f(j) = j + 1 for each j ∈ �.

1.5. Lemma. (a) The algebra E is DR-irreducible.
(b) If n ∈ �, then the algebra En is DR-irreducible.

�����. Let A = E or A = En for some n ∈ � and suppose that A is DR-
reducible. Then there exist monounary algebras Bi ∈ R(A) for i ∈ I such that
(1) A ∈ R

(∏
i∈I

Bi

)
,

(2) A /∈ R(Bi) for each i ∈ I.
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The relation (2) implies that if i ∈ I, then A � Bi, and since Bi ∈ R(A), we get
if x ∈ Bi, then card f−1(x) � 1.

This implies

if b ∈ ∏
i∈I

Bi, then card f−1(b) � 1.

Hence A is not isomorphic to any subalgebra of
∏
i∈I

Bi, which is a contradiction

to (1). �

1.6. Notation. Let k ∈ �, m1, . . . ,mk, p1, . . . , pk ∈ � and m1 < p1 < m2 <

p2 < . . . < mk < pk. If i ∈ {1, . . . , k}, let

Yi = {(i, j) : j ∈ {0, . . . ,mi − 1}}.

The symbol Y (m1, p1;m2, p2; . . . ;mk, pk) will denote the monounary algebra defined

on the set
� ∪

⋃

i∈{1,...,k}
Yi

such that if n ∈ �, i ∈ {1, . . . , j}, then

f(n) = n+ 1,

f((i, j)) =





(i, j + 1) if j ∈ {0, . . . ,mi − 2},
(i+ 1, pi) if i �= k, j = mi − 1,
pk if i = k, j = mi − 1.

(For the case Y (2, 4; 6, 8) cf. Fig. 1.)
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Fig. 1
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1.7. Notation. Let k ∈ �, m1, . . . ,mk, p1, . . . , pk−1 ∈ � and m1 < p1 <

m2 < p2 < . . . < pk−1 < mk. If i ∈ {1, . . . , k}, let Yi be as in 1.6. The symbol
Y (m1, p1;m2, p2; . . . ;mk) will denote the monounary algebra defined on the set

�∪
⋃

i∈{1,...,k}
Yi

such that if n ∈ �, i ∈ {1, . . . , k}, then

f(n) = n+ 1,

f((i, j)) =





(i, j + 1) if j ∈ {0, . . . ,mi − 2},
(i+ 1, pi) if i �= k, j = mi − 1,
0 if i = k, j = mi − 1.

−3

−2

−1

0

1
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(2,2)

(2,1)

(2,0)

(2,4)
(1,1)

(1,0)
Y (2,4,5)� Y4

Y3Y2

Y1�
Fig. 2 Fig. 3

1.8. Notation. Let m1 < p1 < m2 < p2 < . . . < mi < pi < . . . be positive
integers. For i ∈ � let Yi be as in 1.6. The symbol Y (m1, p1;m2, p2; . . .) will denote

the monounary algebra defined on the set

⋃

i∈�
Yi

such that

f((i, j)) =

{
(i, j + 1) if j ∈ {0, . . . ,mi − 2}
(i+ 1, pi) if j = mi − 1.

1.9. Definition. We will say that A is of type (α1) ((α2), (α3), respectively),

if A is isomorphic to some algebra defined in 1.6 (1.7, 1.8). If A is of a type of (α1),
(α2), (α3), then A is said to be of type (α).
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1.10. Lemma. Let A be one of the algebras defined in 1.6–1.8. IfM is a retract
of A and (1, 0) ∈M , then M = A.
�����. Let the assumption hold and suppose thatM is a retract of A such that

(1, 0) ∈M . Further, let ϕ be the corresponding retraction endomorphism. Then
(1) ϕ((1, 0)) = (1, 0).

Since ϕ is a homomorphism, the relation (1) implies

ϕ(x) = x for each x ∈ A.
Therefore M = A. �

1.11. Lemma. If A is of type (α), then A is DR-irreducible.

�����. Let A be of type (α) and suppose that A is DR-reducible. Without loss

of generality, A is one of the algebras defined in 1.6–1.8. Then there exist monounary
algebras Bi ∈ R(A) for i ∈ I such that
(1) A ∈ R

(∏
i∈I

Bi

)
,

(2) A /∈ R(Bi) for each i ∈ I.
Hence there is a retract T of

∏
i∈I

Bi such that

(3) T ∼= A.
Let t be the element of T corresponding to the element (1, 0) (in the isomorphism (3)).
In A the relation

(4) f−(m1+1)(fm1((1, 0))) �= ∅
is valid, thus (3) yields

(4′) f−(m1+1)(fm1(t)) �= ∅.
We have f−1((1, 0)) = ∅, hence there is i ∈ I with f−1(t(i)) = ∅. Without loss of
generality we can suppose that Bi is a subalgebra of A. The relation f−1(t(i)) = ∅
implies

t(i) = (l, 0)

for some l ∈ �. If l = 1, then 1.10 yields that Bi = A, a contradiction to (2). Thus
l > 1. In A, hence also in Bi, we have

f−(m1+1)(fm1((l, 0))) = ∅,

i.e.,
f−(m1+1)(fm1(t(i))) = ∅,

which implies

f−(m1+1)(fm1(t)) = ∅,
a contradiction to (4′). �
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2. Infinite degrees

In this section we suppose that A is a connected monounary algebra such that

A � �, A � E, A possesses no cycle and sf (x) =∞ for each x ∈ A.

2.1. Construction. Let λ = cardA. Further, let Ij for j ∈ � be disjoint sets
of indices such that card Ij = λ for each j ∈ � and I =

⋃
j∈�

Ij . For i ∈ I put Bi = E,

B =
∏

i∈I

Bi.

Denote by K the connected component of B such that K contains the element q ∈ B
with q(i) = k for each i ∈ Ik, k ∈ �.

2.2. Lemma. (a) sf (x) =∞ for each x ∈ B.
(b) card f−1(x) � λ for each x ∈ K.

�����. (a) If x ∈ B, i ∈ I, then sf (x(i)) = ∞ by 2.1. Then sf (x) = ∞ as
well.

(b) Let x ∈ K. Then x and q belong to the same connected component, thus there
are m,n ∈ � such that fm(x) = fn(q). Let i ∈ Im−n. We obtain

fm(x(i)) = fn(q(i)) = fn(m− n) = m− n+ n = m,

i.e.,
x(i) ∈ f−m(m) = {0},

thus

(1) f−1(x(i)) = {−1, 1′} for each i ∈ Im−n.

Further, we have

(2) f−1(x(j)) �= ∅ for each j ∈ I.
The relation card Im−n = λ together with (1) and (2) then yields

card f−1(x) � 2λ,

therefore (b) is valid. �

2.3. Lemma. A is DR-reducible.

�����. Let B and K be as in 2.1. According to 2.2(b), there is a subalgebra T

of K with

(1) A ∼= T .
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Then sf (x) = ∞ for each x ∈ T . According to (Thm), this and the fact that no

connected component of B contains a cycle imply that T is a retract of B, thus

(2) A ∈ R(B).
Further, A � E and A � �, thus A is not isomorphic to any retract of Bi (for i ∈ I),
hence

(3) A /∈ R(Bi) for each i ∈ I.
Obviously,

(4) Bi ∈ R(A) for each i ∈ I.
Hence (1)–(4) yield that A is DR-reducible. �

3. Auxiliary results

Suppose that A is a connected monounary algebra possessing no cycle, A � � and
that there is c ∈ A with sf (c) �=∞.
Then the set

S0 = {x ∈ A : f−1(x) = ∅}
is nonempty. For x ∈ S0 there exists the least positive integer n1(x) such that

card f−1(fn1(x)(x)) > 1 and card f−n1(x)(fn1(x)(x)) > 1.

For x ∈ S0 we denote

P (x) =
⋃

m∈�∪{0}
f−m(fn1(x)−1(x)).

Obviously, if y ∈ P (x), then f−n1(x)(y) = ∅.
Let n ∈ �. Put

J (n) = {x ∈ S0 : n1(x) = n},
V (n) = {fn(x) : x ∈ J (n)}.

For each v ∈ V (n) with the property

f−n(v) ⊆ J (n)

we choose a fixed element of the set f−n(v) and denote it by v′. Then we define

I(n) = {x ∈ J (n) : f−n(fn(x)) � J (n)} ∪
∪ {x ∈ J (n) : f−n(fn(x)) ⊆ J (n), x �= (fn(x))′}.
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If x ∈ I(n), then there exists an endomorphism ϕx of A such that ϕx(y) = y for each

y ∈ A− P (x) and if y ∈ P (x), then ϕx(y) ∈ A−
⋃

z∈I(n)
P (z).

3.1. Lemma. Suppose that there is n ∈ � such that card I(n) � 2. Then A is
DR-reducible.

�����. We shall now write I instead of I(n). Denote

A0 = A−
⋃

i∈I

P (i),

Bi = A0 ∪ P (i) for each i ∈ I,
B =

∏

i∈I

Bi.

The definition of Bi implies

(1) Bi ∈ R(A) for each i ∈ I.
Further, A is not isomorphic to any subalgebra of Bi for i ∈ I, thus
(2) A /∈ R(Bi) for each i ∈ I.

If a ∈ A0, let a ∈ B be such that a(i) = a for each i ∈ I. Put

T0 = {a : a ∈ A0},

and if i ∈ I, let

Ti = {b ∈ B : (∃y ∈ P (i))(b(i) = y, b(j) = ϕi(y) for each j ∈ I − {i}}.

Then

(3) T =
⋃

i∈I∪{0}
Ti
∼= A.

Take any fixed k ∈ I. We are going to prove that T is a retract of B. Let

b ∈ f−1(T ).
(a) Suppose that f(b) = a, a ∈ A0. Then f(b(k)) = a. We have either
(4.1) b(k) ∈ A0
or

(4.2) b(k) ∈ P (k).
Put

(5.1) d = b(k) if (4.1) is valid,
(5.2) d = ϕk(b(k)) if (4.2) is valid
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and denote

(6) z = d.

Then z ∈ T0 ⊆ T and for each j ∈ I we have
(7.1) f(z(j)) = f(b(k)) = a = f(b(j)),

or

(7.2) f(z(j)) = f(ϕk(b(k))) = ϕk(f(b(k))) = ϕk(a) = a = f(b(j)),

hence

(8) f(z) = f(b).

Further,

sf (b) � sf (b(k)) � sf(ϕk(b(k)),

sf (z) =

{
sf (b(k)) if (5.1) holds,

sf (ϕk(b(k)) if (5.2) holds,

which yields

(9) sf(b) � sf (z).

(b) Suppose that (a) is not valid. Then there is i ∈ I with f(b) ∈ Ti, i.e., there is

y ∈ P (i) such that

(f(b))(j) =

{
y if j = i,

ϕi(y) if j ∈ I − {i}.
Take z ∈ Ti such that

z(j) =

{
b(i) if j = i,

ϕi(b(i)) if j ∈ I − {i}.

This implies

f(z(j)) =

{
f(b(i)) if j = i,

f(ϕi(b(i))) = ϕi(f(b(i))) = ϕi(y) = f(b(j)) if j ∈ I − {i},

hence

f(z) = f(b).

Further,
sf (b) � min {sf(b(i)), sf (ϕi(b(i)))} = sf (z).

We have proved

(10) for each b ∈ f−1(T ) there exists z ∈ T with f(b) = f(z), sf (b) � sf (z).
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Let K be a connected component of B with K ∩ T = ∅, n ∈ K. Then either
(11.1) u(k) ∈ A0
or

(11.2) u(k) ∈ P (k);
denote either

(12.1) w = u(k)

or

(12.2) w = ϕk(u(k))

if (11.1) or (11.2) is valid, respectively. Then w ∈ T0. The mapping ψ : u → w is a

homomorphism, since either (11.1) holds, thus f(u(k)) ∈ A0 and
(13.1) ψ(f(u)) = (f(u))(k) = f(u(k)) = f(ψ(u)),

or (11.2) is valid and

(13.2) if f(u(k)) ∈ A0, then

ψ(f(u)) = (f(u))(k) = ϕk(f(u(k))) = f(ϕk(u(k))) = f(ϕk(u(k))) = f(ψ(u)),

(13.3) if f(u(k)) ∈ P (k), then

ψ(f(u)) = ϕk(f(u(k))) = f(ϕk(u(k))) = f(ϕk(u(k))) = f(ψ(u)).

This and (10) imply (in view of (Thm)) that T is a retract of B. According to (1)–(3)
we obtain that A is DR-reducible. �

3.2. Lemma. Suppose that there are m,n ∈ �, m < n and x ∈ J (m), y ∈ J (n)
with x /∈ P (y). Then A is DR-reducible.

�����. In view of 2.1, we can assume that card I(n) � 1, card I(m) � 1. Denote

B1 = A− P (y),

B2 = A− P (x).

It is obvious that

(1) B1 ∈ R(A), B2 ∈ R(A).
Denote by I(n)(B1) the set of elements of B1 described analogously as I(n) for A.
Then we get

I(n)(B1) = ∅.

714



Similarly,

I(m)(B2) = ∅.
Then A is not isomorphic to any subalgebra of B1 and A is not isomorphic to any
subalgebra of B2, thus

(2) A /∈ R(B1), A /∈ R(B2).
Let B = B1 ×B2. Denote

T = {(a, a) : a ∈ A− (P (x) ∪ P (y))} ∪
∪ {(v, ϕx(v)) : v ∈ P (x)} ∪ {(ϕy(u), u) : u ∈ P (y)}.

Then

(3) A ∼= T .
Let us show that T is a retract of B. Let b ∈ f−1(T ).
(a) If f(b) = (a, a), a ∈ A−(P (x)∪P (y)), then there is d ∈ f−1(a)−(P (x)∪P (y));

we put z = (d, d). This yields

(4) f(z) = f(b), sf (b) � sf (z).

(b) If f(b) = (v, ϕx(v)), v ∈ P (x), then put z = (b(1), ϕx(b(1))); we obtain that

(4) is valid, too.
(c) The case when f(b) = (ϕy(u), u), u ∈ P (y), is analogous; we put z =

(ϕy(b(2)), b(2)).
Let K be a connected component of B with K ∩T = ∅, t ∈ K. If t(1) ∈ A−P (x),

then denote w = (t(1), t(1)). If t(1) ∈ P (x), then put w = (ϕx(t(1)), ϕx(t(1)). It can
be easily shown that the mapping t → w is a homomorphism of K into T . Hence
(Thm) yields that T is a retract of B. According to (1)–(4) we conclude that A is

DR-reducible. �

3.3. Lemma. Let m be the smallest positive integer such that J (m) �= ∅.
Further, let A � Em. If I(m) �= J (m), then A is DR-reducible.

�����. Suppose that A is DR-irreducible. By 3.1 there is x ∈ A with

I(m) = {x}.

Let I(m) �= J (m). Then there is y ∈ A−{x} such that J (m) = {x, y}. Since A � Em,

A �= {x, f(x), . . . , fm−1(x)} ∪ {y, f(y), . . .}.

One of the following cases occurs:
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a) S0 �= {x, y}. Then there is the least positive integer n > m such that I(n) �= ∅.
According to 3.1,

I(n) = {z} for some z ∈ A
and, in view of 3.2,

{x, y} ⊆ P (z).

There is p ∈ � such that

fm+p−1(x) /∈ {f j(z) : j ∈ �} and fm+p(x) ∈ {f j(z) : j ∈ �}.

Denote

(1) u0 = fm+p(x).

Then there are u1, u2, . . . , um+p ∈ A− {x, f(x), . . . , fm+p−1(x)} with
(2) f−1(u0) � {u1}, f−1(u1) = {u2}, f−1(u2) = {u3}, . . . , f−1(um+p+1) =

um+p.

b) S0 = {x, y}. Then there are p ∈ �, u0 ∈ A and u1, u2, . . . , um+p ∈ A −
{x, f(x), . . . , fm+p−1(x)} such that (1) and (2) are valid. Denote

B1 = B2 = A− {y, f(y), . . . , fm−1(y)}.

Obviously,

(3) B1 ∈ R(A), B2 ∈ R(A).
Further, let l be the least positive integer such that J (l)(B1) �= ∅. Then l is greater
than m, hence A is not isomorphic to any subalgebra of B1 and

(4) A /∈ R(B1), A /∈ R(B2).
Let ν : A → B1 × B2 be the mapping defined as follows: If a = fk(y), k ∈ {0, . . . ,
m− 1}, then put ν(a) = (fk(x), um−k). If a ∈ B1, then put ν(a) = (a, fp(a)).
Obviously, ν is injective. Denote

T = ν(A).

Let a ∈ A. If {a, f(a)} ⊆ A−B1 or {a, f(a)} ⊆ B1, then

ν(f(a)) = f(ν(a)).

Suppose that a ∈ A−B1, f(a) ∈ B1. Then a = fm−1(y) and we obtain

f(ν(a)) = f((fm−1(x), u1)) = (fm(x), u0) = (fm(y), fm+p(x)) =

= (fm(y), fm+p(y)) = ν(fm(y)) = ν(f(a)),

hence

(5) ν is an isomorphism of A onto T .
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We want to prove that T is a retract of B1 ×B2. If K is a connected component of

B1 ×B2, K ∩ T = ∅, then the mapping ϕ : K → T defined by the formula

ϕ(b) = ν(b(1))

is a homomorphism. Suppose that v ∈ f−1(t), t ∈ T . First let t = ν(fk(y)),

k ∈ {0, . . . ,m− 1}. Then
t = (fk(x), um−k);

moreover, k > 0 and

f−1(t) = {(fk−1(x), um−k+1)} ∈ T,

which yields that v ∈ T . Now let t = (a, fp(a)), where a ∈ B1. If v(1) ∈ B1, then put
d = v(1). If v1 ∈ A−B1, then there is d ∈ f−1(a) ∩B1 such that sf (d) > sf (v(1)).
Denote r = ν(d). We obtain that r ∈ T . Further,

sf (r) = min {sf(r(1)), sf (r(2))} = min {sf (d), sf (fp(d))} = sf (d),

sf (v) = sf (v(1)) � sf (d).

Obviously, f(r) = f(v), hence

(6) if v ∈ f−1(T ), then there is r ∈ T with f(r) = f(v) and sf(r) � sf (v).

In view of (Thm), T is a retract of B1 × B2, therefore with respect to (3), (4) and

(5), A is DR-reducible, which is a contradiction. �

4. Main result

The aim of this section is to prove

4.1. Theorem. A connected monounary algebra A possessing no cycle is DR-
irreducible if and only if either A is of type (α) or A is isomorphic to �, �, E or En

for some n ∈ �.

�����. The sufficient condition for DR-irreducibility is valid in view of 1.2, 1.5

and 1.11.

Now suppose that A is DR-irreducible, A is not of type (α) and that A is not

isomorphic to �,�, E or En for n ∈ �. In view of Section 2, there is x ∈ A with
sf (x) �= ∞. Let us proceed like in Section 3. There exists the smallest positive
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integer m1 such that J (m1) �= ∅. By 3.3, I(m1) = J (m1). Then 3.1 implies that there

is x1 ∈ A such that
I(m1) = J (m1) = {x1}.

If J (k) = ∅ for each k ∈ �, k > m1, then (4.1) is valid; this case will be investigated
later.

Suppose that there is the smallest positive integer m2 ∈ �, m2 > m1 such that
J (m2) �= ∅. As above, 3.3 and 3.1 yield that there is x2 ∈ A with

I(m2) = J (m2) = {x2}.

Further,

x1 ∈ P (x2),
in virtue of 3.2.
If J (k) = ∅ for each k ∈ �, k > m2, then (4.1) is valid. If not, then there is the

smallest m3 ∈ �, m3 > m2 and there is x3 ∈ A with

I(m3) = J (m3) = {x3}, x2 ∈ P (x3).

Now there are two possibilities:
I. After finitely many steps we finish this process and come to (4.1);

II. We get x1, x2, . . . ∈ A, m1 < m2 < . . . such that if k ∈ �, then I(mk) = J (mk) =
{xk} and xk ∈ P (xk+1). Since A is not of type (α3), this yields that there exists

z ∈ A with sf (z) =∞. The algebra A is connected, thus there are j, l ∈ � such that
f j(x1) = f l(z). Further,

x1 ∈ P (x2) � P (x3) � P (x4) . . . ,

thus f j(x1) ∈ P (xi) for some i ∈ �. Then z ∈ P (xi) for some i ∈ �, and the relation
sf (z) =∞ contradicts the relation f−n1(xi)(z) = ∅.
Therefore we have

(4.1) there exist k ∈ �, m1, . . . ,mk ∈ �, x1, . . . , xk ∈ A such that J (i) = ∅ for each
i > mk,

m1 < m2 < . . . < mk,

I(m1) = J (m1) = {x1}, . . . , I(mk) = J (mk) = {xk},
x1 ∈ P (x2), . . . , xk−1 ∈ P (xk).

The algebra A is not of type (α1), thus there is z ∈ A with sf (z) =∞. Then

sf (fmk(xk)) =∞
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and there are distinct elements yi for i ∈ � such that y0 = fmk(xk) and f(yi) = yi+1

for each i ∈ �. Further, A is not of type (α2), hence there are a, b ∈ A, a �= b such
that f(a) = f(b) and sf(a) = sf (b) =∞. Denote

B1 = P (xk) ∪ {yi : i ∈ �},
B2 = A− P (xk).

Obviously, B1 and B2 are subalgebras of A. Notice that sf (x) =∞ for each x ∈ B2,
thus A is not isomorphic to any subalgebra of B2, hence A /∈ R(B2). The existence of
a, b ∈ A implies that A is not isomorphic to any subalgebra of B1, thus A /∈ R(B1).
Further, by the definition of a retract we get

B1 ∈ R(A), B2 ∈ R(A).

There exists a retract homomorphism ψ : A→ {yi : i ∈ �}. Let us define a mapping
ν : A→ B1 ×B2 as follows:

ν(t) =

{
(t, ψ(t)) if t ∈ P (xk),

(ψ(t), t) otherwise.

Denote
T = {ν(t) : t ∈ A}.

The mapping ν is injective, since if t ∈ P (xk), r ∈ A − P (xk), ν(t) = ν(r), then
t = ψ(r), r = ψ(t), thus {r, t} ⊆ {yi : i ∈ �}, hence ψ(r) = r, ψ(t) = t and r = t. Let
us show that ν is a homomorphism. If {t, f(t)} ⊆ P (xk) or {t, f(t)} ⊆ A − P (xk),
then obviously ν(f(t)) = f(ν(t)). Suppose that t ∈ P (xk), f(t) ∈ A− P (xk). Then

f(t) = y0, ψ(y0) = y0 and we have

ν(f(t)) = ν(y0) = (ψ(y0), y0) = (y0, y0) = (y0, ψ(y0)) =

= (f(t), f(ψ(t))) = f(t, ψ(t)) = f(ν(t)).

Hence T is a subalgebra of B1 ×B2 such that

T ∼= A.

No connected component of B1 × B2 contains a cycle and there is q ∈ T with
sf (q) = ∞, thus (Thm) implies that for proving that T is a retract of B1 × B2 it

suffices to verify that for each d ∈ f−1(T ) there is v ∈ T with f(d) = f(v) and
sf (d) � sf (v). Thus let d ∈ f−1(T ). Then either
(1) f(d) = (t, ψ(t)), t ∈ P (xk),
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or

(2) f(d) = (ψ(t), t), t ∈ A− P (xk).

There is i ∈ � with ψ(t) = yi. If (1) is valid, then d(1) ∈ f−1(t), t ∈ P (xk), hence

d(1) ∈ P (xk); take v = (b(1), yi−1). This implies

f(v) = (f(d(1)), f(yi−1)) = (t, yi) = (t, ψ(t)) = f(d),

sf (d) = min {sf (d(1)), sf (d(2))} = min {sf (d(1)),∞} =
= sf (d(1), yi−1) = sf (v).

Let (2) hold. Then f(d(2)) = t, d(2) ∈ f−1(t) ⊆ B2, f(d(1)) = yi. Put v =
(ψ(d(2)), d(2)). We get

f(v) = (f(ψ(d(2))), f(d(2))) = (ψ(f(d(2)), t) = (ψ(t), t) = f(d).

Since b(2) ∈ B2, we get sf (d(2)) =∞, thus sf (ψ(d(2)) =∞ (ψ is a homomorphism),
hence sf (v) = sf (ψ(d(2)), d(2)) =∞ � sf (d).
We have proved that A is DR-reducible, which is a contradiction, and this com-

pletes the proof. �
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