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Abstract. The aim of this paper is to investigate quasi-corational, comonoform, copoly-
form and α-(co)atomic modules. It is proved that for an ordinal α a right R-module M is
α-atomic if and only if it is α-coatomic. And it is also shown that an α-atomic module M
is quasi-projective if and only if M is quasi-corationally complete. Some other results are
developed.
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1. Introduction

Throughout the paper all rings will have identities and all modules will be unital

right modules. Let R be a ring and M an R-module. We write Rad(M) and E(M)
for the radical and injective hull ofM , respectively, and J(R) for the Jacobson radical

of R. We write N � M for N a submodule of M and N � M for N � M and N

small in M , equivalently M = N +K for some K � M implies K =M .

LetM be a module andN a proper submodule ofM . We callM a quasi-corational
extension of N in the case Hom(M, N/K) = 0 for each submodule K of N . M is

called quasi-corationally complete if for each proper submodule N of M and for any
V � N with Hom(M, V/K) = 0 for all K � V , any homomorphism from M to N/V

lifts to a homomorphism from M to N .
Let �,� denote the integers and rational numbers, respectively. � is a quasi-

corational extension of � as a �-module since Hom(�,�/K) = 0 for all K � �.
A module M is called coatomic whenever, provided Rad(M/N) = M/N for N �

M , we have M/N = 0 (see for example Exer.9, Page 239 in[4]). It is easy to check
that M is coatomic if and only if each submodule of M is contained in a maximal
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submodule. Any homomorphic image of a coatomic module is coatomic. Every ring

R is a coatomic right R-module.
We say that M is comonoform (copolyform resp.) if M is a quasi-corational

extension of every(small) submodule N with N �=M . A homomorphic image of any

comonoform module is comonoform, and since an inverse image of a small module
need not be small, a homomorphic image of a copolyform module is not always

copolyform. Every comonoform module is copolyform.
LetM denote the �-module�. Since the only small submodule ofM is zero, then

M is copolyform but M is not comonoform since Hom(�, 2�/4�) �= 0.

2. Results

Lemma 1. Let M be a quasi-corational extension of a submodule N . Then N is

small in M .

�����. Let K be a submodule of M such that M = K + N . Then M/K ∼=
N/N ∩K and so there is a homomorphism f from M onto N/N ∩K. Since M is a

quasi-corational extension of N we have f = 0. Hence N = N ∩K � K and K =M .
Thus N is small in M . �

Let N � M . If for all proper submodules V of N , N/V is not small in M/V then
N is called a coclosed submodule of M [see for example [7]]. If M = K + N and

K ∩N is small in N for some submodule K of M then N is called a supplement of
K in M . M is called amply supplemented if for any submodules A, B of M with

M = A + B, A has a supplement in B, that is, there exists a submodule C of B

such that M = A + C and A ∩ C is small in C. Cf. [10] and [6] in which amply

supplemented is called supplemented.

Lemma 2. Let M be a module. Assume M is a quasi-corational extension of

some submodule N . Then N is not coclosed in M .

�����. Let M be a quasi-corational extension of some submodule N . Assume

N is coclosed in M . Then we can find a nonzero submodule K of N such that
N/K + L/K = M/K for some L � M and L/K �= M/K. Then there exists a

homomorphism f from M onto N/N ∩ L. By assumption f = 0, and so N =
N ∩ L � L. Thus L/K =M/K. This is a contradiction. �

Lemma 3. Let M be an amply supplemented module. A submodule N of M is

coclosed in M if and only if N is a supplement in M .

�����. Assume N is a coclosed submodule of M . Since M = N +M and M is
amply supplemented, N has a supplement L in M and L has a supplement K in N .
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Then it is easily checked that N/K is small in M/K. By assumption N/K = 0, and

so N is a supplement of L in M . Conversely let U be a submodule of M such that
M = U +N and U ∩N is small in N . By hypothesis N has a supplement T in U or
M = T +N , T ∩N is small in T and T � U . Let V � N ,V �= N . Then M �= V + T

and M = N + T + V . Hence M/V = N/V + (T + V )/V , and so N/V is not small
in M/V . Thus N is coclosed in M . �

Lemma 4. Let M be a module and V a submodule in M . Assume V is a

coatomic module. Then the following are equivalent:

(1) V is coclosed in M .

(2) For every maximal submodule X of V , V/X is a direct summand of M/X .

�����. (1)⇒ (2): Let X be a maximal submodule of V . By (1) V is coclosed
and so V/X is not small in M/X or M/X = V/X + L/X for some L � M . Since

V/X is simple we have (V/X) ∩ (L/X) = 0. Hence V/X is a direct summand of
M/X .

(2)⇒ (1): Let X be a nonzero submodule of V such that V/X is small in M/X .
Since V is coatomic, then V/X is coatomic and so V/X contains a maximal sub-

module Y/X . By (2) (V/Y ) ⊕ (L/Y ) = M/Y for some submodule L of M . Con-
sider the map f : M/X → M/Y defined by f(m + X) = m + Y (m ∈ M). Then

f(V/X) = V/Y . Since V/X is small inM/V and any homomorphic image of a small
module is small, V/Y is small in M/Y . Hence L/Y = M/Y and so V = Y . This

is a contradiction since Y is a maximal submodule of V . It follows that V/X is not
small for all proper submodules X of V . Hence V is coclosed. �

A module M is called hollow whenever every submodule N of M with N �= M is

small in M , that is, for any submodule K of M , M = N +K implies K =M .

Lemma 5. Let M be a comonoform module. Then M is hollow.

�����. LetN be a submodule of a comonoformmoduleM withN �=M . Assume
M = N +L for some submodule L ofM . Then there exists a homomorphism f from

M onto N/N ∩ L. By hypothesis f = 0, and so N/N ∩ L = 0. Hence L =M . Thus
M is hollow. �

There are submodules of comonoform modules which are not comonoform.

Example 6. LetM denote the Prüfer p-group �(p∞) for some prime integer p.
It is known that for any submodule N with N �= M , M/N ∼= M . Let N be a

submodule with N �= M and L any submodule of N and f ∈ Hom(M, N/L). Set
K = Ker(f). Assume f �= 0. ThenM/K is isomorphic to a submodule of N/L which
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is Noetherian. This is a contradiction since M ∼= M/K. Then M is comonoform.

Let Nt = (1/pt + �)� denote the submodule of M such that ptNt = 0 where t is a
positive integer with t � 4. Let m and n be positive integers such that m < n <

t. Then there exists a nonzero homomorphism f from Nt to Nn/Nm defined by

f(a/pt +�) = a/pn +Nm where a/pt +� ∈ Nt. Hence Nt is not comonoform.

Lemma 7. Let M be a comonoform module and N a submodule of M with

N �=M . If for any submodules K, L of N with K � L, L/K is M -injective then N

is comonoform.

�����. Let K, L be submodules of N such that K � L and L �= N and

f ∈ Hom(N, L/K). Since L/K is M -injective f extends to a homomorphism
g ∈ Hom(M, L/K). By hypothesis g = 0. Then N is comonoform. �

Lemma 8. Let M be a hollow and copolyform module. Then M is comonoform.

�����. Let N be a proper submodule ofM . Then N is small inM , and so N/K

is small in M/K for all K � N . Since M is copolyform we have Hom(M, N/K) = 0.

Hence M is comonoform. �

Lemma 9. Let M be a module. Then M is copolyform if for all submodules N

of M , Im(f) is coclosed in M/N for all f ∈ Hom(M, M/N) with Im(f) �=M/N .

�����. Assume M is not copolyform. Then there exists a nonzero homomor-
phism f in Hom(M, N/K) for some small submodule N in M and some submodule
K of N . Then N/K and so Im(f) = L/K is small in M/K as a submodule of N/K.

Let L1/K be any submodule of L/K. Then L/L1 is small in M/L1. Hence Im(f) is
not coclosed. �

Lemma 10. Let M be a module. Then the following are equivalent:

(1) M is comonoform.

(2) For any nonzero submodule N of M , every nonzero homomorphism f from

M to M/N is onto.

�����. (1) ⇒ (2): Let N be a nonzero submodule of M and f : M → M/N a

nonzero homomorphism. Set Im(f) = L/N . If L �=M , then f ∈ Hom(M, L/N) and
so f = 0 by (1). Hence f must be onto.

(2) ⇒ (1): Let K and N be submodules of M such that K � N , N �= M and

f ∈ Hom(M, N/K). Then by (2) we have f = 0 or f is onto. It follows that M is
comonoform. �
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Lemma 11. Let R be a commutative ring and M a local module with Rad(M)

a small submodule of M . Then M is not copolyform.

�����. LetM be a local module over a commutative ring R having Rad(M) �= 0
as a small submodule. Then M = mR for some m ∈ M . Let 0 �= x ∈ Rad(M).
Define f : M → Rad(M) by f(mr) = xr(r ∈ R). It is clear that f is a nonzero

homomorphism from M to Rad(M). Since M is local and so hollow and Rad(M) is
small, hence M is not copolyform. �

Example 12. Let n be a positive integer. Since the only small submodule of

� is 0, then � is a copolyform �-module. But by Lemma 11 we have �/n�, which is
a homomorphic image of � as a �-module is not copolyform.

It is clear that every projective module is quasi-corationally complete. We prove

the converse for comonoform modules.

Lemma 13. Let M be a comonoform quasi-corationally complete module. Then

M is a quasi-projective module and End(M) is a division ring.

�����. Suppose that M is a comonoform quasi-corationally complete module.

Let N be a proper submodule of M and f : M → M/N a homomorphism. By
hypothesis Hom(M, N/K) = 0 for all K � N , and then f lifts to a homomorphism g

from M to M . Hence M is quasi-projective. For the last part let 0 �= f ∈ End(M).
Since M is comonoform hence by Lemma 10 f is epic. Since M is quasi-projective

then we can find an h ∈ End(M) such that fh = 1. Since M is comonoform, h is
also epic, and then there exists g ∈ End(M) such that gf = 1. Hence g = h and f

has an inverse. Thus End(M) is a division ring. �

Note that there are quasi-projective modules which are not comonoform.

Example 14. Let m and n be distinct positive integers and let the function
f : � → m�/mn� be defined by f(t) = mt + mn�(t ∈ �). Then f is a nonzero

homomorphism. Hence � is not comonoform as a �-module. Since � is a (quasi)-
projective �-module, � is quasi corationally complete.

Corollary 15. Let R be a ring such that R is a comonoform R-module. Then R

is a division ring.

�����. Since every quasi-projective module is quasi-corationally complete,

Corollary follows from Lemma 13. �

Definition 16. Let P be an ideal of a ring R. If R/P is a comonoform right
R-module we call P a cocritical right ideal.
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Theorem 17. Let R be a ring and P an ideal. Then the followings are equivalent:

(1) P is a cocritical right ideal.

(2) R/P is a division ring.

�����. (1)⇒ (2): Let x be a nonzero element in R/P . Then x /∈ P and define

f : R/P → (xR + P )/P byf(r̄) = xr + P where r̄ ∈ R/P . By (1) f = 0 and then
x ∈ P . This is a contradiction. Hence R/P = x(R/P ) for 0 �= x ∈ R/P . Thus R/P

is a division ring.
(2) ⇒ (1): Assume that R/P is a division ring. Let L/P � K/P � R/P be

submodules and let 0 �= f ∈ Hom(R/P, K/L). Let x ∈ K be such that f(1) =
f(1 + P ) = x + L. Then x /∈ L and (x + P )(y + P ) = 1 + P for some y ∈ R.

Hence xy − 1 ∈ P � L and f(1)y = f(y) = xy + L = 1 + L ∈ K/L. Thus 1 ∈ K

and so K = R. This is a contradiction. It follows that Hom(R/P, K/L) = 0 for all
submodules K and L of R with L/P � K/P � R/P and then R/P is comonoform

and P is a cocritical right ideal. �

Theorem 18. Let R be a ring such that each R-module has no quasi-corational

extension. Then:

(1) Each R-module has a proper radical.

(2) Each R-module is coatomic.

�����. (1): LetM be a module and 0 �= m ∈ M . LetH be a maximal submodule
in M with respect to m /∈ H . Let T be the intersection of proper submodules of M

containing H properly. Then m ∈ T and T/H is a simple module. By hypothesis M

is not a quasi-corational extension of T . We claim Hom(M, T/H) �= 0. Otherwise,
Hom(M, T/H) = 0. Then for all submodules X of H , Hom(M, T/X) = 0, and so
Hom(M, H/X) = 0. Hence M is a quasi-corational extension of H . This contradicts

the hypothesis. Let f be a nonzero element of Hom(M, T/H). Then Ker(f) is a
maximal submodule of M . This proves (1).

(2): Let M be a module and N a submodule of M . By (1), M/N has a proper
radical. HenceM/N has a maximal submodule, and so N is contained in a maximal

submodule of M . �

LetM be a module. k0(M) will stand for the dual Krull dimension ofM as defined

in (for example) [1, 5, 8]. M is called α-atomic for some ordinal α if k0(M) = α

and for any proper submodule N of M , k0(N) < α. M is a Noetherian module

if and only if k0(M) � 0 [1]. We call M α-coatomic if M/N is α-atomic for all
proper submodules N of M for some ordinal α. It is clear from the definitions that

0-coatomic modules and 1-coatomic modules are coatomic modules.
As an easy reference we record
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Lemma 19. (see [1]) Let 0 → N → M → K → 0 be a short exact sequence of
R-modules. Then k0(M) = max{k0(N), k0(K)}.

Lemma 20. Let M be a module. Then for some ordinal α, M is α-atomic if and

only if M is α-coatomic.

�����. Suppose that M is α-atomic. Then k0(M) = α and k0(N) < α for all

submodules N with N �= M . Let N � M . Since k0(M) = max{k0(N), k0(M/N)},
then k0(M/N) = α. Let N � L � M . Then k0(L/N) � k0(L) < α. Hence M is

α-coatomic. Conversely, suppose that M is α-coatomic. Then k0(M/N) = α and
k0(L/N) < α for all N � L � M . For N = 0, we have k0(M/N) = k0(M) = α, and

for any L � M , k0(L/N) = k0(L) < α. Hence M is α-atomic. �

Theorem 21. Let M be an α-atomic module. Then M is comonoform.

�����. Let N be a proper submodule of M and let 0 �= f ∈ Hom(M, N/K)
for some K � N . Then k0(M) = α and k0(N) < α and f(M) = L/K for some

L � N with K � L � N . Since f(M) ∼= M/Ker(f) we have by Lemma 19
k0(M) = max{k0(f(M)), k0(Ker(f))} = k0(f(M)) � k0(N/K) � k0(N) < α. It is

a contradiction. Hence f = 0 and M is comonoform. �

Combining Lemma 13 with Theorem 21 we get

Theorem 22. Let M be an α-atomic module. Then M is quasi-projective if

and only if M is quasi-corationally complete.

An R-module M is called quasi-rationally complete if for any submodule N of M
and a submodule K of N such that Hom(L/K, M) = 0 for every L/K � N/K, any

homomorphism from K to M can be extended to a homomorphism from N to M .
Every quasi-injective module is quasi-rationally complete. By modifying the proof

of Lemma 1.2 in [9], M is quasi-rationally complete if and only if for any N � M

and K � N , Hom(N/K, E(M)) = 0 implies that any homomorphism from K to M

can be extended to a homomorphism from N to M .

Theorem 23. Let M be a module. Suppose that for any N � M , Hom(N/K,

M) = 0 for all 0 �= K � N � M . Then M is quasi-injective if and only if M is

quasi-rationally complete.

�����. Suppose that M is a quasi-rationally complete module. Let N � M and
f ∈ Hom(N, M). Assume that Hom(M/N, E(M)) = 0. Then Hom(M/N, M) = 0.

Since M is quasi-rationally complete then f extends to a homomorphism from M

to M . If Hom(M/N, E(M) �= 0, let h be a nonzero element of Hom(M/N, E(M))
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and set L = h(M/N) ∩M . Then h−1(L) = K/N for some K � M and h induces

an element t of Hom(M/N, M) which is zero by hypothesis. Hence L = 0 and then
h(M/N) = 0. This is a contradiction. Thus Hom(M/N, E(M)) = 0. This completes
the proof. �
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