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OSCILLATORY PROPERTIES OF SOLUTIONS OF

THREE-DIMENSIONAL DIFFERENTIAL SYSTEMS

OF NEUTRAL TYPE

Eva Špániková, Žilina

(Received November 30, 1998)

Abstract. The purpose of this paper is to obtain oscillation criteria for the differential
system

[y1(t)− a(t)y1(g(t))]
′ = p1(t)f1(y2(h2(t)))

y′2(t) = p2(t)f2(y3(h3(t)))

y′3(t) = −p3(t)f3(y1(h1(t))), t ∈ �+ = [0,∞).
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1. Introduction

In this paper we consider the neutral differential system of the form

(S) [y1(t)− a(t)y1(g(t))]
′ = p1(t)f1(y2(h2(t)))

y′2(t) = p2(t)f2(y3(h3(t)))

y′3(t) = −p3(t)f3(y1(h1(t))), t ∈ �+ = [0,∞).

The following conditions are assumed to hold throughout the paper:
(a) pi : �+ → �+ , i = 1, 2, 3 are continuous functions not identically equal to zero

in every neighbourhood of infinity,

∫ ∞
pj(t) dt =∞, j = 1, 2;
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(b) a : �+ → � is a continuous function satisfying |a(t)| � λ < 1, where λ is

a constant and a(t)a(g(t)) � 0 on �+ ;
(c) g : �+ → � is a continuous and increasing function, g(t) < t on �+ and

lim
t→∞

g(t) =∞;
(d) hi : �+ → �+ are continuous functions and lim

t→∞
hi(t) =∞, i = 1, 2, 3;

(e) fi : � → � are continuous and nondecreasing functions, ufi(u) > 0 for u �= 0,
i = 1, 2, 3.

The asymptotic properties of solutions of systems with deviating arguments or

systems of neutral type are studied for example in the papers [1–12].

The purpose of this paper is to obtain oscillation criteria for the system (S). The

paper is a generalization of the results obtained in the paper [12].

Let t0 � 0. Denote

t̃0 = min
{

g(t0), inf
t�t0

hi(t), i = 1, 2, 3
}
.

A function y = (y1, y2, y3) is a solution of the system (S) if there exists a t0 � 0 such
that y is continuous on [t̃0,∞), y1(t)− a(t)y1(g(t)), yi(t), i = 2, 3, are continuously
differentiable on [t0,∞) and y satisfies (S) on [t0,∞).
Denote by W the set of all solutions y = (y1, y2, y3) of the system (S) which exist

on some ray [Ty,∞) ⊂ �+ and satisfy

sup

{ 3∑

i=1

|yi(t)| : t � T

}
> 0 for any T � Ty.

A solution y ∈ W is nonoscillatory if there exists a Ty � 0 such that its every
component is different from zero for all t � Ty. Otherwise a solution y ∈ W is said
to be oscillatory.

Denote
h�

i (t) = min{t, hi(t)}, i = 1, 2, 3;

γi(t) = sup{s � 0, h�
i (s) � t}, t � 0, i = 1, 2, 3;

β(t) = sup{s � 0, g(s) � t}, t � 0;
γ(t) = max{γ1(t), γ2(t), γ3(t), β(t)}.

For any y1(t) we define z1(t) by

(1) z1(t) = y1(t)− a(t)y1(g(t)).
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2. Some basic lemmas

Lemma 1. ([6, Lemma 1]) Let y ∈ W be a solution of the system (S) with

y1(t) �= 0 on [t0,∞), t0 � 0. Then y is nonoscillatory and z1(t), y2(t), y3(t) are
monotone on some ray [T,∞), T � t0.

Lemma 2. ([6, Lemma 2]) Let y = (y1, y2, y3) ∈ W be a nonoscillatory solution

of the system (S) and let lim
t→∞

|z1(t)| = L1, lim
t→∞

|yi(t)| = Li, i = 2, 3. Then

(2) L1 < ∞ implies L2 = L3 = 0.

Lemma 3. ([6, Lemma 4]) Let y = (y1, y2, y3) ∈ W be a nonoscillatory solution of

the system (S) on [t0,∞), t0 � 0. Then there exist an integer l ∈ {1, 3} and a t1 � t0
such that for t � t1 either

z1(t)y1(t) > 0(31)

y2(t)y1(t) < 0

y3(t)y1(t) > 0

or

z1(t)y1(t) > 0(33)

yi(t)y1(t) > 0, i = 2, 3.

Remark. The case z1(t)y1(t) < 0 on [t1,∞) cannot occur (see [6, Lemma 4]).
We denote by N+1 or N+3 the set of all nonoscillatory solutions of (S) which satisfy

(31) or (33), respectively. Denote by N the set of all nonoscillatory solutions of (S).
Then by Lemma 3 we have

N = N+1 ∪N+3 .

Lemma 4. ([6, Lemma 5])
I) Let y ∈ N+3 on [t1,∞). Then

(4) |y1(t)| � (1 − λ)|z1(t)| for large t.

II) Let y ∈ N+1 on [t1,∞).
i) If lim

t→∞
|z1(t)| = L1 > 0, then there exists an a0 : 0 < a0 < 1 such that

(5) |y1(t)| � a0|z1(t)| for large t;

ii) if lim
t→∞

z1(t) = 0 then lim inf
t→∞

|y1(t)| = 0, lim
t→∞

yi(t) = 0, i = 2, 3.
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3. Oscillation theorems

Theorem 1. Let the following conditions be satisfied:

xyfi(xy) � Kxyfi(x)fi(y) (0 < K = const.), i = 1, 2, 3;(6)

hj(t), j = 2, 3 are nondecreasing functions;(7)

h3(h2(h1(t))) � t;(8) ∫ ∞

γ(0)
p2(t)f2

(∫ ∞

h3(t)
p3(s) ds

)
dt =∞;(9)

∫ ∞

γ(γ(0))
p3(t)f3

(∫ h1(t)

γ(0)
p1(s)f1

(∫ h2(s)

0
p2(x) dx

)
ds

)
dt =∞;(10)

∫ α

0

dt
f3(f1(f2(t)))

< ∞,

∫ −α

0

dt
f3(f1(f2(t)))

< ∞,(11)

for every constant α > 0.

Then every solution y ∈ W is either oscillatory or lim inf
t→∞

|y1(t)| = 0 and
lim

t→∞
yi(t) = 0, i = 2, 3.

�����. Let y ∈ W be a nonoscillatory solution of (S). Then y ∈ N+1 ∪N+3 on
[t1,∞).
A) Let y ∈ N+1 on [t1,∞). Without loss of generality we suppose that y1(t) > 0

for t � t1. Then the function z1(t) is nonincreasing on [γ(t1),∞) and lim
t→∞

z1(t) =

L1 < ∞. From (2) we obtain

(12) lim
t→∞

y2(t) = lim
t→∞

y3(t) = 0.

We shall prove that lim
t→∞

z1(t) = 0. Let lim
t→∞

z1(t) = L1 > 0. Lemma 4 implies that

there exist a t2 � γ(t1) and a constant C1 = a0L1 such that y1(t) � C1 for t � t2.

From (e) we get

(13) f3(y1(h1(t))) � C2, t � t3 = γ(t2), where C2 = f3(C1) > 0.

Integrating the third equation of (S) from t to ∞ and then using (13) we have

y3(t) � C2

∫ ∞

t

p3(s) ds, t � t3.

Then in view of (e), (6) and the last inequality we get

(14) f2(y2(h3(t))) � Kf2(C2)f2

(∫ ∞

h3(t)
p3(s) ds

)
, t � t4 = γ(t3).
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Integrating the second equation of (S) from t4 to t and then using (14) we get

y2(t) � y2(t4) +Kf2(C2)
∫ t

t4

p2(z)f2

(∫ ∞

h3(z)
p3(s) ds

)
dz, t � t4.

By virtue of (9), the last inequality implies for t →∞ that lim
t→∞

y2(t) =∞, which con-
tradicts (12). Therefore lim

t→∞
z1(t) = 0 and from Lemma 4 we have lim inf

t→∞
|y1(t)| = 0.

B) Let y ∈ N+3 on [t1,∞). Without loss of generality we suppose that y1(t) > 0
on [t1,∞). Integrating the second equation of (S) from t5 to t we get

y2(t)− y5(t5) =
∫ t

t5

p2(s)f2(y3(h3(s))) ds, t � t5 = γ(t1)

and

y2(h2(t)) �
h2(t)∫

t5

p2(s)f2(y3(h3(s))) ds, t � t6 = γ(t5).(15)

Using (e), (6), (15) and the monotonicity of f2(y3(h3(s))) we get

f1(y2(h2(t))) � Kf1(f2(y3(h3(h2(t)))))f1

(∫ h2(t)

t5

p2(s) ds

)
, t � t6.

Integrating the first equation of (S) from t6 to t and then using the last inequality,
we have

(16) z1(t) � K

t∫

t6

p1(s)f1(f2(y3(h3(h2(s)))))f1

(∫ h2(s)

t5

p2(x) dx

)
ds, t � t6.

Using (8), (16) and the monotonicity of f1(f2(y3(t))) we get

z1(h1(t)) � Kf1(f2(y3(t)))
∫ h1(t)

t6

p1(s)f1

(∫ h2(s)

t5

p2(x) dx

)
ds,(17)

t � t7 = γ(t6).

In view of Lemma 4 there exists a t8 � t7 such that

(18) y1(h1(t)) � (1− λ)z1(h1(t)), t � t9 = γ(t8).

In view of (e), (6), (17) and (18) we have

(19) f3(y1(h1(t))) � C3f3(f1(f2(y3(t))))f3

(∫ h1(t)

t6

p1(s)f1

(∫ h2(s)

t5

p2(x) dx

)
ds

)
,

t � t9 where C3 = K2f3
(
(1 − λ)K

)
> 0.
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Multiplying (19) by p3(t)
f3(f1(f2(y3(t))))

, using the third equation of (S) and then inte-
grating from t9 to t, we get

∫ t9

t

y′3(z) dz
f3(f1(f2(y3(z))))

� C3

∫ t

t9

p3(z)f3

(∫ h1(z)

t6

p1(s)f1

(∫ h2(s)

t5

p2(x) dx

)
ds

)
dz,

t � t9. The last inequality for t → ∞ gives a contradiction to (10) with (11). This
case cannot occur. The proof of Theorem 1 is complete. �

Theorem 2. Suppose that (6)–(9) hold and in addition

f3(f1(f2(t)))) = t;(20)
∫ ∞

γ(γ(0))
p3(t)

[
f3

(∫ h1(t)

γ(0)
p1(s)

(∫ h2(s)

0
p2(x) dx

)
ds

)](1−ε)

dt =∞,(21)

where o < ε < 1.

Then the conclusion of Theorem 1 holds.

�����. Let y ∈ W be a nonoscillatory solution of (S). Then y ∈ N+1 ∪N+3 on
[t1,∞). As in the proof of Theorem 1, we get two cases: A) and B). In the case A)
we proceed in the same way as in the proof of Theorem 1. Consider now the case
B). In this case the inequality (19) holds. Using (20), (19) implies

(22) f3(y1(h1(t))) � C3y3(t)f3

(∫ h1(t)

t6

p1(s)f1

(∫ h2(s)

t5

p2(x) dx

)
ds

)
, t � t9.

Raising (22) to (1− ε)th power we obtain

[
C3y3(t)

](1−ε)
[
f3

(∫ h1(t)

t6

p1(s)f1

(∫ h2(s)

t5

p2(x) dx

)
ds

)](1−ε)

(23)

�
[
f3(y1(h1(t)))

](1−ε)
, t � t9.

Lemma 4 together with (6) implies that there exist a t10 � t9 and a constant

C4 > 0 such that

(24) f3(y1(h1(t))) � C4, t � t10.

Now (24) implies

[
f3(y1(h1(t)))

](1−ε) � C5f3(y1(h1(t))), t � t10,(25)

where C5 = C−ε
4 > 0.
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Combining (23) with (25), we get

[
C3y3(t)

](1−ε)
[
f3

(∫ h1(t)

t6

p1(s)f1

(∫ h2(s)

t5

p2(x) dx

)
ds

)](1−ε)

(26)

� C5f3(y1(h1(t))), t � t10.

Multiplying (26) by p3(t)
[
C3y3(t)

](ε−1)
, using the third equation of (S), integrating

from t10 to t and then using the fact that y3(t) is positive and decreasing, we have

∫ t

t10

p3(z)

[
f3

(∫ h1(t)

t6

p1(s)f1

(∫ h2(s)

t5

p2(x) dx

)
ds

)](1−ε)

dz

� C5(C3)(ε−1)
(
ε−1

)[
y3(t10)

]ε
< ∞, t � t10,

which contradicts (21). Therefore the case B) cannot occur.

The proof of Theorem 2 is complete. �

Theorem 3. Suppose that (6), (9), (11) hold and in addition

h2(t) � t, h3(t) � t;(27)
∫ ∞

γ(γ(0))
p3(t)f3

(∫ h(t)

γ(0)
p1(s)f1

(∫ s

0
p2(x) dx

)
ds

)
dt =∞,(28)

where h(t) = h�
1(t) = min{t, h1(t)}.

Then the conclusion of Theorem 1 holds.

�����. Let y ∈ W be a nonoscillatory solution of (S) on [t1,∞). Further,
proceeding in the same way as in the proof of Theorem 2 we consider only the

case B). Using (27) and the monotonicity of f1(y2(t)) on [t1,∞) the first equation of
system (S) implies

(29) z′1(t) � p1(t)f1(y2(t)), t � t1.

Analogously to (29) we have

(30) y′2(t) � p2(t)f2(y3(t)), t � γ(t1) � t1.

Lemma 4 together with (e) and (6) implies that there exists a t�2 � γ(t1) such that

f3(y1(h1(t))) � C6f3(z1(h1(t))), t � t�2,(31)

where C6 = Kf3(1− λ) > 0.
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Using (31) and the monotonicity of f3(z1(t)) on [t�2,∞) the third equation of (S)
implies

(32) y′3(t) � −C6p3(t)f3(z1(h(t))), t � t�2.

In view of (29), (30), (32) we modify the system (S) to the form

(S�)

z′1(t) � p1(t)f1(y2(t))

y′2(t) � p2(t)f2(y3(t))

y′3(t) � −C6p3(t)f3(z1(h(t))), t � t�2.

System (S�) yields

z1(t) �
∫ t

t�
2

p1(s)f1(y2(s)) ds, t � t�2(33)

and

y2(s) �
∫ s

t�
2

p2(x)f2(y3(x)) dx, s � t�2.(34)

In view of (e), (6) and the monotonicity of f2(y3(x)) on [t�2,∞), from (34) we have

(35) f1(y2(s)) � Kf1(f2(y2(s)))f1

(∫ s

t�
2

p2(x) dx

)
, s � t�2.

Combining (33) with (35) we get

(36) z1(t) � K

∫ t

t�
2

p1(s)f1(f2(y3(s)))f1

(∫ s

t�
2

p2(x) dx

)
ds, t � t�2.

Using (e), (6) and the monotonicity of f1(f2(y3(s))) on [t�2,∞) we obtain

f3(z1(h(t))) � C7f3(f1(f2(y3(t))))f3

(∫ h(t)

t�
2

p1(s)f1

(∫ s

t�
2

p2(x) dx

)
ds

)
,(37)

t � t�3 = γ(t�2), where C7 = K2f3(K) > 0.

Multiplying (37) by C6p3(t))
f3(f1(f2(y3(t))))

, integrating from t�3 to t, using the third inequality

of (S�) and (11) we get

C6C7

∫ t

t�
3

p3(z)f3

(∫ h(z)

t�
2

p1(s)

(∫ s

t�
2

p2(x) dx

)
ds

)
dz

�
∫ y3(t

�
3)

y3(t)

dz
f3(f1(f2(z)))

< ∞, t � t�3,

which contradicts (28) and therefore the case B) cannot occur. The proof of Theo-
rem 3 is complete. �
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Theorem 4. Suppose that (6), (9), (20), (27) hold and in addition

∫ ∞

γ(γ(0))
p3(t)

[
f3

(∫ h(t)

γ(0)
p1(s)f1

(∫ s

0
p2(x) dx

)
ds

)](1−ε)

dt =∞, 0 < ε < 1,(38)

where h(t) = h�
1(t).

Then the conclusion of Theorem 1 holds.

We can prove Theorem 4 analogously to Theorem 2 and Theorem 3.
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