Czechoslovak Mathematical Journal

Eva Špániková
 Oscillatory properties of solutions of three-dimensional differential systems of neutral type

Czechoslovak Mathematical Journal, Vol. 50 (2000), No. 4, 879-887
Persistent URL: http://dml.cz/dmlcz/127617

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

OSCILLATORY PROPERTIES OF SOLUTIONS OF THREE-DIMENSIONAL DIFFERENTIAL SYSTEMS OF NEUTRAL TYPE

Eva ŠpánikovÁ, Žilina
(Received November 30, 1998)

Abstract. The purpose of this paper is to obtain oscillation criteria for the differential system

$$
\begin{aligned}
{\left[y_{1}(t)-a(t) y_{1}(g(t))\right]^{\prime} } & =p_{1}(t) f_{1}\left(y_{2}\left(h_{2}(t)\right)\right) \\
y_{2}^{\prime}(t) & =p_{2}(t) f_{2}\left(y_{3}\left(h_{3}(t)\right)\right) \\
y_{3}^{\prime}(t) & =-p_{3}(t) f_{3}\left(y_{1}\left(h_{1}(t)\right)\right), \quad t \in \mathbb{R}_{+}=[0, \infty) .
\end{aligned}
$$

Keywords: differential system of neutral type, oscillatory (nonoscillatory) solution MSC 2000: 34K15, 34K40

1. Introduction

In this paper we consider the neutral differential system of the form

$$
\begin{align*}
{\left[y_{1}(t)-a(t) y_{1}(g(t))\right]^{\prime} } & =p_{1}(t) f_{1}\left(y_{2}\left(h_{2}(t)\right)\right) \tag{S}\\
y_{2}^{\prime}(t) & =p_{2}(t) f_{2}\left(y_{3}\left(h_{3}(t)\right)\right) \\
y_{3}^{\prime}(t) & =-p_{3}(t) f_{3}\left(y_{1}\left(h_{1}(t)\right)\right), \quad t \in \mathbb{R}_{+}=[0, \infty) .
\end{align*}
$$

The following conditions are assumed to hold throughout the paper:
(a) $p_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, i=1,2,3$ are continuous functions not identically equal to zero in every neighbourhood of infinity,

$$
\int^{\infty} p_{j}(t) \mathrm{d} t=\infty, \quad j=1,2
$$

This paper was supported by the grant $1 / 5254 / 98$ of Slovak Grant Agency.
(b) $a: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a continuous function satisfying $|a(t)| \leqslant \lambda<1$, where λ is a constant and $a(t) a(g(t)) \geqslant 0$ on \mathbb{R}_{+};
(c) $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a continuous and increasing function, $g(t)<t$ on \mathbb{R}_{+}and $\lim _{t \rightarrow \infty} g(t)=\infty ;$
(d) $h_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are continuous functions and $\lim _{t \rightarrow \infty} h_{i}(t)=\infty, i=1,2,3$;
(e) $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and nondecreasing functions, $u f_{i}(u)>0$ for $u \neq 0$, $i=1,2,3$.
The asymptotic properties of solutions of systems with deviating arguments or systems of neutral type are studied for example in the papers [1-12].

The purpose of this paper is to obtain oscillation criteria for the system (S). The paper is a generalization of the results obtained in the paper [12].

Let $t_{0} \geqslant 0$. Denote

$$
\tilde{t}_{0}=\min \left\{g\left(t_{0}\right), \inf _{t \geqslant t_{0}} h_{i}(t), i=1,2,3\right\} .
$$

A function $y=\left(y_{1}, y_{2}, y_{3}\right)$ is a solution of the system (S) if there exists a $t_{0} \geqslant 0$ such that y is continuous on $\left[\tilde{t}_{0}, \infty\right), y_{1}(t)-a(t) y_{1}(g(t)), y_{i}(t), i=2,3$, are continuously differentiable on $\left[t_{0}, \infty\right)$ and y satisfies (S) on $\left[t_{0}, \infty\right)$.

Denote by W the set of all solutions $y=\left(y_{1}, y_{2}, y_{3}\right)$ of the system (S) which exist on some ray $\left[T_{y}, \infty\right) \subset \mathbb{R}_{+}$and satisfy

$$
\sup \left\{\sum_{i=1}^{3}\left|y_{i}(t)\right|: t \geqslant T\right\}>0 \quad \text { for any } T \geqslant T_{y}
$$

A solution $y \in W$ is nonoscillatory if there exists a $T_{y} \geqslant 0$ such that its every component is different from zero for all $t \geqslant T_{y}$. Otherwise a solution $y \in W$ is said to be oscillatory.

Denote

$$
\begin{aligned}
h_{i}^{\star}(t) & =\min \left\{t, h_{i}(t)\right\}, \quad i=1,2,3 ; \\
\gamma_{i}(t) & =\sup \left\{s \geqslant 0, h_{i}^{\star}(s) \leqslant t\right\}, \quad t \geqslant 0, i=1,2,3 ; \\
\beta(t) & =\sup \{s \geqslant 0, g(s) \leqslant t\}, \quad t \geqslant 0 ; \\
\gamma(t) & =\max \left\{\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t), \beta(t)\right\} .
\end{aligned}
$$

For any $y_{1}(t)$ we define $z_{1}(t)$ by

$$
\begin{equation*}
z_{1}(t)=y_{1}(t)-a(t) y_{1}(g(t)) . \tag{1}
\end{equation*}
$$

2. Some basic lemmas

Lemma 1. ([6, Lemma 1]) Let $y \in W$ be a solution of the system (S) with $y_{1}(t) \neq 0$ on $\left[t_{0}, \infty\right), t_{0} \geqslant 0$. Then y is nonoscillatory and $z_{1}(t), y_{2}(t), y_{3}(t)$ are monotone on some ray $[T, \infty), T \geqslant t_{0}$.

Lemma 2. ([6, Lemma 2]) Let $y=\left(y_{1}, y_{2}, y_{3}\right) \in W$ be a nonoscillatory solution of the system (S) and let $\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|=L_{1}, \lim _{t \rightarrow \infty}\left|y_{i}(t)\right|=L_{i}, i=2,3$. Then

$$
\begin{equation*}
L_{1}<\infty \quad \text { implies } \quad L_{2}=L_{3}=0 \tag{2}
\end{equation*}
$$

Lemma 3. ([6, Lemma 4]) Let $y=\left(y_{1}, y_{2}, y_{3}\right) \in W$ be a nonoscillatory solution of the system (S) on $\left[t_{0}, \infty\right), t_{0} \geqslant 0$. Then there exist an integer $l \in\{1,3\}$ and a $t_{1} \geqslant t_{0}$ such that for $t \geqslant t_{1}$ either

$$
\begin{align*}
& z_{1}(t) y_{1}(t)>0 \tag{1}\\
& y_{2}(t) y_{1}(t)<0 \\
& y_{3}(t) y_{1}(t)>0
\end{align*}
$$

or

$$
\begin{align*}
& z_{1}(t) y_{1}(t)>0 \tag{3}\\
& y_{i}(t) y_{1}(t)>0, \quad i=2,3 .
\end{align*}
$$

Remark. The case $z_{1}(t) y_{1}(t)<0$ on $\left[t_{1}, \infty\right)$ cannot occur (see [6, Lemma 4]).
We denote by N_{1}^{+}or N_{3}^{+}the set of all nonoscillatory solutions of (S) which satisfy $\left(3_{1}\right)$ or $\left(3_{3}\right)$, respectively. Denote by N the set of all nonoscillatory solutions of (S). Then by Lemma 3 we have

$$
N=N_{1}^{+} \cup N_{3}^{+} .
$$

Lemma 4. ([6, Lemma 5])
I) Let $y \in N_{3}^{+}$on $\left[t_{1}, \infty\right)$. Then

$$
\begin{equation*}
\left|y_{1}(t)\right| \geqslant(1-\lambda)\left|z_{1}(t)\right| \quad \text { for large } t \tag{4}
\end{equation*}
$$

II) Let $y \in N_{1}^{+}$on $\left[t_{1}, \infty\right)$.
i) If $\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|=L_{1}>0$, then there exists an $a_{0}: 0<a_{0}<1$ such that

$$
\begin{equation*}
\left|y_{1}(t)\right| \geqslant a_{0}\left|z_{1}(t)\right| \quad \text { for large } t \tag{5}
\end{equation*}
$$

ii) if $\lim _{t \rightarrow \infty} z_{1}(t)=0$ then $\liminf _{t \rightarrow \infty}\left|y_{1}(t)\right|=0, \lim _{t \rightarrow \infty} y_{i}(t)=0, i=2,3$.

3. Oscillation theorems

Theorem 1. Let the following conditions be satisfied:

$$
\begin{gather*}
x y f_{i}(x y) \geqslant K x y f_{i}(x) f_{i}(y) \quad(0<K=\text { const. }), i=1,2,3 ; \tag{6}\\
h_{j}(t), j=2,3 \quad \text { are nondecreasing functions; } \tag{7}\\
h_{3}\left(h_{2}\left(h_{1}(t)\right)\right) \leqslant t ; \tag{8}\\
\int_{\gamma(0)}^{\infty} p_{2}(t) f_{2}\left(\int_{h_{3}(t)}^{\infty} p_{3}(s) \mathrm{d} s\right) \mathrm{d} t=\infty ; \tag{9}\\
\int_{\gamma(\gamma(0))}^{\infty} p_{3}(t) f_{3}\left(\int_{\gamma(0)}^{h_{1}(t)} p_{1}(s) f_{1}\left(\int_{0}^{h_{2}(s)} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right) \mathrm{d} t=\infty ; \tag{10}\\
\int_{0}^{\alpha} \frac{\mathrm{d} t}{f_{3}\left(f_{1}\left(f_{2}(t)\right)\right)}<\infty, \quad \int_{0}^{-\alpha} \frac{\mathrm{d} t}{f_{3}\left(f_{1}\left(f_{2}(t)\right)\right)}<\infty, \tag{11}\\
\text { for every constant } \alpha>0 .
\end{gather*}
$$

Then every solution $y \in W$ is either oscillatory or $\liminf _{t \rightarrow \infty}\left|y_{1}(t)\right|=0$ and $\lim _{t \rightarrow \infty} y_{i}(t)=0, i=2,3$.

Proof. Let $y \in W$ be a nonoscillatory solution of (S). Then $y \in N_{1}^{+} \cup N_{3}^{+}$on $\left[t_{1}, \infty\right)$.
A) Let $y \in N_{1}^{+}$on $\left[t_{1}, \infty\right)$. Without loss of generality we suppose that $y_{1}(t)>0$ for $t \geqslant t_{1}$. Then the function $z_{1}(t)$ is nonincreasing on $\left[\gamma\left(t_{1}\right), \infty\right)$ and $\lim _{t \rightarrow \infty} z_{1}(t)=$ $L_{1}<\infty$. From (2) we obtain

$$
\begin{equation*}
\lim _{t \rightarrow \infty} y_{2}(t)=\lim _{t \rightarrow \infty} y_{3}(t)=0 \tag{12}
\end{equation*}
$$

We shall prove that $\lim _{t \rightarrow \infty} z_{1}(t)=0$. Let $\lim _{t \rightarrow \infty} z_{1}(t)=L_{1}>0$. Lemma 4 implies that there exist a $t_{2} \geqslant \gamma\left(t_{1}\right)$ and a constant $C_{1}=a_{0} L_{1}$ such that $y_{1}(t) \geqslant C_{1}$ for $t \geqslant t_{2}$. From (e) we get

$$
\begin{equation*}
f_{3}\left(y_{1}\left(h_{1}(t)\right)\right) \geqslant C_{2}, \quad t \geqslant t_{3}=\gamma\left(t_{2}\right), \quad \text { where } \quad C_{2}=f_{3}\left(C_{1}\right)>0 . \tag{13}
\end{equation*}
$$

Integrating the third equation of (S) from t to ∞ and then using (13) we have

$$
y_{3}(t) \geqslant C_{2} \int_{t}^{\infty} p_{3}(s) \mathrm{d} s, \quad t \geqslant t_{3} .
$$

Then in view of (e), (6) and the last inequality we get

$$
\begin{equation*}
f_{2}\left(y_{2}\left(h_{3}(t)\right)\right) \geqslant K f_{2}\left(C_{2}\right) f_{2}\left(\int_{h_{3}(t)}^{\infty} p_{3}(s) \mathrm{d} s\right), \quad t \geqslant t_{4}=\gamma\left(t_{3}\right) . \tag{14}
\end{equation*}
$$

Integrating the second equation of (S) from t_{4} to t and then using (14) we get

$$
y_{2}(t) \geqslant y_{2}\left(t_{4}\right)+K f_{2}\left(C_{2}\right) \int_{t_{4}}^{t} p_{2}(z) f_{2}\left(\int_{h_{3}(z)}^{\infty} p_{3}(s) \mathrm{d} s\right) \mathrm{d} z, \quad t \geqslant t_{4} .
$$

By virtue of (9), the last inequality implies for $t \rightarrow \infty$ that $\lim _{t \rightarrow \infty} y_{2}(t)=\infty$, which contradicts (12). Therefore $\lim _{t \rightarrow \infty} z_{1}(t)=0$ and from Lemma 4 we have $\liminf _{t \rightarrow \infty}\left|y_{1}(t)\right|=0$.
B) Let $y \in N_{3}^{+}$on $\left[t_{1}, \infty\right)$. Without loss of generality we suppose that $y_{1}(t)>0$ on $\left[t_{1}, \infty\right)$. Integrating the second equation of (S) from t_{5} to t we get

$$
y_{2}(t)-y_{5}\left(t_{5}\right)=\int_{t_{5}}^{t} p_{2}(s) f_{2}\left(y_{3}\left(h_{3}(s)\right)\right) \mathrm{d} s, \quad t \geqslant t_{5}=\gamma\left(t_{1}\right)
$$

and

$$
\begin{equation*}
y_{2}\left(h_{2}(t)\right) \geqslant \int_{t_{5}}^{h_{2}(t)} p_{2}(s) f_{2}\left(y_{3}\left(h_{3}(s)\right)\right) \mathrm{d} s, \quad t \geqslant t_{6}=\gamma\left(t_{5}\right) . \tag{15}
\end{equation*}
$$

Using (e), (6), (15) and the monotonicity of $f_{2}\left(y_{3}\left(h_{3}(s)\right)\right)$ we get

$$
f_{1}\left(y_{2}\left(h_{2}(t)\right)\right) \geqslant K f_{1}\left(f_{2}\left(y_{3}\left(h_{3}\left(h_{2}(t)\right)\right)\right)\right) f_{1}\left(\int_{t_{5}}^{h_{2}(t)} p_{2}(s) \mathrm{d} s\right), \quad t \geqslant t_{6} .
$$

Integrating the first equation of (S) from t_{6} to t and then using the last inequality, we have

$$
\begin{equation*}
z_{1}(t) \geqslant K \int_{t_{6}}^{t} p_{1}(s) f_{1}\left(f_{2}\left(y_{3}\left(h_{3}\left(h_{2}(s)\right)\right)\right)\right) f_{1}\left(\int_{t_{5}}^{h_{2}(s)} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s, \quad t \geqslant t_{6} \tag{16}
\end{equation*}
$$

Using (8), (16) and the monotonicity of $f_{1}\left(f_{2}\left(y_{3}(t)\right)\right)$ we get

$$
\begin{gather*}
z_{1}\left(h_{1}(t)\right) \geqslant K f_{1}\left(f_{2}\left(y_{3}(t)\right)\right) \int_{t_{6}}^{h_{1}(t)} p_{1}(s) f_{1}\left(\int_{t_{5}}^{h_{2}(s)} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s, \tag{17}\\
t \geqslant t_{7}=\gamma\left(t_{6}\right) .
\end{gather*}
$$

In view of Lemma 4 there exists a $t_{8} \geqslant t_{7}$ such that

$$
\begin{equation*}
y_{1}\left(h_{1}(t)\right) \geqslant(1-\lambda) z_{1}\left(h_{1}(t)\right), \quad t \geqslant t_{9}=\gamma\left(t_{8}\right) . \tag{18}
\end{equation*}
$$

In view of (e), (6), (17) and (18) we have
(19) $f_{3}\left(y_{1}\left(h_{1}(t)\right)\right) \geqslant C_{3} f_{3}\left(f_{1}\left(f_{2}\left(y_{3}(t)\right)\right)\right) f_{3}\left(\int_{t_{6}}^{h_{1}(t)} p_{1}(s) f_{1}\left(\int_{t_{5}}^{h_{2}(s)} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right)$,
$t \geqslant t_{9} \quad$ where $\quad C_{3}=K^{2} f_{3}((1-\lambda) K)>0$.

Multiplying (19) by $\frac{p_{3}(t)}{f_{3}\left(f_{1}\left(f_{2}\left(y_{3}(t)\right)\right)\right)}$, using the third equation of (S) and then integrating from t_{9} to t, we get

$$
\int_{t}^{t_{9}} \frac{y_{3}^{\prime}(z) \mathrm{d} z}{f_{3}\left(f_{1}\left(f_{2}\left(y_{3}(z)\right)\right)\right)} \geqslant C_{3} \int_{t_{9}}^{t} p_{3}(z) f_{3}\left(\int_{t_{6}}^{h_{1}(z)} p_{1}(s) f_{1}\left(\int_{t_{5}}^{h_{2}(s)} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right) \mathrm{d} z
$$

$t \geqslant t_{9}$. The last inequality for $t \rightarrow \infty$ gives a contradiction to (10) with (11). This case cannot occur. The proof of Theorem 1 is complete.

Theorem 2. Suppose that (6)-(9) hold and in addition

$$
\begin{gather*}
\left.f_{3}\left(f_{1}\left(f_{2}(t)\right)\right)\right)=t \tag{20}\\
\int_{\gamma(\gamma(0))}^{\infty} p_{3}(t)\left[f_{3}\left(\int_{\gamma(0)}^{h_{1}(t)} p_{1}(s)\left(\int_{0}^{h_{2}(s)} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right)\right]^{(1-\varepsilon)} \mathrm{d} t=\infty \tag{21}\\
\text { where } o<\varepsilon<1
\end{gather*}
$$

Then the conclusion of Theorem 1 holds.
Proof. Let $y \in W$ be a nonoscillatory solution of (S). Then $y \in N_{1}^{+} \cup N_{3}^{+}$on $\left[t_{1}, \infty\right)$. As in the proof of Theorem 1, we get two cases: A) and B). In the case A) we proceed in the same way as in the proof of Theorem 1 . Consider now the case B). In this case the inequality (19) holds. Using (20), (19) implies

$$
\begin{equation*}
f_{3}\left(y_{1}\left(h_{1}(t)\right)\right) \geqslant C_{3} y_{3}(t) f_{3}\left(\int_{t_{6}}^{h_{1}(t)} p_{1}(s) f_{1}\left(\int_{t_{5}}^{h_{2}(s)} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right), \quad t \geqslant t_{9} \tag{22}
\end{equation*}
$$

Raising (22) to $(1-\varepsilon)$ th power we obtain

$$
\begin{gather*}
{\left[C_{3} y_{3}(t)\right]^{(1-\varepsilon)}\left[f_{3}\left(\int_{t_{6}}^{h_{1}(t)} p_{1}(s) f_{1}\left(\int_{t_{5}}^{h_{2}(s)} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right)\right]^{(1-\varepsilon)}} \tag{23}\\
\leqslant\left[f_{3}\left(y_{1}\left(h_{1}(t)\right)\right)\right]^{(1-\varepsilon)}, \quad t \geqslant t_{9}
\end{gather*}
$$

Lemma 4 together with (6) implies that there exist a $t_{10} \geqslant t_{9}$ and a constant $C_{4}>0$ such that

$$
\begin{equation*}
f_{3}\left(y_{1}\left(h_{1}(t)\right)\right) \geqslant C_{4}, \quad t \geqslant t_{10} . \tag{24}
\end{equation*}
$$

Now (24) implies

$$
\begin{gather*}
{\left[f_{3}\left(y_{1}\left(h_{1}(t)\right)\right)\right]^{(1-\varepsilon)} \leqslant C_{5} f_{3}\left(y_{1}\left(h_{1}(t)\right)\right), \quad t \geqslant t_{10}} \tag{25}\\
\text { where } \quad C_{5}=C_{4}^{-\varepsilon}>0
\end{gather*}
$$

Combining (23) with (25), we get

$$
\begin{gather*}
{\left[C_{3} y_{3}(t)\right]^{(1-\varepsilon)}\left[f_{3}\left(\int_{t_{6}}^{h_{1}(t)} p_{1}(s) f_{1}\left(\int_{t_{5}}^{h_{2}(s)} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right)\right]^{(1-\varepsilon)}} \tag{26}\\
\leqslant C_{5} f_{3}\left(y_{1}\left(h_{1}(t)\right)\right), \quad t \geqslant t_{10}
\end{gather*}
$$

Multiplying (26) by $p_{3}(t)\left[C_{3} y_{3}(t)\right]^{(\varepsilon-1)}$, using the third equation of (S), integrating from t_{10} to t and then using the fact that $y_{3}(t)$ is positive and decreasing, we have

$$
\begin{gathered}
\int_{t_{10}}^{t} p_{3}(z)\left[f_{3}\left(\int_{t_{6}}^{h_{1}(t)} p_{1}(s) f_{1}\left(\int_{t_{5}}^{h_{2}(s)} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right)\right]^{(1-\varepsilon)} \mathrm{d} z \\
\leqslant C_{5}\left(C_{3}\right)^{(\varepsilon-1)}\left(\varepsilon^{-1}\right)\left[y_{3}\left(t_{10}\right)\right]^{\varepsilon}<\infty, \quad t \geqslant t_{10}
\end{gathered}
$$

which contradicts (21). Therefore the case B) cannot occur.
The proof of Theorem 2 is complete.

Theorem 3. Suppose that (6), (9), (11) hold and in addition

$$
\begin{gather*}
h_{2}(t) \geqslant t, \quad h_{3}(t) \leqslant t \tag{27}\\
\int_{\gamma(\gamma(0))}^{\infty} p_{3}(t) f_{3}\left(\int_{\gamma(0)}^{h(t)} p_{1}(s) f_{1}\left(\int_{0}^{s} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right) \mathrm{d} t=\infty, \tag{28}\\
\text { where } h(t)=h_{1}^{\star}(t)=\min \left\{t, h_{1}(t)\right\} .
\end{gather*}
$$

Then the conclusion of Theorem 1 holds.
Proof. Let $y \in W$ be a nonoscillatory solution of (S) on $\left[t_{1}, \infty\right)$. Further, proceeding in the same way as in the proof of Theorem 2 we consider only the case B). Using (27) and the monotonicity of $f_{1}\left(y_{2}(t)\right)$ on $\left[t_{1}, \infty\right)$ the first equation of system (S) implies

$$
\begin{equation*}
z_{1}^{\prime}(t) \geqslant p_{1}(t) f_{1}\left(y_{2}(t)\right), \quad t \geqslant t_{1} \tag{29}
\end{equation*}
$$

Analogously to (29) we have

$$
\begin{equation*}
y_{2}^{\prime}(t) \geqslant p_{2}(t) f_{2}\left(y_{3}(t)\right), \quad t \geqslant \gamma\left(t_{1}\right) \geqslant t_{1} . \tag{30}
\end{equation*}
$$

Lemma 4 together with (e) and (6) implies that there exists a $t_{2}^{\star} \geqslant \gamma\left(t_{1}\right)$ such that

$$
\begin{gather*}
f_{3}\left(y_{1}\left(h_{1}(t)\right)\right) \geqslant C_{6} f_{3}\left(z_{1}\left(h_{1}(t)\right)\right), \quad t \geqslant t_{2}^{\star}, \tag{31}\\
\text { where } \quad C_{6}=K f_{3}(1-\lambda)>0 .
\end{gather*}
$$

Using (31) and the monotonicity of $f_{3}\left(z_{1}(t)\right)$ on $\left[t_{2}^{\star}, \infty\right)$ the third equation of (S) implies

$$
\begin{equation*}
y_{3}^{\prime}(t) \leqslant-C_{6} p_{3}(t) f_{3}\left(z_{1}(h(t))\right), \quad t \geqslant t_{2}^{\star} . \tag{32}
\end{equation*}
$$

In view of (29), (30), (32) we modify the system (S) to the form

$$
\begin{align*}
& z_{1}^{\prime}(t) \geqslant p_{1}(t) f_{1}\left(y_{2}(t)\right) \\
& y_{2}^{\prime}(t) \geqslant p_{2}(t) f_{2}\left(y_{3}(t)\right) \\
& y_{3}^{\prime}(t) \leqslant-C_{6} p_{3}(t) f_{3}\left(z_{1}(h(t))\right), \quad t \geqslant t_{2}^{\star}
\end{align*}
$$

System (S ${ }^{\star}$) yields

$$
\begin{equation*}
z_{1}(t) \geqslant \int_{t_{2}^{\star}}^{t} p_{1}(s) f_{1}\left(y_{2}(s)\right) \mathrm{d} s, \quad t \geqslant t_{2}^{\star} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{2}(s) \geqslant \int_{t_{2}^{\star}}^{s} p_{2}(x) f_{2}\left(y_{3}(x)\right) \mathrm{d} x, \quad s \geqslant t_{2}^{\star} . \tag{34}
\end{equation*}
$$

In view of $(\mathrm{e}),(6)$ and the monotonicity of $f_{2}\left(y_{3}(x)\right)$ on $\left[t_{2}^{\star}, \infty\right)$, from (34) we have

$$
\begin{equation*}
f_{1}\left(y_{2}(s)\right) \geqslant K f_{1}\left(f_{2}\left(y_{2}(s)\right)\right) f_{1}\left(\int_{t_{2}^{\star}}^{s} p_{2}(x) \mathrm{d} x\right), \quad s \geqslant t_{2}^{\star} . \tag{35}
\end{equation*}
$$

Combining (33) with (35) we get

$$
\begin{equation*}
z_{1}(t) \geqslant K \int_{t_{2}^{\star}}^{t} p_{1}(s) f_{1}\left(f_{2}\left(y_{3}(s)\right)\right) f_{1}\left(\int_{t_{2}^{\star}}^{s} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s, \quad t \geqslant t_{2}^{\star} . \tag{36}
\end{equation*}
$$

Using $(e),(6)$ and the monotonicity of $f_{1}\left(f_{2}\left(y_{3}(s)\right)\right)$ on $\left[t_{2}^{\star}, \infty\right)$ we obtain

$$
\begin{gather*}
f_{3}\left(z_{1}(h(t))\right) \geqslant C_{7} f_{3}\left(f_{1}\left(f_{2}\left(y_{3}(t)\right)\right)\right) f_{3}\left(\int_{t_{2}^{\star}}^{h(t)} p_{1}(s) f_{1}\left(\int_{t_{2}^{\star}}^{s} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right), \tag{37}\\
t \geqslant t_{3}^{\star}=\gamma\left(t_{2}^{\star}\right), \quad \text { where } \quad C_{7}=K^{2} f_{3}(K)>0
\end{gather*}
$$

Multiplying (37) by $\frac{\left.C_{6} p_{3}(t)\right)}{f_{3}\left(f_{1}\left(f_{2}\left(y_{3}(t)\right)\right)\right)}$, integrating from t_{3}^{\star} to t, using the third inequality of (S^{\star}) and (11) we get

$$
\begin{gathered}
C_{6} C_{7} \int_{t_{3}^{\star}}^{t} p_{3}(z) f_{3}\left(\int_{t_{2}^{\star}}^{h(z)} p_{1}(s)\left(\int_{t_{2}^{\star}}^{s} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right) \mathrm{d} z \\
\leqslant \int_{y_{3}(t)}^{y_{3}\left(t_{3}^{\star}\right)} \frac{\mathrm{d} z}{f_{3}\left(f_{1}\left(f_{2}(z)\right)\right)}<\infty, \quad t \geqslant t_{3}^{\star}
\end{gathered}
$$

which contradicts (28) and therefore the case B) cannot occur. The proof of Theorem 3 is complete.

Theorem 4. Suppose that (6), (9), (20), (27) hold and in addition
$(38) \int_{\gamma(\gamma(0))}^{\infty} p_{3}(t)\left[f_{3}\left(\int_{\gamma(0)}^{h(t)} p_{1}(s) f_{1}\left(\int_{0}^{s} p_{2}(x) \mathrm{d} x\right) \mathrm{d} s\right)\right]^{(1-\varepsilon)} \mathrm{d} t=\infty, 0<\varepsilon<1$, where $\quad h(t)=h_{1}^{\star}(t)$.

Then the conclusion of Theorem 1 holds.
We can prove Theorem 4 analogously to Theorem 2 and Theorem 3.

References

[1] I. Foltynska and J. Werbowski: On the oscillatory behaviour of solutions of system of differential equations with deviating arguments. Colloq. Math. Soc. János Bolyai 30 (1979), 243-256. Qualitative theory of Diff. Eq. Szegéd.
[2] I. Györi and G. Ladas: Oscillation of systems of neutral differential equations. Differential Integral Equations 1 (1988), 281-286.
[3] A.F. Ivanov and P. Marušiak: Oscillatory properties of systems of neutral differential equations. Hiroshima Math. J. 24 (1994), 423-434.
[4] Y. Kitamura and T. Kusano: On the oscillation of a class of nonlinear differential systems with deviating argument. J. Math. Anal. Appl. 66 (1978), 20-36.
[5] P. Marušiak: Oscillation criteria for nonlinear differential systems with general deviating arguments of mixed type. Hiroshima Math. J. 20 (1990), 197-208.
[6] P. Marušiak: Oscillatory properties of functional differential systems of neutral type. Czechoslovak Math. J. 43 (118) (1993), 649-662.
[7] B. Mihalikková: Some properties of differential systems with deviating arguments. Fasc. Math. 21 (1990), 5-26.
[8] V. Šeda: On nonlinear differential systems with deviating arguments. Czechoslovak Math. J. 36 (111) (1986), 450-466.
[9] V. N. Shevelo and V. N. Varech: On some properties of solutions of a system of functional differential equations. Kiev (1980), 153-171. (In Russian.)
[10] V. N. Shevelo, V. N. Varech and A. G. Gritsai: Oscillations of components of solutions of systems of functional differential equations of neutral type. Inst. Mat. Preprint, Acad. Nauk Ukr. SSR. (1984), 116-126. (In Russian.)
[11] E. Špániková: Asymptotic properties of solutions of nonlinear differential systems with deviating arguments. Čas. Pěst. Mat. (1990), no. 2, 178-191.
[12] E. Špániková: Oscillatory properties of the solutions of three-dimensional nonlinear differential systems with deviating arguments. Acta Math. Univ. Comenian LIV-LV (1988), 173-183.

Author's address: Department of Appl. Mathematics, University of Žilina, J. M. Hurbana 15, 01026 Žilina, Slovakia, e-mail: spanik@fstroj.utc.sk.

