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STRONG RETRACTS OF UNARY ALGEBRAS

Rozália Sz. Madarász, Dragan Mašulović, Boža Tasić, Novi Sad
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Abstract. This paper introduces the notion of a strong retract of an algebra and then
focuses on strong retracts of unary algebras. We characterize subuniverses of a unary algebra
which are carriers of its strong retracts. This characterization enables us to describe the
poset of strong retracts of a unary algebra under inclusion. Since this poset is not necessarily
a lattice, we give a necessary and sufficient condition for the poset to be a lattice, as well
as the full description of the poset.
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1. Introduction

The motivation for the study of retracts of algebras undoubtedly came from topol-

ogy. Plenty of results concerning retracts of various classes of algebras such as semi-
groups, groups, lattices, boolean algebras have already been obtained. In papers

[14, 11, 2] the classes of ordered sets and graphs closed under the formation of di-
rect product and retractions were studied. In [2] a structure theory for ordered sets

based on the constructions of direct product and retraction is proposed. This idea
was later developed in [16] for an arbitrary type of structures (a set equipped with

operations and relations). In [5, 6, 7, 8, 9] retracts (and the so-called retract varieties)
of monounary algebras were studied.

On the other hand, it seems that the study of inflations began with semigroups.
An explicit definition of inflation in the case of an arbitrary universal algebra can

be found in [10] (under the name “nilpotent extension”). In the paper the author
proved that this construction is strongly connected with normal identities (see also

[13, 4, 12, 3, 15]). An identity p ≈ q is said to be normal if both p and q are the
same variable or if operation symbols occur in both p and q. A variety is normal
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if it satisfies only normal identities. Let N(V ) denote the smallest normal variety

containing the class of algebras V . If V is a variety, then an algebra B belongs to
N(V ) if and only if B is an inflation of an algebra A from V ([10]; see also [4, 12, 15]).
As can be easily seen from the definition, inflation is a special kind of retract

extension. We adopt the following definition: if an algebra A is an inflation of an
algebra B, then B is a strong retract of A. In this paper we focus on strong retracts
of unary algebras. First we characterize strong retracts of unary algebras using some
special congruences of those algebras. Since the poset of strong retracts of a unary

algebra is not necessarily a lattice, we give a necessary and sufficient condition for
the poset to be a lattice. Afterwards, we give the full description of the poset of

strong retracts of a unary algebra.

2. Characterization of strong retracts of unary algebras

Our basic notation is adopted from [1].

Definition 1. Let A and B be algebras of the same type F . B is an inflation
of A if A ⊆ B and there is a mapping ϕ : B → A such that ϕ is the identity on A

(i.e. ϕ
∣∣
A
= 1A) and for all b1, . . . , bn ∈ B and all f ∈ Fn (n � 0) we have

fB(b1, . . . , bn) = fA(ϕ(b1), . . . , ϕ(bn)).

It is easy to see that if B is an inflation of A, then A is a subalgebra and a
homomorphic image of B (namely, the mapping ϕ is a homomorphism from B onto
A). Let us recall that a subalgebra A is a retract of an algebra B (and that B is a
retract extension of A) if there is a homomorphism ϕ : B → A such that ϕ

∣∣
A
= 1A.

The mapping ϕ is often referred to as the retraction of B onto A. So, inflation is a
special kind of retract extension.

Definition 2. If an algebra B is an inflation of an algebra A, then A is called
a strong retract of B. The corresponding retraction ϕ : B → A is referred to as a
strong retraction of B (onto A).

According to the definition above, a strong retract of B is an algebra of the same
type. Since we are interested in nonempty subsets of B that are carriers of strong

retracts, such subsets will also be referred to as strong retracts of B. Therefore, by
“A is a retract of B” we mean that A is a carrier of a retract of B.
In the sequel, we are interested in strong retracts of unary algebras (i.e. algebras

with one or more unary operations).

Let A be a unary algebra of type F . As usual, the interpretation fA of the
operational symbol f ∈ F will also be denoted by f . Therefore, if A is a unary
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algebra of type F , we will denote it by A = 〈A,F 〉, where F = FA. Also, let F (A)
denote the set {f(a) : f ∈ F, a ∈ A}. Finally, let us note that instead of 〈A, {f}〉 we
simply write 〈A, f〉.
Let A = 〈A,F 〉 be a unary algebra. If X is a nonempty subset of A, one can easily

verify that a mapping ϕ : A→ X is a strong retraction of A if and only if
• ϕ

∣∣
X
= 1X ,

• F (A) ⊆ X and
• for all a ∈ A and all f ∈ F , f(a) = f(ϕ(a)).

Definition 3. For a unary algebra A = 〈A,F 〉, let θA be a binary relation on
A defined by

〈x, y〉 ∈ θA if and only if (∀f ∈ F )f(x) = f(y).
An equivalence class E of θA is called trivial if |E| = 1.
Relation θA is obviously a congruence of A. Also, if ϕ is a strong retraction of A,

then 〈a, ϕ(a)〉 ∈ θA for all a ∈ A.
The following characterization of strong retracts of a unary algebra is crucial for

the rest of the paper.

Theorem 1. Let A = 〈A,F 〉 be a unary algebra and let X be a nonempty subset
of A. X is a strong retract of A if and only if

(i) F (A) ⊆ X , and

(ii) for every equivalence class E of θA, X ∩ E 	= ∅.

�����. ⇒: (i) is obvious. To prove (ii), let E = a/θA, for some a ∈ A, be an
equivalence class of θA. Let ϕ be the strong retraction corresponding to X . Then

ϕ(a) ∈ E and ϕ(a) ∈ X .
⇐: For every equivalence class E ∈ A/θA choose arbitrary rE ∈ X∩E (we assume

AC) and define ϕ : A→ X as follows:

ϕ(x) =

{
x, x ∈ X
rE , x /∈ X but x ∈ E for some E ∈ A/θA.

Then ϕ is a strong retraction onto X : ϕ
∣∣
X
= 1X , F (A) ⊆ X and f(x) = f(ϕ(x)) for

all x ∈ A and all f ∈ F . �

Corollary 1. Let A = 〈A,F 〉 be a unary algebra.
(i) If X ⊆ A is a strong retract of A and X ⊆ X ′ ⊆ A, then X ′ is also a strong

retract of A.
(ii) An arbitrary union of strong retracts of A is a strong retract of A.
(iii) The intersection of strong retracts of A is not necessarily a strong retract of A.
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�����. (i) and (ii) are obvious. To show (iii), we present a simple example. Let

A = 〈A, f〉 be a monounary algebra where A = {0, 1, 2, 3} and f =
(
0 1 2 3
0 0 1 1

)
.

Then X1 = {0, 1, 2} and X2 = {0, 1, 3} are strong retracts of A, while X1 ∩ X2 =
{0, 1} is not. �

3. Posets of strong retracts of unary algebras

Definition 4. For a unary algebra A, let R∗(A) be the set of all strong retracts
of A and let R∗(A) = 〈R∗(A),⊆〉 be the corresponding poset.

Corollary 1 implies that the poset of strong retracts of a unary algebra is not

necessarily a lattice. We shall give a necessary and sufficient condition for a unary
algebra A under which the poset R∗(A) is a lattice.

Theorem 2. Let A = 〈A,F 〉 be a unary algebra. R∗(A) is a lattice if and only
if F (A) intersects every nontrivial equivalence class of θA. If R∗(A) is a lattice, it is
isomorphic to 〈P(S),⊆〉 for some set S.

�����. ⇒: Let E ∈ A/θA be a nontrivial equivalence class of θA such that

E ∩ F (A) = ∅. Choose distinct elements a, b ∈ E and consider Xa = (A \ E) ∪ {a}
and Xb = (A \ E) ∪ {b}. Xa and Xb are strong retracts of A while Xa ∩Xb is not

(because (Xa ∩Xb)∩E = ∅). If R∗(A) were a lattice, then the greatest lower bound
Xa ∧ Xb of Xa and Xb would be included in Xa ∩ Xb and Corollary 1, (i), would

imply that Xa ∩Xb ∈ R∗(A), a contradiction.
⇐: Suppose that F (A) intersects every nontrivial class of θA and let B = F (A)∪

{x : {x} ∈ A/θA}. According to Theorem 1, X ⊆ A is a strong retract of A if and
only if B ⊆ X . Therefore, R∗(A) = {X ⊆ A : B ⊆ X}, and that is a lattice under
set-theoretic operations.
We can also conclude that if R∗(A) is a lattice, it is isomorphic to P(A \B). �

Our next aim is to give a full description of R∗(A). The key role in the description
is played by the fact that for every unary algebraA there is a “canonical” monounary
algebra C such that R∗(A) ∼= R∗(C), where the isomorphism is an isomorphism
between posets.
Let us recall some well-known definitions. Two posets S1 = 〈S1,�1〉 and S2 =

〈S2,�2〉 are isomorphic if there is a bijection ψ : S1 → S2 such that x �1 y ⇔
ψ(x) �2 ψ(y) for all x, y ∈ S1. In this case we write S1 ∼= S2. If Si, i ∈ I, is a family
of posets, the direct product

∏
i∈I

Si of the family is the poset
〈∏

i∈I

Si,�
〉
where “�”

is defined componentwise, i.e. for x, y ∈ ∏
i∈I

Si, x � y ⇔ (∀i ∈ I)xi �i yi.
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Let Ai = 〈Ai, fi〉 be a family of pairwise disjoint monounary algebras. The disjoint
sum of the family, denoted by

⊕
i∈I

Ai, is a monounary algebra A = 〈A, f〉 where
A =

⋃
i∈I

Ai and f(x) = fi(x) for x ∈ Ai.

Proposition 1. Let Ai, i ∈ I, be a family of pairwise disjoint monounary alge-

bras. Then R∗
(⊕

i∈I

Ai

)
∼=

∏
i∈I

R∗(Ai).

�����. Consider ϕ : R∗
(⊕

i∈I

Ai

)
→ ∏

i∈I

R∗(Ai) defined by

ϕ(X) = 〈X ∩Ai : i ∈ I〉.

It is a routine to check that ϕ is well defined and that it is an isomorphism between
the two posets. �

It turns out that there are very simple monounary algebras which capture the

structure of strong retracts of unary algebras. Those are referred to as “canonical”
monounary algebras.

Definition 5. A monounary algebraA = 〈A, f〉 is said to be an almost constant
monounary algebra if there are elements a, b ∈ A such that for all x ∈ A \ {a, b},
f(x) = a and f(a) = f(b) = b. (Note that a and b are not necessarily distinct

elements of A.) If a = b then f is a constant unary operation. In that special case,
the algebra A is said to be a constant monounary algebra.

Lemma 1. If C is an almost constant monounary algebra, then there is a non-
empty set S such that R∗(C) ∼= 〈P(S),⊆〉 or R∗(C) ∼= 〈P(S) \ {∅},⊆〉.

�����. Let C = 〈C, g〉 and put S = C \ g(C). �

Definition 6. A monounary algebra is said to be canonical if it is a disjoint

sum of almost constant monounary algebras.

Theorem 3. For every unary algebra A there is a canonical monounary algebra
C such that R∗(A) ∼= R∗(C).

�����. Let A = 〈A,F 〉 be a unary algebra and let P = {p∞} ∪ {pE : E ∈
A/θA and E ∩ F (A) = ∅} ∪ {qE : E ∈ A/θA and E ∩ F (A) = ∅} be a set of new
distinct objects (i.e. P ∩A = ∅). Consider C = 〈C, g〉 where C = (A \F (A))∪P and
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g : C → C is defined by

g(s) =





p∞, s ∈ E ∈ A/θA and E ∩ F (A) 	= ∅,
p∞, s = p∞

qE , s ∈ E ∈ A/θA and E ∩ F (A) = ∅,
pE , s = pE or s = qE .

Observe that

(1) C is a canonical monounary algebra,
(2) C/θC = {E ∈ A/θA : E ∩ F (A) = ∅} ∪ {{p∞} ∪ {s ∈ A \ F (A) : s ∈ E ∈

A/θA and E ∩ F (A) 	= ∅}} ∪ {{pE, qE} : E ∈ A/θA and E ∩ F (A) = ∅},
(3) g(C) = P ,

(4) A \ F (A) = C \ g(C) and
(5) for each E ⊆ A \ F (A) we have E ∈ A/θA ⇔ E ∈ C/θC.
We shall prove that ψ : R∗(A) → R∗(C) given by ψ(X) = (X \ F (A)) ∪ P is an
isomorphism of posets R∗(A) and R∗(C).
To prove that ψ is well defined, consider a strong retract X of A. We have

g(C) = P ⊆ ψ(X) according to the definition of ψ. Let E ∈ C/θC be arbitrary.
If P ∩ E 	= ∅, then ψ(X) ∩ E 	= ∅, too. If, on the other hand, P ∩ E = ∅, then
E ⊆ C \ g(C) = A \ F (A). Due to observation (5), E ∈ A/θA. Since X is a strong
retract of A, X ∩ E 	= ∅. However, E ⊆ A \ F (A). Therefore, (X \ F (A)) ∩ E 	= ∅,
i.e. ψ(X) ∩ E 	= ∅.
One can similarly prove that ψ is surjective: it suffices to note that for a strong

retract Y of C, (Y \ P ) ∪ F (A) is a strong retract of A and ψ((Y \ P ) ∪ F (A)) = Y .
Since ψ is trivially injective, ψ is a bijection. Moreover, in the previous paragraph

we saw that ψ−1(Y ) = (Y \ P ) ∪ F (A). Both ψ and ψ−1 are monotone. Therefore,
ψ is the required isomorphism. �

Theorem 4. A poset Q is isomorphic to the poset of strong retracts of a unary
algebra if and only if Q ∼=

∏
i∈I

Si where each Si is either 〈P(S),⊆〉 for some S, or
〈P(S) \ {∅},⊆〉 for some nonempty S.

�����. ⇒: LetQ be a poset isomorphic toR∗(A) for some unary algebraA and
let C be a canonical monounary algebra such that R∗(A) ∼= R∗(C). Let {Mi : i ∈ I}
be the set of all components of C. Then C = ⊕

i∈I

Mi and R∗(C) ∼=
∏
i∈I

R∗(Mi)

(Proposition 1). Lemma 1 completes the proof.

⇐: Suppose Q ∼=
∏
i∈I

Si where each Si is either 〈P(Si),⊆〉 or 〈P(Si) \ {∅},⊆〉 for
some nonempty sets Si, i ∈ I. Without loss of generality we can assume that Si’s are
pairwise disjoint. To each Si, i ∈ I, we shall assign a monounary algebra as follows:
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• if Si = 〈P(Si),⊆〉, choose new object ai, define fi : Si ∪ {ai} → Si ∪ {ai} by
fi(x) = ai for all x ∈ Si ∪ {ai} and putMi = 〈Si ∪ {ai}, fi〉;

• if Si = 〈P(Si) \ {∅},⊆〉, choose new objects ai and bi, ai 	= bi, define fi :
Si ∪ {ai, bi} → Si ∪ {ai, bi} by

fi(x) =

{
ai, x ∈ Si

bi, x ∈ {ai, bi},

and putMi = 〈Si ∪ {ai, bi}, fi〉.
It is easy to verify that R∗(Mi) = Si, i ∈ I. If A = ⊕

i∈I

Mi, then R∗(A) ∼=
∏
i∈I

R∗(Mi) ∼=
∏
i∈I

Si
∼= Q. �
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