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Abstract. Motivated by the conjectures in [11], we introduce the maximal chains of a
cycle permutation graph, and we use the properties of maximal chains to establish the upper
bounds for the toughness of cycle permutation graphs. Our results confirm two conjectures
in [11].
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1. Introduction

Chartrand and Wilson, in [5], introduced a series of properties for the Petersen
graph. They used a conjecture of Tutte to explain why so much attention had been
paid to the Petersen graph and its various generalizations. (That is, every known
bridgeless 3-regular graph whose edges cannot be colored with three colors contains
a subgraph isomorphic to the Petersen graph. Tutte conjectured that this is always
the case (see [12]).

Two classes of generalization of Petersen graphs are generalized Petersen graphs
and cycle permutation graphs. Let n and k be integers with n � 5 and k � 1. A
generalized Petersen graph, G(n, k), is the graph with vertex set V (G(n, k)) =
{x1, x2, . . . , xn, y1, y2, . . . , yn}, and edge set E(G(n, k)) = {[xi, xi+1], [yi, yi+k],
[xi, yi], i = 1, 2, . . . , n where the subscripts are taken modulo n}. The subgraph
induced from x1, x2, . . . , xn is denoted by Cx and the subgraph induced from
y1, y2, . . . , yn is denoted by Cy. When n = 5 and k = 2, G(5, 2) is the Petersen
graph.

Let α be a permutation of the symmetric group, Sn, acting on the set {1, 2, . . . , n}.
A cycle permutation graph Pn(α) is the graph with 2n vertices, V (Pn(α)) = V1 ∪ V2
where Vi = {vi1, vi2, . . . , vin} for i = 1, 2, V1∩V2 = ∅, and E(Pn(α)) = E1∪E2∪E12
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where Ei = {[vij , vi(j+1)] for j = 1, 2, . . . , n} for i = 1, 2 and E1,2 = {[v1tv2α(t)];
t = 1, 2, . . . , n}. (See [6], [7].) When n = 5 and α = (1)(2453), P5(α) is the Petersen
graph.
The toughness t(G) of a graph G was defined by Chvátal [6]. If G is not a complete

graph,

t(G) = minS

{ |S|
ω(G− S)

}

where S is taken over all disconnecting subsets of the vertex set of G, |S| is the
cardinality of S and ω(G−S) is the number of components in the subgraph induced
from G− S.
Recently, the toughness of graphs has received a lot of attention. Much work has

been done concerning the toughness, which is considered to be more sensitive to the
structure of the graph than the connectivity of the graph (see [1] and [2]).
In [6], Chvátal first considered the toughness of the cross product of two complete

graphs. Guichard, Piazza, and Stueckle, in [10], proved that for α ∈ Sm+n and
m � n, the toughness of a cycle permutation graph is given by

t(Pα(Km,n)) =





2m
n+m− q

if q <
n2 +m2

n+ 3m
,

n+m

n+ q
if q � n2 +m2

n+ 3m

where Km,n is the complete bipartite graph of mn vertices.
Some results and conjectures were given by Piazza, Ringeisen, and Stueckle in [11];

the authors proved that the toughness of G(n, k) is more than n/(n− 1), if n is an
positive odd integer with n and k being relatively prime, and k /∈ {1, n − 1}. An
upper bound for the toughness of cycle permutation graphs was obtained as follows:

t(Pn(α)) � (k + 2)
(k + 1)

, if α(i) = i for all 1 � i � k � n− 2.

Based on the set of permutations which generate all nonisomorphic cycle permuta-
tion graphs of Cn, n � 8 in [11], the authors found that for all σ ∈ Sn, the toughness
of P3(σ) is equal to 3/2 and the toughness of Pn(σ) is less than or equal to 4/3 for
4 � n � 8. Three conjectures were stated as follows.

Conjecture 1. For n � 4 and α ∈ Sn, t(Pn(α)) � 4/3.

If this upper bound cannot be obtained, perhaps, the following looser upper bound
can be obtained.

Conjecture 2. For n � 4 and α ∈ Sn, t(Pn(α)) < 3/2.
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Since G(5, 2) and G(9, 2) have their toughness equal to 4/3, could such a class be
the generalized Petersen graphs when n ≡ 1 (mod 4) and k = 2?

Conjecture 3. If n � 5 and n ≡ 1 (mod 4), then t(G(n, 2)) = 4/3.

In [3] and [8], the authors proved that the upper bound for toughness of generalized
Petersen graph is 4/3. Here, we shall study the structure of cycle permutation graphs
with some maximal chains and establish the upper bound for the toughness of cycle
permutation graphs. Some of these results confirm Conjectures 1 and 2. Throughout
this paper, all integers and subscripts are taken modulo n.

2. Maximal chains

Let Pn(α) be a cycle permutation graph consisting of two n-cycles Cn and
C′

n with a connecting set of edges, i.e., V (Pn(α)) = V (Cn) ∪ V (C′
N ) where

V (Cn) = {1, 2, . . . , n}, V (C′
n) = {y1, y2, . . . , yn} such that V (Cn) ∩ V (C′

n) = ∅,
and E(Pn(α)) = E(Cn)∪E(C′

n)∪E1,2 where E(Cn) = {[i, i+1] for i = 1, 2, . . . , n},
E(C′

n) = {[yi, yi+1] for i = 1, 2, . . . , n} and E12 = {[i, yα(i)] for i = 1, 2, . . . , n}.
Let B be a nonempty (proper) subset of V (Cn). On C′

n, a chain of edges
[yi, yi+1][yi+1yi+2] . . . [yt−1yt] is said to be related to B, if α−1(i), α−1(i + 1), . . . ,
α−1(t) belong to B. For simplicity, this chain of edges on C′

n will be written as
yiyi+1 . . . yt. A chain of edges, yiyi+1 . . . yt is said to be maximal, if α−1(i− 1) /∈ B

and α−1(t + 1) /∈ B. A maximal chain related to B will be denoted by M(B).
Similarly, replacing B by Cn − B, we may define chains related to Cn − B, and
maximal chains related to Cn −B. Also, a maximal chain related to Cn −B will be
denoted by M(Cn −B). Two chains on C′

n, yiyi+1 . . . yt and yjyj+1 . . . ys are said to
be related, denoted by yiyi+1 . . . yt � yjyj+1 . . . ys or yjyj+1 . . . ys � yiyi+1 . . . yt, if
[yt, yj ] ∈ E(C′

n) or [ys, yi] ∈ E(C′
n).

For a nonempty independent subset B of V (Cn), C′
n is partitioned into disjoint

maximal chainsM1(B), M2(B), . . . , Mk(B) related to B, and disjoint maximal chains
M1(Cn − B), M2(Cn − B), . . . , Mk(Cn − B) related to Cn − B. This partition of
maximal chains will be denoted by p(n, α, B). We note that since C′

n is a cycle, the
number of maximal chains related to B is equal to the number of maximal chains
related to (Cn −B).

Example 1. Let n = 12, and

α =

(
1 2 3 4 5 6 7 8 9 10 11 12

3 2 4 5 7 9 6 12 1 8 10 11

)
.

In P12(α), let B = {1, 3, 5, 7, 10}. Then we have α−1(3) = 1, α−1(4) = 3,
α−1(7) = 5, α−1(6) = 7, α−1(8) = 10, M1(B) = y3y4, M2(B) = y6y7y8, M1(C12 −
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B) = y5, M2(C12 − B) = y9y10y11y12y1y2, and p(12, α, B) is M1(B) � (C12 − B) �
M2(B) � M2(C12 − B) � M1(B). Also, y6y7 is a chain related to B, but not a
maximal chain related to B. Similarly, y12y1y2 is a chain related to (C12 − B), but
not a maximal chain related to (C12 −B).

Each of M1(B) and M2(C12 − B) is said to have an even cardinality (i.e., each
contains an even number of vertices), and each of M2(B) and M1(C12 − B) has an
odd cardinality.

Theorem 1. Let n be an integer � 4, α ∈ Sn, Pn(α) be a cycle permutation
graph with 2n vertices, B be a nonempty independent subset of vertices of Cn in
Pn(α), and p(n, α, B) be the partition of maximal chains related to B. Then

(1) t(Pn(α)) � 2|B|+ n+ e1(B)− e2(B)
3|B|+ e1(B)

where |B| is the cardinality of B, e1(B) is the number of maximal chains related
to B with odd cardinality, and e2(B) is the number of maximal chains related to
Cn −B with odd cardinality.

�����. For some positive integer q, p(n, α, B) is M1(B) � M1(Cn − B) �
M2(B) � M2(Cn −B) � . . . � Mq(B) � Mq(Cn −B) � M1(B). �

We construct a disconnecting subset S of Pn(α) as follows:

(2) S = B ∪By with By =
q⋃

j=1

[Kj(B) ∪Kj(Cn −B)]

where for Mj(B) = ytj+1ytj+2 . . . ytj+mj , 1 � j � q,

Kj(B) =





ϕ if mj = 1 or 2,

{ytj+2, ytj+4, . . . , ytj+mj−1} if mj is odd > 1,

{ytj+2, ytj+4, . . . , ytj+mj−2} if mj is even > 2.

For Mj(Cn −B) = ysj+1ysj+2 . . . ysj+m′
j
, 1 � j � q,

Kj(Cn −B) =

{
{ysj+1, ysj+3, . . . , ysj+m′

j−2, ysj+m′
j
} if m′

j is odd ,

{ysj+1, ysj+3, . . . , ysj+m′
j−1, ysj+m′

j
} if m′

j is even.
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Thus, we have, for j = 1, 2, . . . , q,

|Mj(B)| = mj , |Kj(B)| =
[
mj − 1
2

]
,

and

|Mj(Cn −B)| = m′
j , |Kj(Cn −B)| =

[
m′

j + 2

2

]

where [x] is the largest integer � x.
For 1 � j � q, the components of the induced graph Mj(B)−By are:

{ytj+1}, {ytj+3}, . . . , {ytj+2k+1}, . . . , {ytj+mj} if mj is odd ,

and

{ytj+1}, {ytj+3}, . . . , {ytj+2k+1}, . . . , {ytj+mj−1, ytj+mj} if mj is even.

Since each vertex v ∈ V (Mj(Cn − B) − By) is incident with an edge [v, i] in
E(Pn(α)) for some i ∈ Cn − S, the number of components, ω(Mj(B) − By), of the
induced subgraph Mj(B)−By is equal to

[mj+1
2

]
for j = 1, 2, . . . , q, and

ω
(
Pn(α)− 5) = ω(Cn −B) +

q∑

j=1

ω
(
Mj(B) −By

)
(2)

= |B|+
q∑

j=1

[
mj + 1
2

]

= |B|+ |B|
2
+

e1(B)
2

where |B| =
q∑

j=1
mj is used.

By using

[
mj − 1
2

]
=





mj − 1
2

if mj is odd ,

mj + 2
2

if mj is even ,

[
m′

j + 2

2

]
=





m′
j + 1

2
if m′

j is odd,

mj + 2
2

if m′
j is even,
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and n =
q∑

j=1
mj +

q∑
j=1

m′
j , we have

|S| = |B|+ |By|(3)

= |B|+
q∑

j=1

[
mj − 1
2

]
+

q∑

j=1

[
m′

j + 2

2

]

= |B|+ 1
2

(( q∑

j=1

mj

)
− e1(B)− 2

(
q − e1(B)

))

+
1
2

(( q∑

j=1

m′
j

)
+ e2(B) + 2

(
q − e2(B)

))

= |B|+ n

2
+

e1(B) − e2(B)
2

.

By using (2) and (3), we have

t(Pn(α)) � |S|
ω(Pn(α)− S)

=
2|B|+ n+ e1(B) − e2(B)

3|B|+ e1(B)
.

Example 2. Let n, α, Pn(α) and B be the same as in our Example 1. We have

M1(B) = y3y4, M2(B) = y6y7y8, M1(C12 −B) = y5,

M2(C12 −B) = y9y10y11y12y1y2.

Thus,

K1(B) = ∅, K2(B) = {y7}, K1(C12 −B) = {y5}, K2(C12 −B) = {y9, y11, y1, y2}.

S = B ∪By = {1, 3, 5, 7, 10}∪ {y7} ∪ {y5} ∪ {y9, y11, y1, y2}, and the components in
P12(α)−S are: 〈2〉, 〈4〉, 〈6〉, 〈8, 9, y12〉, 〈11, 12, y10〉, 〈y3, y4〉, 〈y6〉 and 〈y8〉. (We note
that [y12, 8] and [y10, 11] do belong to E(P12(α)). Thus, |S| = 11, ω(P12(α)−S) = 8,
and t(P12(α)) � |S|

ω(P12(α)−S) =
11
8 .

Using our (1), with |B| = 5, n = 12, e1(B) = 1 and e2(B) = 1, we have

t(P12(α)) � 2(5) + 12 + 1− 1
3(5) + 1

=
22
16
=
11
8

.

Corollary 1.1. Let n be an integer � 4 and n �= 4k + 3, α ∈ Sn and Pn(α) be a
cycle permutation graph with 2n vertices. Then

t(Pn(α)) � 4
3
.
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�����. Let

B =

{
{1, 3, . . . , n− 1} if n is even,

{1, 3, . . . , n− 2} if n is odd.

Then |B| = [n/2].
For n = 4k, |B| = 2k, and by using (1) in Theorem 1, we have

t(Pk(α)) � 2(2k) + 4k + e1(B)− e2(B)
3(2k) + e1(B)

� 8k + e1(B)
6k + e1(B)

� 4
3
.

For n = 4k + 1 and |B| = 2k. We claim that e1(B) � 1. Let p(4k + 1, α, B) =( q⋃
j=1

Mj(B)
)
∪

( q⋃
j=1

Mj(C4k+1−B)
)
for some positive integer q. Since

q∑
j=1

|Mj(B)| =

|B| = 2k and
q∑

j=1
|Mj(B)|+

q∑
j=1

Mj(C4k+1−B)| = 4k+1,
q∑

j=1
|Mj(C4k+1−B)| = 2k+1.

Consequently, e2(B) �= 0, i.e., e2(B) � 1.
By using (1) in Theorem 1 with e2(B) � 1, we have

t(P4k+1(α)) � 2(2k) + 4k + 1 + e1(B)− e2(B)
3(2k) + e1(B)

=
8k + 1 + e1(B)− e2(B)

6k + e1(B)
� 4
3

where 3 � e1(B) + 3e2(B) is used.
For n = 4k + 2, |B| = 2k + 1. By using (1) in Theorem 1, we have

t(P4k+2(α)) � 2(2k + 1) + 4k + 2 + e1(B)− e2(B)
3(2k + 1) + e1(B)

� 8k + 4 + e1(B)
6k + 3 + e1(B)

� 4
3
.

�

Corollary 1.2. Let n be an integer� 4, α ∈ Sn and Pn(α) be a cycle permutation
graph with 2n vertices. Then

t(Pn(α)) <
3
2
.

�����. For n = 4k, 4k + 1 and 4k + 2, by Corollary 1.1, we have t(Pn(α)) �
4
3 < 3

2 . For n = 4k + 3, let B = {1, 3, . . . , 4k + 1}. Then |B| = 2k + 1. By using (1)
in Theorem 1, we have

t(P4k+3(α)) � 2(2k + 1) + (4k + 3) + e1(B)− e2(B)
3(2k + 1) + e1(B)

� 8k + 5 + e1(B)
6k + 3 + e1(B)

<
3
2

where k � 1 is used. �

Our Corollary 1.2 confirms the conjecture 2 in [11].
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3. Cycle permutation graphs and generalized Petersen graphs

We shall show that, for n = 4k+ 3 with k � 1, a certain Pn(α) is isomorphic to a
generalized Petersen graph. We shall also show that the toughness of this generalized
Petersen graph is � 4

3 , and we use the results to prove t(Pn(α)) � 4
3 .

For n = 4k + 3 and |B| = 2k + 1, by using (1) in Theorem 1, we have

t(P4k+3(α)) � 2(2k + 1) + (4k + 3) + e1(B)− e2(B)
3(2k + 1) + e1(B)

=
8k + 5 + e1(B)− e2(B)
6k + 3 + e1(B)

.

In order to have t(P4k+3(α)) � 4
3 , we need

(4) 3 � e1(B) + 3e2(B).

If e2(Bi) � 1, then (4) holds. If e2(B) = 0 and E1(Bi) � 3, then (4) holds.
Since n = 4k + 3 and |B| = 2k + 1 are odd integers, we cannot have the case of
e2(B) = 0 and e1(Bi) = 2. The only case which we need to consider is e2(B) = 0
and e1(Bi) = 1.

Let n = 4k + 3 with k � 1, and Bi = {1 + i, 3 + i, . . . , (4k + 1) + i} for i =
0, 1, . . . , 4k+2. (The integers are taken modulo n.) Then each Bi is an independent
set of vertices in Cn. Each of p(n, α, Bi), e1(Bi) and e2(Bi) are defined in the same
way as p(n, α, B0) = p(n, α, B), e1(B0) = e1(B) and e2(B0) = e2(B) respectively.

Example 3. We give two cycle permutation graphs. One has e1(Bi) = 1 and
e2(Bi) = 0 for some i. The other one has e1(Bi) = 1 and e2(Bi) = 0 for all integers i.
Let P11(β) be the cycle permutation graph with

β =

(
1 2 3 4 5 6 7 8 9 10 11

10 7 5 9 3 8 4 2 11 1 6

)

and B = B0 = {1, 3, 5, 7, 9}. Then p(11, β, B0) is M1(B0) = y3y4y5 � M1(C11 −
B0) = y6y7y8y9 � M2(B0) = y10y11 � M2(C11 − B0) = y1y2 � M1(B0). Thus,
e1(B0) = 1 and e2(B0) = 0. For B3 = {4, 6, 8, 10, 1}, p(11, β, B3) isM1(B3) = y1y2 �
M1(C11 −B3) = y3y4y5y6y7 � M2(B3) = y8y9y10 � M2(C11 −B3) = y11 � M1(B3).
Thus, e1(B3) = 1 and e2(B3) = 2.

Let P11(α) be the cycle permutation graph with

α =

(
1 2 3 4 5 6 7 8 9 10 11
1 3 5 7 9 11 2 4 6 8 10

)
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with B = B0 = {1, 3, 5, 7, 9}. Then p(11, α, B0) is

M1(B0) = y1y2 � M1(C11 −B0) = y3y4 � M2(B0) = y5y6

� M2(C11 −B0) = y7y8 � M3(B0) = y9 � M3(C11 −B0) = y10y11 � M1(B0).

Thus, e1(B0) = 1 and e2(B0) = 0.

For Bi = {1 + i, 3 + i, 5 + i, 7 + i, 9 + i}, i = 1, 2, . . . , 10, p(11, α, Bi) is

M1(Bi) = y1+2i y2+2i � M1(C11 −Bi) = y3+2iy4+2i � M2(Bi)

= y5+2i y6+2i � M2(C11 −Bi) = y7+2i y8+2i � M3(Bi) = y9+2i � M3(C11 −Bi)

= y10+2i y11+2i � M1(Bi).

Thus, e1(Bi) = 1 and e2(Bi) = 0, i.e., e1(Bi) = 1 and e2(Bi) = 0 for all integers i.

Theorem 2. Let Pn(α) be a cycle permutation graph with 2n vertices where
n = 4k + 3 and k � 1, and Bi be the same as above with e1(Bi) � 3 or e2(Bi) � 1
for some integer i. Then

t(Pn(α)) � 4
3
.

�����. Replacing B in Theorem 1 by Bi, we have the inequality (1). By using
the inequality (4), we have t(Pn(α)) � 4

3 . �

Theorem 3. Let Pn(α) be a cycle permutation graph with 2n vertices with
n = 4K + 3 and k � 1, and Bi be the same as above for i = 0, 1, . . . , 4k + 2. If
e1(Bi) = 1 and e2(Bi) = 0 for all i, then Pn(α) is isomorphic to G(n, 2r) for some
positive integer r such that r divides 2(k + 1).

In order to prove our Theorem 3, we need the following lemmas.

Lemma 3.1. Let Pn(α) be a cycle permutation graph with 2n vertices where
n = 4k + 3 and k � 1, Bi be the same as above with e1(Bi) = 1, and e2(Bi) = 0 for
all integers i, and for some integer t and some integer l M1(Bt) = yl+1yl+2 . . . yl+m

where m is a positive odd integer. Then

α{t− 1, t} = {l, l+m+ 1}

where

α{t− 1, t} = {α(t− 1), α(t)}.
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�����. We claim that if M1(B0) = yl+1yl+2 . . . yl+m, then α{n − 1, n} =
{l, l +m+ 1}. Suppose the contrary, i.e., α{n− 1, n} �= {l, l+m + 1}. Then there
are two cases to be considered:

Case 1. α−1(l +m+ 1) /∈ {n− 1, n}.
(i) α−1(l) /∈ {n− 1, n}.
Let B0 = {1, 3, . . . , 4k + 1}, M1(B0) = yl+1yl+2 . . . yl+m with m being a positive

odd integer, and B1 = {2, 4, . . . , 4k+2}. Then Cn−B1 consists of all odd integers in
{1, 2, . . . , n} and {α−1(i) ; yi ∈ M1(B0)} ⊆ Cn − B1, i.e., M1(B0) is a chain related
to Cn − B1. Since α−1(l) and α−1(l + m + 1) /∈ {n − 1, n}, neither the vertex yl

nor the vertex yl+m+1 is in the chain M1(B0). Thus, M1(B0) is a maximal chain
related to Cn − B1. Since |M1(B0)| = m is an odd integer, e2(B1) � 1 which is a
contradiction to e2(Bi) = 0 for all integers i. Hence, α−1(l) ∈ {n− 1, n}.
(ii) α−1(l) = n− 1.
Similar to the proof of (i) in the Case 1. Since n − 1 /∈ Cn − B1, M1(B0) is a

maximal chain related to Cn −B1, and e2(B1) � 1 which is a contradiction.
(iii) α−1(l) = n.

Similar to the proof of (i) in the Case 1. Replacing B1 by B−1 = B4k+2, M1(B0)
is a maximal chain related to Cn − B−1, and e2(B−1) � 1 which is a contradiction.
Consequently, we have α−1{l, l+m+ 1} ∈ {n− 1, n}.

Case 2. α−1(l) /∈ {n− 1, n} and α−1(l +m+ 1) ∈ {n− 1, n}.
(i) α−1(l +m+ 1) = n− 1.
Similar to the proof of (ii) in the Case 1, e2(B1) � 1 which is a contradiction.
(ii) α−1(l +m+ 1) = n.

Similar to the proof of (iii) in the Case 1, e2(B−1) � 1 which is a contradiction.
Hence, we have α−1{l, l+m+ 1} = {n− 1, n}, i.e., α{n− 1, n} = {l, l+m+ 1}.
We claim that if, for some nonzero t,

M1(Bt) = yl+1yl+2 . . . yl+m,

then α{t− 1, t} = {l, l+m+ 1}. Relabeling k by t+ k for all k ∈ V (Cn), we obtain
a new cycle permutation graph Pn(β) for a permutation β ∈ Sn such that β(i) =
α(t+ i) for i = 1, 2, . . . , n.

Obviously, Pn(β) ∼= Pn(α) and, in Pn(β), e1(Bi) = 1 and e2(βi) = 0 for all
integers i. Since M1(B0) = yl+1yl+2 . . . yl+m in Pn(β), β{n− 1, n} = {l, l+m+ 1}.
Thus,

α{(n− 1) + t, n+ t} = α{t− 1, t} = {l, l+m+ 1},
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i.e.,

α{t− 1, t} = {l, l+m+ 1}.

�

Lemma 3.2. Let n = 4k + 3 with k � 1, Pn(α) be a cycle permutation graph
with B0 = {1, 3, . . . , 4k + 1} and p(n, α, B0) given by

M1 � M ′
1 � M2 � M ′

2 � . . . � Mr � M ′
r � M1

where

Mj =Mj(B0) = vj,1vj,2 . . . vj,mj(5)

and

M ′
j =Mj(Cn −B0) = wj,1wj,2 . . . wj,m′

j
(6)

for j = 1, 2, . . . , r. If e1(Bi) = 1 and e2(Bi) = 0 for all integers i, and |Mi| = m is a
positive odd integer, then

n � w1,1 and (n− 1) � wr , m
′
r(7)

or

n � wr,m′
r
and (n− 1) � w1,1(8)

where w1,1 and wr,m′
r
are the initial vertex of M ′

1 and the terminal vertex of M ′
r,

respectively, and q � w means [q, w] ∈ E(Pn(α)) where q ∈ Cn and w ∈ C′
n.

�����. This follows from Lemma 3.1. �

We shall repeatedly use (5), (6), (7) and (8) in the following

Lemma 3.3. Let n = 4k + 3 and k � 1, Pn(α) be a cycle permutation graph
with 2n vertices, and Mj and M ′

j for j = 1, 2, . . . , r be the same as in (5) and (6).
If e1(Bi) = 1 and e2(Bi) = 0 for all integers i, |M1| = m1 is an odd positive integer,
and n � w1,1 and (n− 1) � wr,m′

r
, then we have

(1) (2dr − 1) � v1,d and 2dr � w1,d+1 for 1 � d � min
1�j�r

{|Mj|, |M ′
j|}, and

(2) (2sr + 2t − 1) � vt+1,s+1, and (2sr + 2t) � wt+1,s+1 for 0 � s � m and
1 � t � r − 1.

Since the proof of Lemma 3.3. is very lengthy, we shall first consider the following
examples which demonstrate Lemma 3.3.
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Example 4. Let n = 4(3) + 3 = 15, Pn(α) be the cycle permutation graph with

α =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 5 9 13 2 6 10 14 3 7 11 15 4 8 12

)

and B0 = {1, 3, 5, 7, 9, 11, 13}. Then we have M1 = y9y10y11 � M ′
1 = y12y13y14y15 �

M2 = y1y2y3y4 � M ′
2 = y5y6y7y8 � M1. Thus, e1(B0) = 1 and e2(B0) = 0. In fact,

for Bi = {1+i, 3+i, 5+i, 7+i, 9+i, 11+i, 13+i}, we have e1(Bi) = 1 and e2(Bi) = 0
for all integers i. We see that, in this case, k = 3, r = 2, min

1�j�r
{|Mj|, |M ′

j |} = 3, and
(15 = n) � (w1,1 = y12 = yα(15)), and (14 = n− 1) � (w2,m′

2
= y8 = yα(14)).

(1) (2dr − 1) � v1,d and 2dr � w1,d+1 for d = 1, 2, 3.

That is,

((2(1)(2)− 1) = 3) � (v1,1 = y9 = yα(3)),

((2(2)(2)− 1) = 7) � (v1,2 = y10 = yα(7)),

((2(3)(2)− 1) = 11) � (v1,3 = y11 = yα(11)),

((2(1)(2)) = 4) � (w1,2 = y13 = yα(4)),

((2(2)(2)) = 8) � (w1,3 = y14 = yα(8)),

((2(3)(2)) = 12) � (w1,4 = y15 = yα(12)).

(2sr + 2t− 1) � vt+1,s+1 and (2sr + 2t) � wt+1,s+1(2)

for s = 0, 1, 2, 3 and t = 1.

((2(0)(2) + 2(1)− 1) = 1) � (v2,1 = y1 = yα(1)),

((2(1)(2) + 2(1)− 1) = 5) � (v2,2 = y2 = yα(5)),

((2(2)(2) + 2(1)− 1) = 9) � (v2,3 = y3 = yα(9)),

((2(3)(2) + 2(1)− 1) = 13) � (v2,4 = y4 = yα(13)),

((2(0)(2) + 2(1)) = 2) � (w2,1 = y5 = yα(2)),

((2(1)(2) + 2(1)) = 6) � (w2,2 = y6 = yα(6)),

((2(2)(2) + 2(1)) = 10) � (w2,3 = y7 = yα(10)),

((2(3)(2) + 2(1) = 14) � (w2,4 = y8 = yα(14)).

We recall that the generalized Petersen graph G(15, 4) has

V (G(15, 4)) = {1′, 2′, . . . , 15′, y′1, y′2 . . . y′15}
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and E(G(15, 4)) = {[i′, i′ + 1], [y′i, y′i+4], [i′, y′i] for i = 1, 2, . . . , 15}. Then P15(α) �
G(15, 4) where the isomorphic map θ : V (P15(α)) −→ V (G(15, 4)) is defined by
θ(i) = i′ and θ(yi) = y′α−1(i) for i = 1, 2, . . . , 15.

Example 5. The following two cycle permutation graphs are isomorphic. But
one has the property (7) and the other has the property (8).
Let P7(α) be the cycle permutation graph with 14 vertices,

α =

(
1 2 3 4 5 6 7

1 4 7 3 6 2 5

)
,

and Bi = {1+i, 3+i, 5+i} for i = 0, 1, . . . , 6. ThenM1 =M1(B0) = y6y7y1 � M ′
1 =

M1(C7 − B0) = y2y3y4y5 � M1, and e1(Bi) = 1 and e2(Bi) = 0 for i = 0, 1, . . . , 6.
(n = 7) � (w1,4 = y5 = yα(7)) and ((n − 1) = 6) � (w1,1 = y2 = yα(6)) which is the
case of (8).
Let P7(β) be the cycle permutation graph with 14 vertices,

β =

(
1 2 3 4 5 6 7
1 5 2 6 3 7 4

)
,

and Bi = {1+i, 3+i, 5+i} for i = 0, 1, . . . , 6. ThenM1 =M1(B0) = y1y2y3 � M ′
1 =

M1(C7 − B0) = y4y5y6y7 � M1, and e1(Bi) = 1 and e2(Bi) = 0 for i = 0, 1, . . . , 6.
(n = 7) � (w1,1 = y4 = yβ(7)) and ((n − 1) = 6) � (w1,4 = y7 = yβ(6)) which is the
case of (7):

P7(α) � G(7, 3) � G(7, 4) � P7(β).

We also note that r = 1 for both P7(α) and P7(β). Also, in P7(α), if we use B3 =
{4, 6, 1} instead of B0 = {1, 3, 5}, then we have M1 = y1y2y3 and M ′

1 = y4y5y6y7.

�����. The proof of Lemma 3.2 goes as follows.
(1) We show that (2dr − 1) � v1,d and 2dr � w1,d+1 for 1 � d � m =
min
1�j�r

{|Mj|, |M ′
j |}.

There are two cases to be considered:

Case 1. r = 1.
Let B0 = {1, 3, . . . , 4k + 1}, and let the maximal chains be

M1(B0) =M1 = v1,1 . . . v1,m1 ,

and

M1(Cn −B0) =M ′
1 = w1,1w1,2 . . . w1,m′

1

where m1 is a positive odd integer, and

n � w1,1 and (n− 1) � (wr,m′
r
= w1,m′

1
).
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Since r = 1 and n = 4k + 3, m1 = 2k + 1 and m′
1 = 2k + 2, i.e., m1 = m =

min{|M1|, |M ′
1|}. Let B2 = {3, 5, . . . , 4k + 1, 4k + 3}. Then

{α−1(i) ; yi ∈ M ′
1 − w1,1} ⊆ Cn −B2.

We claim that 1 � v1,1. If not, then M ′
1 − w1,1 is a maximal chain related to

Cn−B2, and |M ′−w1,1| is an odd integer. Thus, e2(B2) � 1 which is a contradiction
to e2(Bi) = 0 for all integers i. Hence, 1 � v1,1. Since M1+w1,1− v1,1 is a maximal
chain related to B2 and M ′

1 −w1,1 + v1,1 is a maximal chain related to Cn −B2, by
Lemma 3.1, 1 � v1,1 (the terminal vertex of M ′

1 − w1,1 + v1,1), and 2 � w1,2 (the
initial vertex of M ′

1 − w1,1 + v1,1).
Repeatedly applying the same argument to B2dr = B2d for 1 � d � m(= 2k + 1),

we obtain a maximal chain related to B2d:

M1 + w1,1w1,2 . . . w1,d − v1,1v1,2 . . . v1,d,

a maximal chain related to Cn − B2d, M ′
1 − w1,1w1,2 . . . w1,d + v1,1v1,2 . . . v1,d, and

(2d − 1) � v1,d and 2d � w1,d+1 for d = 1, 2 . . . , (2k + 1). (We already know that
n � w1,1.)

Case 2. r > 1.
(i) We show that 2t− 1 � vt+1,1 and 2t � wt+1,1 for t = 1, 2, . . . , r − 1.
Let B0 = {1, 3, . . . , 4k + 1}, let the maximal chains be, for j = 2, . . . , r,

Mj =Mj(B0) = vj,1vj,2, . . . , vj,mj ,

and

M ′
j =Mj(Cn −B0) = wj,1wj,2 . . . wj,m′

j

where m1 is a positive odd integer, and

n � w1,1 and (n− 1) � wr,m′
r
.

Similar to the proof of Case 1, let B2 = {3, 5, . . . , 4k + 1, 4k + 3}. Then

{α−1(i) ; yi ∈ M ′
1 − w1,1} ⊆ Cn −B2.

We claim that 1 � v2,1. If not, thenM ′
1−W1,1 is a maximal chain related to Cn−B2,

and |M ′
1 − w1,1| is an odd integer. Thus, e2(B2) � 1 which is a contradiction to

e2(Bi) = 0 for all integers i. Hence, 1 � v2,1. Consequently,

M1 + w1,1, M2 − v2,1, M3, . . . , Mr
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are maximal chains related to B2, and

M ′
1 − w1,1 + v2,1, M

′
2, M

′
3, . . . , M

′
r

are maximal chains related to Cn−B2. Since |M2−v2,1| = m2−1 is odd and the others
are even, by Lemma 2.1, we have 1 � v2,1 (the terminal vertex of M ′

1 −w1,1 + v2,1),
and 2 � w2,1 (the initial vertex of M ′

2).
Repeatedly applying the same argument to B2t for 1 � t � r − 1, we obtain the

maximal chains related to B2t:

M1 + w1,1, M2 − v2,1 + w2,1, M3 − v3,1 + w3,1, . . . , Mt+1 − vt+1,1, Mt+2 . . . , Mr,

the maximal chains related to Cn −B2t:

M ′
1 − w1,1 + v2,1, M

′
2 − w2,1 + v3,1, M

′
3 − w3,1 + v4,1, . . . , M

′
t − wt,1 + vt+1,1,

M ′
t+1, M

′
t+2, . . . , M

′
r,

and (2t− 1) � vt+1,1 and 2t � vt+1,1 and 2t � wt+1,1 for t = 1, 2, . . . , r − 1.
(ii) We show that (2dr − 1) � v1,d and 2dr � w1,d+1 for d = 1, 2, . . . , m (where

m = min
1�j�r

{|Mj|, |M ′
j|}). For t = r − 1, by the Case 2 (i), we obtain the maximal

chains related to B2(r−1):

M1 + w1,1, M2 − v2,1 + w2,1, M3 − v3,1 + w3,1, . . . , Mr − vr,1,

the maximal chains related to Cn −B2(r−1):

M ′
1 − w1,1 + v2,1, M

′
2 − w2,1 + v3,1, M

′
3 − w3,1 + v4,1, . . . , M

′
r−1 − wr−1,1 + vr,1, M

′
r

and (2r − 3) � vr,1 and (2r − 2) � wr,1.
Let B2r = {1+2r, 3+2r, . . . , 4k+1+2r}. Since 4k+1+2r is congruent to 2r−2

modulo n, {α−1(i) ; yi ∈ M ′
r − wr,1} ⊆ Cn −B2r.

We claim that (2r − 1) � v1,1. If not, then M ′
r − wr,1 is a maximal chain related

to Cn −B2r, and |M ′
r − wr,1| = m′

r − 1 is an odd integer. Thus, e2(B2r) � 1 which
is a contradiction to e2(Bi) = 0 for all integers i. Hence, (2r − 1) � v1,1.
The maximal chains related to B2r are:

M1 − v1,1 + w1,1M2 − v2,1 + w2,1, M3 − v3,1 + w3,1, . . . , Mr − vr,1 + wr,1,

and the maximal chains related to Cn −B2r are:

M ′
1 − w1,1 + v2,1, M

′
2 − w2,1 + v3,1, M

′
3 − w3,1 + v4,1, . . . , M

′
r − wr,1 + v1,1.
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Since |M1−v1,1+w1,1| is an odd integer, by Lemma 3.1, (2r−1) � v1,1 (the terminal
vertex of M ′

r − w1,1 + v1,1), and 2r � w2,1 (the initial vertex of M ′
1 − w1,1 + v2,1).

Repeatedly applying the same argument to B2dr for d = 1, 2, . . . , m, we obtain the
maximal chains related to B2dr:

M1 − v1,1v1,2 . . . v1,d + w1,1w1,2 . . . w1,d

M2 − v2,1v2,2 . . . v2,d + w2,1w2,2 . . . w2,d
...

Mr − vr,1vr,2 . . . vr,d + wr,1wr,2 . . . wr,d,

the maximal chains related to Cn −B2dr:

M ′
1 − w1,1w1,2 . . . w1,d + v2,1v2,2 . . . v2,d,

M ′
2 − w2,1w2,2 . . . w2,d + v3,1v3,2 . . . v3,d,

...

M ′
r − wr,1wr,2 . . . wr,d + v1,1v1,2 . . . v1,d,

and (2dr − 1) � v1,d and 2dr � w1,d+1 for d = 1, 2, . . . , m. Thus, the proof of (1) is
completed.

(2) Repeatedly applying the same argument as in the proof of Case 2 (ii) to B2kr

for k = 1, 2, . . . , m−1, then applying the same argument as in the proof of Case 2 (i)
to B2kr+2t for t = 1, 2, . . . , r − 1, we obtain the maximal chains related to B2kr+2t:

M1 − v1,1v1,2 . . . v1,k + w1,1, w1,2 . . . w1,kw1,k+1,

M2 − v2,1v2,2 . . . v2,kv2,k+1 + w2,1w2,2 . . . w2,kw2,k+1,

...

Mt − vt,1vt,2 . . . vt,kvt,k+1 + wt,1wt,2 . . . wt,kwt,k+1,

Mt+1 − vt+1,1vt+1,2 . . . vt+1,kvt+1,k+1 + wt+1,1wt+1,2 . . . wt+1,k,

Mt+2 − vt+2,1vt+2,2 . . . vt+2,k + wt+2,1wt+2,2 . . . wt+2,k,

...

Mr − vr,1vr,2 . . . vr,k + wr,1wr,2 . . . wr,k,
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the maximal chains related to Cn −B2kr+2t:

M ′
1 − w1,1w1,2 . . . w1,kw1,k+1 + v2,1v2,2 . . . v2,kv2,k+1,

M ′
2 − w2,1w2,2 . . . w2,kw2,k+1 + v3,1v3,2 . . . v3,k+1,

...

M ′
t − wt,1wt,2 . . . wt,kwt,k+1 + vt+1,1vt+1,2 . . . vt+1,kvt+1,k+1,

M ′
t+1 − wt+1,1wt+1,2 . . . wt+1,k + vt+2,1vt+2,2 . . . vt+2,k,

...

M ′
r − wr,1wr,2 . . . wr,k + v1,1v1,2 . . . v1,k,

and

(2kr + 2t− 1) � vt+1,k+1 and (2kr + 2t) � wt+1,k+1

for k = 1, 2, . . . , m− 1 and t = 1, 2, . . . , r − 1. �

Lemma 3.4. Let n = 4k+3 with k � 1, Pn(α), Bi,Mj andM ′
j for j = 1, 2, . . . , r

be the same as in Lemma 3.3. If |M1| = m is an odd positive integer, e1(Bi) = 1 and
e2(Bi) = 0 for all integers i, and n � w1,1 and (n − 1) � wr,m′

r
, then |Mj | = m + 1

for j = 2, 3, . . . , r, and |M ′
j | = m+ 1 for j = 1, 2, . . . , r where r(m+ 1) = 2(k + 1).

�����. Let |M1| = m = min
1�j�r

{|Mj|, |M ′
j}. We claim that |Mj | = m + 1 for

j = 2, 3, . . . , r and |M ′
j | = m + 1 for j = 1, 2, . . . , r. First, we show that |M ′

1| >

m. Suppose |M ′
1| = m. Then by Lemma 3.3, Case 2 (ii), 2mr � w1,m+1. Since

|M ′
1| = m, w1,m+1 = v2,1. By Lemma 3.3, Case 2 (i), 1 � v2,1. Since Pn(α) is a

cycle permutation graph, each vertex in Cn is incident with exactly one vertex in
C′

n. Thus, 2mr ≡ 1 (mod n), i.e., 2mr − 1 = n = 4k + 3 which is a contradiction to
2mr � 4k + 3. Hence, |M ′

1| > m.

Suppose |Mt| = m for some t = 2, 3, . . . , r. Then

Mt(B2mr) =Mt − vt,1vt,2 . . . vt,m + wt,1wt,2 . . . wt,m,

i.e., Mt(B2mr) = wt,1wt,2 . . . wt,m is a maximal chain related to B2mr. Repeatedly
using the procedure in Lemma 3.3, Case 2 (i) with B2mr+2(t−1), we have (2mr +
2(t − 1) − 1) � vt,m+1. Since |Mt| = m, vt,m+1 = wt,1. By Lemma 3.3, Case 2 (i),
wt,1 � 2t− 2. Thus, 2mr + 2t− 3 ≡ 2t − 2 (mod n), 2mr − 1 = n = 4k + 3 which
is a contradiction to 2mr � 4k + 3. Hence, |Mt| > m for t = 2, 3, . . . , r. By using a
similar reasoning, we have |M ′

t| > m for t = 1, 2, . . . , r.
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We want to show that

|Mj | = m+ 1 for j = 2, 3, . . . , r,

and

|M ′
j | = m+ 1 for j = 1, 2, . . . , r.

We know that |Mj| � m+1 for j = 2, 3, . . . , r, and |M ′
j| � m+1 for j = 1, 2, . . . , r.

By using the procedure in Lemma 3.3, Case 2 (i) with B2mr+2(r−1) repeatedly, we
have (2mr + 2(r − 1)− 1) � w(r−1)+1,m+1 and (2mr + 2(r − 1)) � w(r−1)+1,m+1 =
wr,m+1. If wr,m+1 is the terminal vertex ofM ′

r, then 2mr+2(r−1) ≡ 4k+2 (mod n),
i.e., 2r(m + 1) = 4k + 4. Hence, |Mj | = m + 1 for j = 2, 3, . . . , r, |M ′

j | = m + 1
for j = 1, 2, . . . , r, and r divides 2(k + 1). If wr,m+1 is not the teerminal vertex of
M ′

r, then, by using the procedure in Lemma 3.3, Case 2 (ii) with B2mr+2r, we have
(2(m+1)r−1) � v1,m+1. Since v1,m+1 = w1,1 and 4k+3 � w1,1, 2(m+1)r−1 ≡ 4k+3
(mod n), i.e., 2r(m+1) = 4k+4. Hence, |Mj | = m+1 for j = 2, 3, . . . , r, |M ′

j | = m+1
for j = 1, 2, . . . , r and r divides 2(k + 1).

����� of Theorem 3 goes as follows. We want to show that, for n = 4k +
3 with k � 1, Pn(α) is isomorphic to G(n, 2r) for some r which divides 2(k +
1). Let V (G(n, 2r)) = {1′, 2′, . . . , (4k + 3)′, y′1, y′2, . . . , y′4k+3} and E(G(n, 2r)) =
{[i′, (i+1)′], [y′i, y′i+2r], [i′, y′i] for i = 1, 2, . . . , 4k+3}. Also, let V (Pn(α)) = {1, 2, . . . ,
4k + 3, y1, y2, . . . , y4k+3} and E(Pn(α)) = {[i, i+1], [yi, yi+1][i, yα(i)] for i = 1, 2, . . . ,
4k + 3}. In Pn(α), let Bi = {1+i, 3+i, . . . , (4k+1)+i}, with e1(Bi) = 1 and e2(Bi) =
0 for i = 0, 1, . . . , 4k + 2, the maximal chains Mj = Mj(B0) = vj,1vj,2 . . . vj,mj and
M ′

j =Mj(Cn −B0) = wj,1wj,2 . . . wj,m′
j
, for j = 1, 2, . . . , r, where r divides 2(k+1).

Case 1. n � w1,1 and (n − 1) � wr,m′
r
. We define a map θ : V (Pn(α)) −→

V (G(n, 2r)) by θ(i) = i′ and θ(yi) = y′α−1(i) for i = 1, 2, . . . , 4k+ 3. Then θ is a well
defined map between the vertices of these two cubic graphs. We show that θ preserves
the edges: Since [i, j] = E(Pn(α)) if and only if j = i+ 1 and [θ(i), θ(j)] = [i′, j′] ∈
G(n, 2r) if and only j′ = i′ + 1, θ[i, j] = [θ(i), θ(j)] for i, j = 1, 2, . . . , 4k + 3 and
i �= j. Since [i, yj] ∈ E(Pn(α)) if and only if j = α(i) and [θ(i), θ(yj)] = [i′, y′α−1(j)] ∈
E(G(n, 2r)) if and only if j = α(i), θ[i, yj] = [θ(i), θ(yj)] for i, j = 1, 2, . . . , 4k + 3.
We know that [yi, yj ] ∈ E(Pn(α)) if and only if j = i + 1, and [θ(yi), θ(yj)] =
[y′α−1(i), y

′
α−1(j)]. Say, α−1(i) = q for some q such that 1 � q � 4k + 3. Then

α(q) = i. By (1) and (2) of lemma 3.3, we know that [yi, yi+1] ∈ E(Pn(α)) if and
only if i+1 = α(q)+(2r). By Lemma 3.4, this holds for all i = 1, 2, . . . , 4l+3. Since
2r(m+1) = 4k+4 ≡ 1 (mod n), [θ(yi), θ(yi+1)] = [y′α−1(i), y

′
α−1(i+1)] = [y

′
q, y

′
q+2r] ∈

E(G(n, 2r)). Thus, θ[yi, yj] = [θ(yi), θ(yj)] for all i, j = 1, 2, . . . , 4k + 3 and i �= j.
Hence, Pn(α) � G(n, 2r).
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Case 2. n � wr,M ′
r
and (n − 1) � w1,1. Relabeling the vertices on C′

n by
v1,m1 −→ z1, v1,m1−1 −→ z2, . . . , v1,1 −→ zm1 , wr,m′

r
−→ zm1+1, zr,m′

r−1 −→
zm1+2, . . . , w1,1 −→ zn, we obtain a new cycle permutation graph Pn(β) such
that Pn(β) has a cycle with vertex set {z1, z2, . . . , zn} and n � zm1+1 (the initial
vertex ofM1(C′

n−B0) and (n−1) � wr,m′
r
(the end vertex related toMr(C′

n−B0)).
Clearly, by Case 1 above, we have Pn(β) = Pn(α) � G(n, 2r). �

We know that G(n, t) is isomorphic to a cycle permutation graph Pn(α) for some
α ∈ Sn if and only if t and n are relatively prime. The following example shows that
the converse of Theorem 3 does not hold.

Example 6. Consider G(11, 4) where

V (G(11, 4)) = {1, 2, . . . , 11, y1, y2, . . . , y11},

and E(G(11, 4)) = {[i, i+ 1], [i, yi], [yi, yi+4] for i = 1, 2, . . . , 11}, i.e., the outer cycle
of G(11, 4), Cx, is 1 − 2 − . . . − 11 − 1, and the inner cycle of G(11, 4), Cy, is
y1 − y5 − y9 − y2 − y6 − y10 − y3 − y7 − y11 − y4 − y8 − y1. Let

γ =

(
1 2 3 4 5 6 7 8 9 10 11
1 5 9 2 6 10 3 7 11 4 8

)

and

α = γ−1 =

(
1 2 3 4 5 6 7 8 9 10 11

1 4 7 10 2 5 8 11 3 6 9

)
.

Clearly, G(11, 4) � P11(α). Let B0 = {1, 3, 5, 7, 9}. Then the maximal chains in
G(11, 4) are:

M1 = y3y7 � M ′
1 = y11y4y8 � M2 = y1y5y9 � M ′

2 = y2y6y10 � M1.

Thus, r = 2 and m = 2. But e1(B0) = 1 and e2(B0) = 2.

Theorem 4. Let n = 4k + 3 with k � 1 and r divide 2(k + 1). Then,
t(G(n, 2r)) � 4/3.

�����. Let V (G(n, 2r)) = {1, 2, . . . , 4k+3, y1, y2, . . . , y4k+3} and E(G(n, 2r)) =
{[i, i+ 1], [i, yi], [yi, yi+2r] for i = 1, 2, . . . , 4k + 3}.
Case 1. r = 2(k + 1), G(n, 2r) = G(n, 1). Take the disconnecting set S =

{1, 3, 5, . . . , 4k+1, y2, y4, y6, . . . , y4k+2}. Then, ω(G(n, 1)−S), the set of components
induced from G(n, 1) − S is {{2}, {4}, {6}, . . . , {4k}, {y3}, {y5}, {y7}, . . . , {y4k+1},
{4k+2, 4k+3, y4k+3, y1}}. Thus, |S| = (2k+1)+(2k+1) = 4k+2, ω(G(n, 1)−S) =
2k + 2k + 1 = 4k + 1 and

t(G(n, 1)) � 4k + 2
4k + 1

<
4
3
.
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Case 2. r = 1. G(n, 2r) = G(n, 2). It was proved in [3] and [8] that t(G(n, 2)) � 4
3 .

Case 3. r = k + 1. G(n, 2r) = G(n, 2k + 2). Let B0 = {1, 3, 5, . . . , 4k + 1}. Then
the partition of maximal chains is:

y2k+1 � y4k+3y2k+2 � y1y2k+3 � y2y2k+4

� y3y2k+5 � y4y2k+6 � . . . � y2k−1y4k+1 � y2ky4k+2,

and the maximal chains are:

M1(B0) = y2k+1, M1(Cn −B0) = y4k+3y2k+2,

M2(B0) = y1y2k+3, M2(Cn −B0) = y2y2k+4,

...

Mk+1(B0) = y2k−1y4k−1, Mk+1(Cn −B0) = y2ky4k+2.

Let By = {y2k+2, y2, y2k+4, y4, y2k+6, . . . , y2t, y2k+2t+2, . . . , y2k−2, y4k, y2k} and
S = B0 ∪By. Then the components of G(n, 2k + 2)− S are the following sets:

{2}, {4}, . . . , {2t}, . . . , {4k},
{y1, y2k+3}, {y3, y2k+5}, . . . , {y2t−1, y2k+2t+1}, . . . ,
{y2k−1, y4k+1}, {y4k+3, 4k + 3, 4k + 2,y4k+2 , y2k+1}.

Thus,

|S| = (2k + 1) + 2(k − 1) + 2 = 4k + 1,
ω(G(n, 2k + 2)− S) = 2k + k + 1 = 3k + 1,

and t(G(n, 2k + 2) � |S|
ω(G(n, 2k + 2)− S)

=
4k + 1
3k + 1

<
4
3
.

Case 4. Let 1 < r < k + 1 and r(m+ 1) = 2k + 2. Let B0 = {1, 3, 5, . . . , 4k + 1}.
Then the partition of maximal chains is:

y2r−1y4r−1 . . . y2mr−1 � y4k+3y2ry4r . . . y2mr

� y1y1+2ry1+4r . . . y1+2mr � y2y2+2ry2+4r . . . y2+2mr

� y1+2(3−2)y1+2(3−2)+2ry1+2(3−2)+4r . . . y1+2(3−2)+2mr

� y2+2(3−2)y2+2(3−2)+2ry2+2(3−2)+4r . . . y2+2(3−2)+2mr

...

� y1+2(r−2)y1+2(r−2)+2ry1+2(r−2)+4r . . . y1+2(r−2)+2mr

� y2+2(r−2)y2+2(r−2)+2ry2+2(r−2)+4r . . . y2+2(r−2)+2mr.
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Since 1 < r < k + 1 and r(m+ 1) = 2k+ 2, m+ 1 � 3 and m � 2. If m = 2, then

|M1(Cn −B0)| = |y4k+3y2ry4r . . . y2mr| = m+ 1

is a positive odd integer. Thus, e2(B0) � 1 and by (1) in Theorem 1 or by (4),
t(G(n, 2r)) � 4/3, since G(n, 2r) is isomorphic to a cycle permutation graph. If
m � 3, then we define an independent set of vertices in Cn by

B = (B0 ∪ {4r}) � {4r − 1, 4r + 1}.

Then, since m � 3 and 4r �= 2mr, y4r−1, y6r, . . . , y2mr and y4r+1 are three maxi-
mal chains, related to Cn − B, of odd cardinalities. Thus, e2(B) � 3 and by (1) in
Theorem 1 or by (4), t(G(n, 2r)) � 4

3 since G(n, 2r) is isomorphic to a cycle permu-
tation graph. �

Corollary 4.1. For n � 4 and α ∈ Sn,

t(Pn(α)) � 4
3
.

�����. If n �= 4k + 3, then, by Corollary 1.1, t(Pn(α)) � 4
3 for every α ∈ Sn.

By Theorem 2, if e1(Bi) � 3 or e2(Bi) � 1, then t(P4k+3(α)) � 4
3 for every α ∈ Sn

and any positive integer k. We know that the case of n = 4k + 3 with k � 1,
e1(Bi) = 2 and e2(Bi) = 0 does not exist, because thus means that there are exactly
2 maximal chains with odd cardinalities and the rest are of even cardinalities. Then
the total number of vertices in C′

n is even which contradicts n = 4k + 3. Thus, the
remaining case which we have to consider is n = 4k + 3 with k � 1, e1(Bi) = 1
and e2(Bi) = 0 for all integers i. By Theorem 3, P4k+3(α), for every α ∈ Sn, is
isomorphic to G(4k + 3, 2r) for some positive integer r which divides 2k + 2. By
Theorem 4, t(G(4k + 3, 2r)) � 4

3 . Hence, t(Pn(α)) � 4
3 for every integer n � 4 and

every α ∈ Sn. �

Our Corollary 4.1 confirms the conjecture 1 in [11].
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