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Abstract. Properties of n-ary groups connected with the affine geometry are considered.
Some conditions for an n-ary rs-group to be derived from a binary group are given. Nec-
essary and sufficient conditions for an n-ary group 〈θ, b〉-derived from an additive group of
a field to be an rs-group are obtained. The existence of non-commutative n-ary rs-groups
which are not derived from any group of arity m < n for every n � 3, r > 2 is proved.
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1. Introduction

If the standard (affine) geometry has a fixed point O, then any point P of this

geometry is uniquely determined by the vector �p =
−→
OP , and conversely, the vector

�p =
−→
OP uniquely determines the point P . Moreover, any interval PQ may be

interpreted as the vector �q − �p or as the vector �p− �q. In the latter case,

AB = CD if and only if �a−�b+ �d = �c,

or in other words

AB = CD if and only if f(a, b, d) = c,

where any vector �v is treated as an element v of a commutative group (G,+). The
operation f has the form f(x, y, z) = x−y+z. Groups (also non-commutative) with

a ternary operation defined in this way were considered by J. Certaine (cf. [3]) as a
special case of ternary heaps first described by H. Prüfer (cf. [11]). Ternary heaps

have interesting applications to projective geometry (cf. [1]), affine geometry (cf. [2]),
theory of nets (webs), theory of knots and even to the differential geometry.
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Moreover, all affine geometries may be treated as geometries defined by some

ternary relations (cf. for example [15]). Such geometries may be defined also by
some n-ary (n > 3) relations (cf. [16]). The class of affine geometries defined by n-
ary groups, which are a natural generalization of the notion of groups, was introduced

by S.A. Rusakov (cf. [13], [14]) and in detail described by J. I. Kulachgenko (cf. [10]).

Note that n-ary structures are interesting also for their applications to problems

of modern mathematical physics (cf. for example [17], [18]).

2. Preliminaries

Traditionally in the theory of n-ary groups we use the following abbreviated no-
tation: the sequence xi, . . . , xj is denoted by xj

i (for j < i this symbol is empty). If

xi+1 = . . . = xi+k = x, then instead of xi+k
i+1 we write

(k)
x . Obviously

(0)
x is the empty

symbol. In this notation the formula

f(x1, . . . , xi, xi+1, . . . , xi+k, xi+k+1, . . . , xn),

where xi+1 = . . . = xi+k = x, will be written as f(xi
1,
(k)
x , xn

i+k+1).

By an n-ary group (G, f) we mean (cf. [4]) a non-empty set G together with one
n-ary operation f : Gn → G, which for all i = 1, 2, . . . , n satisfies the following two

conditions:

1◦ the associative law :

f(f(xn
1 ), x

2n−1
n+1 ) = f(xi−1

1 , f(xn+i−1
i ), x2n−1n+i ),

2◦ for all a1, a2, . . . , an, b ∈ G there exits a unique xi ∈ G such that

f(ai−1
1 , xi, a

n
i+1) = b.

Such an n-ary group may be considered also (see for example [5], [6] or [8]) as
an algebra (G, f, g) with one associative n-ary operation f and one unary operation

g satisfying some identities. In particular, an n-ary group may be treated as an
algebra (G, f, [−2]) with one associative n-ary operation f and one unary operation
[−2] : x �→ x[−2] in which the identities

(1) f(x[−2],
(n−2)

x , f(
(n−1)

x , y)) = f(f(y,
(n−1)

x ),
(n−2)

x , x[−2]) = y,

hold (cf. [12]).
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In the affine geometry defined on an n-ary group (G, f) (for details see [13]) four

points a, b, c, d ∈ G define a parallelogram if and only if

f(f(a, b[−2],
(n−2)

b ),
(n−2)

b , c) = d.

Two points a and c are called symmetric if and only if there exists a uniquely
determined point x ∈ G such that

f(f(a, x[−2],
(n−2)

x ),
(n−2)

x , c) = x.

3. n-ary rs-groups

For n � 3 the above definitions can be modified. Indeed, since (1) and the asso-
ciativity of f give

f(f(x[−2],
(n−1)

x ),
(n−2)

x , y) = f(y,
(n−2)

x , f(
(n−1)

x , x[−2])) = y,

the results obtained in [8] and [5] imply

f(x[−2],
(n−1)

x ) = f(
(n−1)

x , x[−2]) = x,

where x denotes the skew element to x (cf. [4], [5] or [8]). In general x �= x, but in

the so-called idempotent n-ary groups, i.e. in n-ary groups (G, f) in which f(
(n)
x ) = x

for all x ∈ G, we have x = x.
Thus for n � 3 the above two definitions can be formulated in the following

equivalent form:

Definition 1. Elements a, b, c, d of an n-ary group (G, f), where n � 3, define
a parallelogram if and only if

f(a, b,
(n−3)

b , c) = d.

Definition 2. Two elements a and c of an n-ary group (G, f) are symmetric if

and only if there exists one and only one x ∈ G such that

(2) f(a, x,
(n−3)

x , c) = x.

Thus for symmetric elements a and c there exist a uniquely determined x ∈ G and
a symmetry Sx such that Sx(a) = c. Since the definition of an n-ary group implies
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that in the equation (2) the element c is uniquely determined by a and x, then using

the same method as in [5] and [8] one can prove that for n � 3 the symmetry Sx has
the form

Sx(a) = f(x, a,
(n−3)

a , x).

An n-ary group (G, f) in which for any pair (a, c) of elements of G there exists
a uniquely determined chain x1, x2, . . . , xr+1 (r � 2) of elements of G such that

x1 = a, xr+1 = c and xi+2 = Sxi+1(xi) for i = 1, 2, . . . , r − 1 is called an n-ary

rs-group (cf. [13]). The chain a, x2, x3, . . . , xr, c is called the rs-chain.

The set � of reals with the operation f(xn
1 ) = x1 + . . .+ xn + 1 is an example of

an n-ary group in which any two elements are symmetric. The set � of all integers

with the same operation is an example of an n-ary group in which only some pairs
of elements are symmetric. It is easy to see that a, c ∈ Z are symmetric iff a ≡ c

(mod 2). Also it is not difficult to verify that in a ternary group (Z3, f) with the
operation f(x, y, z) = x + y + z + 1 (mod 3) any two elements are symmetric. Any

2s-chain has the form a, 2a + 2c, c. Any 4s-chain is defined by a, c, 2a + 2c, a, c.
Moreover, one can prove that in this group any pair (a, c) determines the rs-chain

xk+1 = a + k(2ja + jc) (mod 3), where r ≡ j (mod 3) and j = 1, 2. For r ≡ 0
(mod 3) such rs-chains do not exist.

Let (G, f) be an n-ary rs-group. Then for every a, c ∈ G there exists a uniquely
determined chain x1, x2, . . . , xr+1 ∈ G such that x1 = a, xr+1 = c and

(3)





x2 = f(a, x2,
(n−3)
x2 , x3),

x3 = f(x2, x3,
(n−3)
x3 , x4),

x4 = f(x3, x4,
(n−3)
x4 , x5),

. . . . . . . . . . . . . . . . . . . . . . . . .

xr−1 = f(xr−2, xr−1,
(n−3)
xr−1 , xr),

xr = f(xr−1, xr,
(n−3)
xr , c).

Replacing x2 in the second identity by the first, we obtain

x3 = f(f(a, x2,
(n−3)
x2 , x3), x3,

(n−3)
x3 , x4),

which by the associativity of f implies

x3 = f(a, x2,
(n−3)
x2 , f(x3, x3,

(n−3)
x3 , x4)).
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This by the so-called Dörnte’s identity

f(
(i−2)

x , x,
(n−i)

x , y) = y,

which for i = 2, 3, . . . , n holds in any n-ary group (for details see [4], [5], [6] or [8]),

gives

x3 = f(a, x2,
(n−3)
x2 , x4).

In a similar way, replacing x3 in the third identity by the above formula, we get

x4 = f(a, x2,
(n−3)
x2 , x5).

This together with the fourth identity gives

x5 = f(a, x2,
(n−3)
x2 , x6).

Continuing the above procedure we obtain

xk = f(a, x2,
(n−3)
x2 , xk+1)

for k = 2, 3, . . . , r. Thus

xr = f(a, x2,
(n−3)
x2 , c)

and

xr−1 = f(a, x2,
(n−3)
x2 , xr) = f(a, x2,

(n−3)
x2 , f(a, x2,

(n−3)
x2 , c)).

Analogously we obtain

(4) xk = f(r−k+1)(a, x2,
(n−3)
x2︸ ︷︷ ︸, . . . , a, x2,

(n−3)
x2︸ ︷︷ ︸︸ ︷︷ ︸

r−k+1-times

, c)

for all k = 2, 3, . . . , r, where f(r−k+1) means that the n-ary operation f is used

(r − k + 1)-times.
However, by Hosszú’s theorem every n-ary group (G, f) is 〈θ, b〉-derived from some

binary group, i.e. every n-ary group has the form

f(xn
1 ) = x1 · θx2 · θ2x3 · . . . · θn−1xn · b,

where (G, ·) is a binary group (called the creating group), b ∈ G, θ is an automorphism
of (G, ·) such that θb = b and θn−1x · b = b · x for all x ∈ G.
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Since this form may be written also as

(5) f(xn
1 ) = x1 · θx2 · θ2x3 · . . . · θn−2xn−1 · b · xn,

and f(z, z,
(n−2)

z ) = z for every z ∈ G, hence θz · θ2z · . . . · θn−2z · b · z is the identity
of (G, ·) and θz · θ2z · . . . · θn−2z · b is the inverse of z in (G, ·). Thus the identity (2)
may be written in (G, ·) as a · x−1 · c = x. Similarly (4), for k = 2 and a = e, where

e is the identity of (G, ·), may be written as x2 = (x
−1
2 )

r−1 · c, which proves that in
a creating group of an n-ary rs-group (G, ·) for any element c there exists only one

x such that c = xr. In particular, there exists only one x such that e = xr.

Thus the following theorem is true.

Theorem 1. An n-ary rs-group is 〈θ, b〉-derived from a binary group without
elements of order r.

Corollary 1. An n-ary 2s-group is 〈θ, b〉-derived from a binary group without
elements of order two.

Corollary 2. A finite n-ary 2s-group is 〈θ, b〉-derived from a binary group with
an odd exponent.

Corollary 3. There are no n-ary 2s-groups of an even order.

Since all binary retracts of a given n-ary group (G, f) 〈θ, b〉-derived from a group
(G, ·), i.e. groups (G, ∗a) where x ∗a y = f(x,

(n−2)
a , y) and a ∈ G is fixed are isomor-

phic to (G, ·) (see [9]), we have

Corollary 4. If a binary retract of an n-ary group (G, f) has an element of order
d|r, then (G, f) is not a rs-group.

Corollary 5. Commutative idempotent n-ary rs-groups do not exist for r ≡ 0
(mod (n − 1)).

�����. Let (G, f) be a commutative idempotent n-ary group. By Hosszú’s

theorem there exists a group (G, ·) with the identity e such that (5) holds. Since
the operation f is commutative and x = x for every x ∈ G, we have f(y, e, . . . , e) =

f(e, y, e, . . . , e) = y for all y ∈ G (cf. [4] or [8]). This together with (5) gives
θy · b = y. Hence b = e and θy = y. Therefore the operation f has the form

f(xn
1 ) = x1 · x2 · . . . · xn. Thus for every x in (G, ·) we have xn−1 = e, which proves

(by Corollary 4) that for r ≡ 0 (mod (n−1)) this n-ary group is not an rs-group. �
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From the last part of the proof of our Theorem 1 it follows that in a given rs-

group (G, f) all rs-chains depend only on the creating group (G, ·). Moreover, by
(2), the rs-chain determined by a, c ∈ G has the form a, x2, yx2, . . . , y

r−1x2, c, where
y = x2a

−1. Thus all n-ary groups (also non-isomorphic), which are 〈θ, b〉-derived
from (G, ·), have the same rs-chains. If t = exp(G, ·), then all such n-ary groups are
also (r + t)s-groups.

Now let (K, f) be an n-ary group 〈θ, b〉-derived from an additive group of a fieldK.

For this group the system of equations (3) can be written as

(6)





x2 = a− x2 + x3,

x3 = x2 − x3 + x4,

x4 = x3 − x4 + x5,

. . . . . . . . . . . . . . . . . . . . . . . . .

xr−1 = xr−2 − xr−1 + xr,

xr = xr−1 − xr + c,

i.e. as a system of r − 1 linear equations with r − 1 unknowns x2, x3, . . . , xr.

The determinant of this system may be written in the form

Dr−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0

0 −1 2 −1 . . . 0 0
0 0 −1 2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 2 −1
0 0 0 0 . . . −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Applying the Laplace formula to the last column (or to the last row) we obtain

Dr−1 = 2Dr−2 −Dr−3

for r > 3. Since D1 = 2 and D2 = 3, we obtain by induction Dr−1 = r. This
proves that the system of equations (6) has a unique solution if and only if we have

r·x �= 0 for any non-zero element x of the group (K,+). Thus we obtain the following
theorem.

Theorem 2. An n-ary group 〈θ, b〉-derived from an additive group of a field K is

an rs-group if and only if K has the characteristic 0 or p, where p � r.
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The assumption that (K,+) is an additive group of a field is essential. Indeed, as

was mentioned above, an n-ary group (Z, f) derived from the additive group of an
integral domain (Z,+, ·) is not an rs-group.
As is well known (cf. for example [4] and [9]) some n-ary groups may be reduced

to groups of arity m < n, i.e. for some n-ary groups (G, f) there exists an m-ary
group (G, g), where n = s(m − 1) + 1, s > 1, such that the following identity holds:

f(xn
1 ) = g(g(. . . g(g(xm

1 ), x
2m−1
m+1 ), . . .), x

s(m−1)+1
(s−1)(m−1)+2).

Such n-ary groups are not interesting since all results on such groups immediately
follow from the results on the corresponding m-ary groups. Obviously the affine

geometry defined by such n-ary groups is identical with the geometry defined by the
corresponding m-ary groups.

Theorem 3. For every n � 3 and r � 2 there exists a non-commutative n-ary

rs-group which is not derived from any group of arity m < n.

�����. Let C be the set of complex numbers and let ω be the primitive (n−1)-st
root of unity. Then G = C3 with the operation

(x1, x2, x3) • (y1, y2, y3) = (x1 + y1, x2 + y2 + x1y3, x3 + y3)

is a group and θ(x1, x2, x3) = (ωx1, ω
2x2, ωx3) is its automorphism.

It is not difficult to verify that an n-ary group 〈ω, 1〉-derived from (G, •) is an
rs-group for every r � 2. Since it is isomorphic to the n-ary group from the proof of
Theorem 3 in [7], it is not reduced to any group of arity m < n. �
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